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Idiographic (N=1) research in psychology

N=1 research has included:
e Cattell’s P-technique: factor analysis of N=1 data
e Dynamic factor analysis: considering lagged relationships

e Measurement burst design: multiple waves of intensive
measurements

¢ Intervention research: ABAB design etc.

Critique of this kind of research:
¢ within-person fluctuations are just noise
¢ results are not generalizable
¢ no one has these data
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Intensive longitudinal data

Different forms of intensive longitudinal data:

daily diary (DD); self-report end-of-day

experience sampling method (ESM); self-report of subjective
experience

ecological momentary assessment (EMA); healthcare related
self-report

ambulatory assessment (AA); physiological measurements
event-based measurements; self-report after a particular event
observational measurements; expert rater

For more info on methodology, check out:

Seminar of Tamlin Conner and Joshua Smyth on YouTube
(https://www.youtube.com/watch?v=nQBBVp9vBIQ)

Society for Ambulatory Assessment (http://www.saa2009.org/)
Life Data (https://www.lifedatacorp.com/)
Quantified Self (http://quantifiedself.com/)



Characteristics of these kind of data

Data structure:
® one or more measurements per day
e typically for multiple days

e sometimes multiple waves (i.e., Nesselroade’s measurement-burst
design)

Advantages of ESM, EMA and AA
no recall bias

high ecological validity

physiological measures over a large time span

e monitoring of symptoms and behavior, with new possibilities for
feedback and intervention (e-Health and m-Health)

e window into the dynamics of processes



Taken from Hamaker and Wichers (2017)
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What is time series analysis?

Time series analysis is a class of techniques that is used in
econometrics, seismology, meteorology, control engineering,
and signal processing.

Main characteristics:

e N=1 technique
e Tis large (say >50)

e concerned with frends, cycles and autocorrelation structure (i.e., serial
dependency)

e goal: forecasting (s prediction)
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Sequence, ACF and PACF
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Lagged relationships in multilevel data

If we have time series data from multiple individuals, we
may want to study:

¢ individual differences in lagged relationships between a
variable and itself: autoregression

e individual differences in lagged relationship between
different variables: cross-lagged relationships

If we use multilevel modeling for this, we could refer to it as
multilevel time series analysis, or dynamic multilevel
modeling.
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Inertia research based on multilevel AR(1) models

Level 1 model:
NAjs = ¢+ OiNA; -1+ Gir

Level 2 model:
¢i = Yoo + uo;
O = Yo1 +uy;

This research line was initiated by Suls, Green and Hillis
(1998), and continued by the group of Kuppens.

The focus is on individual differences in the autoregressive
parameter ¢; (=inertia, carry-over, regulatory weakness), which
is shown to be:

e positively related to current depression, neuroticism, and being female
e predictive of later depression (Kuppens and Koval)
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Dynamic networks based on multilevel VAR(1) models

Level 1 model:

Yiit = C1i+ Oriiyiie—1 + - - + OriViie—1 + Cuir
Y2ir = €2i + $1iV1ie—1 + -+ + O2kiVkir—1 + Coir

Vit = Cki + Ok1iV1ir—1 + -+ + OkkiViir—1 + e

Initiated by Bringmann et al. (2013), and further popularized
by the software from Sacha Epskamp.

The focus is on cross-lagged parameters between variables
(=nodes; typically symptoms), and on measures based on
these (e.g., centrality).

Main idea is that stronger connections lead to an increased
risk of developing and maintaining psychopathology.
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Taken from Hamaker (2012).

Number of words per minute

Number of words per minute

18/88



Three perspectives on data

Cross-sectional
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Within-person slopes
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Taken from Hamaker and Grasman (2014).

The within-person slope can:
o differ from the between-person slope
e differ across individuals (i.e., random slope)
e be an autoregression
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Hamaker & Grasman (2015)

When estimating the multilevel AR(1) model, we can decide to:

* not center the lagged predictor (NC)
e center with the sample mean y.;
e center with the estimated mean from an empty multilevel model fi;

e center with the true mean y; (in case of simulations)

Sample size Bias CR s
N T NC C(F.) C() Cw) | NC C(F.) C(f) Clw)

20 20 .002 -.072 -069 -068 | .928 .762 .785 .787
50 .000 -.027 -027 -026 | .940 .900 .901 .898
100 .000 -.013 -013 -013 | 932 932 932 .932
50 20 .005 -.071 -069 -.067 | .893 .480 .512 .518
50 .001 -.027 -026 -026 | .936 .800 .804 .805
100 .000 -.013 -013 -013 | .946 .902 .902 .903
100 20 .006 -.070 -068 -066 | .892 .196 .227 .242
50 .001 -.027 -027 -027 | 930 .623 .630 .637
100 .000 -.013 -.013 -.013 | .930 .851 .854  .851
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Disadvantages of using regular multilevel software

If we are interested in dynamic multilevel modeling, we may
run into the following problems/limitation when using standard
multilevel software:
e negative bias in autoregression when centering the lagged predictor
(Nickell’s bias)

¢ only one outcome variable (thus, separate models for multivariate
outcomes)

e only observed variables (no measurement error, moving average
terms, factor models)

® missing data result in many missing cases
e unequally spaced observations

Dynamic structural equation modeling (DSEM) in Mplus
tackles all these problems.
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Data: Daily measurements affect

Data come from the COGITO study of the MPI in Berlin; goal is
to study aging using a younger and older sample.

Analyses here are based on Hamaker et al. (under revision).

Characteristics of the younger and older sample:
e aged 20-31; aged 65-80
¢ 101 individuals; 103 individuals

e about 100 daily measurements of positive affect (PA) and
negative affect (NA)
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Decomposition

Decomposition into a between part and a within part

PAiy = lipa;+PA"
NAj; = Una,i +NA,(tw)

where

® upy; and uyy ; are the individual’s means on PA and NA (i.e., baseline,
trait, or equilibrium scores) = between-person part

o PA") and NA") are the within-person centered (cluster-mean
centered) scores = within-person part
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Total, between-, and within-person variance
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Bivariate model: Multilevel vector AR(1) model

Decomposition
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Within-person level model

Lagged within—person model:

PA = Opp, zPA( 1+¢PN zNA,, L+ Craie
NA = Pnn INA” |+ One, zPA,t L+ Cnvasie

where

¢pp,; is the autoregressive parameter for PA (i.e., inertia, carry-over)
¢nn.i is the autoregressive parameter for NA (i.e., inertia, carry-over)
opn i is the cross-lagged parameter for NA to PA (i.e., spill-over)
¢np,; is the cross-lagged parameter for PA to NA (i.e., spill-over)
Cpa.ir is the innovation for PA (residual, disturbance, dynamic error)
Cna.ir is the innovation for NA (residual, disturbance, dynamic error)

Parameters estimated at this level are the residual variances

and covariance:
CPA.it] [ {0] [911 ] ]
"~ MN ,
|:CNA,it 0]"[621 62
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Between-person level model

Between level: fixed and random effects
Upai = Yp+up,;
UNA,i = WV +Un,i
Opp,i = Ypp +Upp,
Opn,i = YpN +Upn,
Onpi = Ynp +unp,i
ONN,i = YNN + UNN,i

The u’s are assumed to be multivariate normally distributed
(i.e., u ~MN(0,T)).

Parameters estimated at this level are:
o 6 fixed effects (i.e., y’s)

e 6 variances for random effects (i.e., diagonal elements of ¥: variances
of the u’s)

e 15 covariances between the random effects (i.e., off-diagonal elements
in ©)
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Bivariate model: Mplus code

Data are in long format (i.e., each record is an occasion within
a person; multiple records per person).

Lagged variables are created in Mplus (using the LAGGED
command).

VARIABLE: NAMES = id sessdate
nal na2 na3 na4 na5 na6 na7 na8 na9 na10
pal pa2 pa3 pa4 pab pa6 pa7 pa8 pa9 pal0
sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;

CLUSTER = id; ! Specify the person id variable

USEVAR = dayPA dayNA; ! Specify which variables are used in the model
MISSING = ALL(-999);

LAGGED = dayPA(1) dayNA(1); ! This creates lagged variables
TINTERVAL = sessdate(1); | This is to account for unequal intervals

ANALYSIS: TYPE = TWOLEVEL RANDOM; ! This allows for random slopes
ESTIMATOR = BAYES; | DSEM requires Bayesian estimation
PROC = 2; ! Using 2 processors makes it faster
BITER = (5000); ! This implies at least 5000 iterations are used
THIN = 10; ! Thinning helps with getting more stable results
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Bivariate model: Mplus code

MODEL:

OUTPUT:

PLOT:

%WITHIN% ! Specify the random lagged relationships
p_pp | dayPA ON dayPA&1;
p_pn | dayPA ON dayNA&1;
p_np | dayNA ON dayPA&1;
p_nn | dayNA ON dayNA&1;

%BETWEEN% ! Allow all 6 random effects to be correlated
p_pp WITH p_pn-p_nn dayPA dayNA;

p_pn WITH p_np-p_nn dayPA dayNA;

p_np WITH p_nn dayPA dayNA,;

p_nn WITH dayPA dayNA;

dayPA WITH dayNA,;

TECH1 TECH8 STDYX;

TYPE = PLOTS;
FACTORS = ALL;
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Mplus results: Within-person (younger sample)

Estimate
Within Level
DAYNA WITH
DAYPA -0.069
Residual Variances
DAYPA 0.414
DAYNA 0.302

Posterior

S.D.

0.004

0.006
0.004

One-Tailed

P-Value

0.000

0.000
0.000

95% C.1.

Lower 2.5%

-0.076

0.403
0.294

Upper 2.5% Significance

-0.061 *
0.426 *
0.311 *
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Mplus results: Between-person (younger sample)

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
Between Level
Means

DAYPA 3.090 0.110 0.000 2.875 3.308 *

DAYNA 0.977 0.077 0.000 0.826 1.128 *

P_PP 0.334 0.026 0.000 0.283 0.387 *

P_PN 0.050 0.022 0.016 0.006 0.093 *

P_NP 0.038 0.015 0.006 0.008 0.068 *

P_NN 0.370 0.027 0.000 0.315 0.423 *
Variances

DAYPA 1.178 0.189 0.000 0.886 1.618 *

DAYNA 0.595 0.101 0.000 0.443 0.832 *

P_PP 0.055 0.010 0.000 0.039 0.079 *

P_PN 0.024 0.006 0.000 0.014 0.039 *

P_NP 0.013 0.003 0.000 0.008 0.021 *

P_NN 0.062 0.012 0.000 0.044 0.089 *
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Comparing cross-lagged parameters

Standardization in multilevel models is a tricky issue.

Schuurman, Ferrer, Boer-Sonnenschein and Hamaker (2016)
discuss four forms of standardization in multilevel models,
using:

e total variance (i.e., grand standardization)

e between-person variance (i.e., between standardization)

e average within-person variance

e within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it parallels
standardizing when N=1.

Standardized fixed effect should be the average standardized
within-person effect.
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Mplus standardized results (younger sample)

STDYX Standardization

Estimate

Posterior

S.D.

One-Tailed
P-Value

95% C.1.

Lower 2.5%

Within-Level Standardized Estimates Averaged Over Clusters

P_PP | DAYPA ON
DAYPA&1

P_PN | DAYPA ON
DAYNA&1

P_NP | DAYNA ON
DAYPA&1

P_NN | DAYNA ON
DAYNA&1

DAYNA WITH
DAYPA

Residual Variances
DAYPA
DAYNA

0.335

0.034

0.038

0.370

-0.194

0.816
0.792

0.011

0.013

0.011

0.012

0.010

0.008
0.008

0.000

0.006

0.000

0.000

0.000

0.000
0.000

0.312

0.008

0.017

0.347

-0.213

0.799
0.775

Upper 2.5%

0.358

0.059

0.059

0.394

-0.175

0.832
0.808

Significance
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Mplus standardized results (younger sample)

Within-Level R-Square Averaged Across Clusters

Posterior One-Tailed 95% C.I.
Variable  Estimate S.D. P-Value Lower 2.5% Upper 2.5%
DAYPA  0.184 0.008 0.000 0.168 0.201
DAYNA  0.208 0.008 0.000 0.192 0.225
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Between-person level: Correlated random effects

To represent the correlation matrices of the 6 random effects
in each group, we can use the network representation (with
ggraph from Sacha Epskamp in R):
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e Discussion
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Including level 2 predictor and outcome

Depression was measured prior to the ILD phase and
afterwards, using the CESD; we include these measures at the
between-person level as a predictor and an outcome.

Between level: Including a level 2 predictor

Upa,i = Yoo + Yo1 CESDpre; + uo;
Una,i = Yo+ Y11 CESDpre; +uy;
Oppi = Y0 + Y21CESDpre; + uy;
dpn,i = Y30 + V31 CESDpre; + u3;
Onn,i = Va0 + Ya1 CESDpre; + us;
dnpi = Y50 + ¥51CESDpre; + us;

Between level: Including a level 2 outcome

CESDpost; = Ys0 + Y61 CESDpre; + Yoo lpa i + Yo3 UNA,i
+Y%a0prp,i + YosOpn,i + Yoo ONN,i + Yo1PNP,i + Usi
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Dynamic mediation model
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Mplus input mediation model

VARIABLE:

DEFINE:

ANALYSIS:

NAMES = id sessdate

nal na2 na3 na4 na5 na6 na7 na8 na9 nai0

pal pa2 pa3 pa4 pa5 pab pa7 pa8 pa9 pal0

sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;
CLUSTER =id;

USEVAR = dayPA dayNA CESDpre CESDpost; ! Plus level 2 variables
BETWEEN = CESDpre CESDpost; ! Specify these as level 2 variables
LAGGED = dayPA(1) dayNA(1);

TINTERVAL = sessdate(1);

MISSING = ALL(-999);

CENTER CESDpre CESDpost (GRANDMEAN);! Grand mean centering

TYPE = TWOLEVEL RANDOM:;
ESTIMATOR = BAYES;
PROCESSORS = 2;

BITER = (5000);

THIN = 10;
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Bivariate model: Mplus code

MODEL:

MODEL CONSTRAINT:

OUTPUT:

PLOT:

%WITHIN% | Same as before
p_pp | dayPA ON dayPA&1;
p_pn | dayPA ON dayNA&T;
p_np | dayNA ON dayPA&1;
p_nn | dayNA ON dayNA&1;

%BETWEEN% ! Mediation model with parameter names
p_pp-p_nn dayPA dayNA ON CESDpre (a1-a6);
CESDpost ON p_pp-p_nn dayPA dayNA CESDpre (b1-b7);

I Compute the indirect effects

new (ab_p_pp); ab_p_pp=al*b1;
new (ab_p_pn); ab_p_pn=a2*b2;
new (ab_p_np); ab_p_np=a3*b3;
new (ab_p_nn); ab_p_nn=a4*b4;
new (ab_dayPA); ab_dayPA=a5*b5;
new (ab_dayNA); ab_dayNA=a6*b6;

TECH1 TECH8 STDYX;

TYPE = PLOTS;
FACTOR =ALL;
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Mplus output mediation model (younger sample)

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
New/Additional Parameters
AB_P_PP 0.010 0.025 0.266 -0.028 0.076
AB_P_PN -0.002 0.032 0.439 -0.074 0.062
AB_P_NP -0.004 0.037 0.401 -0.089 0.067
AB_P_NN 0.195 0.070 0.000 0.081 0.359 *
AB_DAYPA 0.049 0.035 0.029 -0.001 0.135
AB_DAYNA 0.028 0.043 0.234 -0.052 0.119
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Mplus output mediation model (older sample)

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
New/Additional Parameters
AB_P_PP 0.005 0.016 0.302 -0.018 0.049
AB_P_PN -0.004 0.025 0.396 -0.061 0.045
AB_P_NP 0.012 0.027 0.268 -0.035 0.076
AB_P_NN -0.036 0.038 0.112 -0.130 0.025
AB_DAYPA 0.028 0.038 0.209 -0.042 0.110
AB_DAYNA 0.027 0.036 0.194 -0.040 0.108
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Random innovation variance (univariately)

Within level: AR(1) with random ¢;
NAY) = oiNAL | + G L ~ N(0,07)

Between level: fixed and random effects

Mi = Yu + uoi U O [vu
0 =Y +ui ui| ~MN | 0], |yv21 w2
log(o7) = Yiog(c?) T U2i Ui 0] Lvs1 w3 33

—_

Reasons to assume individual differences for o2:

e individuals may differ with respect to the variability in exposure to
external factors

e individuals may differ with respect to their reactivity to external
influences (see reward experience and stress sensitivity research)
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Random variance in a univariate model

log(of)

NAM) - NAY

Within
A 4 v

INA;_4 NA;

Between
@ (S
MODEL: %WITHIN%

p_nn | dayNA ON dayNA&1;

loglV | dayNA;

%BETWEEN%

p_nn WITH dayNA loglV;
dayNA WITH loglV;
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Random innovation variances and covariance

In the bivariate case, we want random innovation variances
AND random innovation covariance; the latter is modeled
with an additional factor 7),:

Decomposition

X
& &

Where:

e -7, is the shared part (we assume a negative covariance)

Within

® epy; and ey, , are the unique parts
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Mplus code: Within model

MODEL:

OUTPUT:

%WITHIN%

p_pp | dayPA ON dayPA&1;
p_pn | dayPA ON dayNA&1;
p_np | dayNA ON dayPA&1;
p_nn | dayNA ON dayNA&1;

I Create latent variable that represents negative covariance
NCov BY dayPA@1 dayNA@-1;

I Create random (log) variances
logvarPA | dayPA;

logvarNA | dayNA;

logNCov | NCov;

%BETWEEN%

p_pp-p_nn WITH p_pn-p_nn logvarPA logvarNA logNCov dayPA dayNA;
logvarPA WITH logvarNA logNCov dayPA dayNA;

logvarNA WITH logNCov dayPA dayNA;

logNCov WITH dayPA dayNA,;

dayPA WITH dayNA;

TECH1 TECH8 STDYX FSCOMPARISON;
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Mplus results

Effect Younger Older

direct 0.290 [ 0.062,0.522] 0.585 [ 0.076,1.206]
mediated by ppy 0.058 [-0.011,0.154]  0.054 [-0.018,0.147]
mediated by uns 0.024 [-0.062,0.130]  0.011 [-0.022,0.070]
mediated by ¢pp 0.003 [-0.032,0.050]  0.003 [-0.020,0.043]
mediated by ¢py 0.000 [-0.053,0.061]  -0.003 [-0.106,0.097]
mediated by ¢yp -0.019 [-0.178,0.087] -0.048 [-0.691,0.470]
mediated by ¢ny 0.127 [ 0.036,0.258] -0.011 [-0.069,0.020]
mediated by log(c2) | 0.000 [-0.059,0.055] -0.046 [-0.127,0.007]
mediated by log(c2,) | -0.009 [-0.103,0.076]  0.079 [-0.015,0.212]
mediated by log(—c) | 0.072[0.004,0.185] 0.029 [-0.035,0.122]

Hence:

e higher CESDpre is associated with higher CESDpost (both samples)

e higher CESDpre is indirectly associated with higher CESDpost
(younger sample) through the autoregression of NA and the negative
covariance between the innovations
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Mediation through logNCov

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance

LOGNCOV ON

CESDPRE 0.959 0.436 0.016 0.079 1.786 *
CESDPOST ON

P_PP -0.212 0.186 0.120 -0.583 0.147

P_PN -0.346 0.336 0.149 -0.998 0.313

P_NP -0.576 0.984 0.265 -2.581 1.325

P_NN 0.560 0.173 0.001 0.225 0.907 *

LOGVARPA 0.005 0.048 0.454 -0.089 0.098

LOGVARNA -0.008 0.034 0.406 -0.075 0.059

LOGNCOV 0.077 0.031 0.007 0.017 0.138 *

Conclusion: Higher CESDpre is associated with more
negative common variance (i.e., covariance).
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Intervention study with ESM

When ESM is used in a randomized controlled trial, we can
investigate whether treatment affects symptoms through
changing:

e means

e dynamics (e.g., autoregression)

e variability

Here we use negative affect (NA) from individuals with a
history of depression and current residual depressive
symptoms (Geschwind et al., 2011).

Each ESM period consisted of 6 days, 10 beeps per day.

We analyze data from 117 participants; 56 received a
mindfulness training between the two phases, and 61 served
as controls.
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Data setup
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Treatment effect on the within-person mean

We use NA1;; and NA2;, as two separate variables!

Decomposition into a between part and a within part

Pre-treatment phase: NAl; = uy; +NA1§,W)

Post-treatment phase: NA2;, = u,; +NA2§,W)

Between level

M1i = Yoo + Yo1 Group; + uy;
M2i = Yio + i + Y11Group; + uz;

¢ v is the initial difference between the groups
e 7 is the effect of time
e 7 is the effect of treatment

Note: wo; — Wi = Yio + Y11 Group; + uy;.
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Mplus input

MODEL: %WITHIN%
NA1 WITH NA2@0;

%BETWEEN%

NA1 ON Group;

NA2 ON NA1@1 Group;
NA1 WITH NA2;

Note: When NA1;; is observed, NA2;; is missing, and vice versa;
hence, we fix their within-person covariance to zero.
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Posterior One-Tailed 95% C.1.
Estimate S.D. P-Value  Lower2.5% Upper 2.5% Significance
Within Level

NA1 WITH

NA2 0.000 0.000 1.000 0.000 0.000
Variances

NA1 0.631 0.012 0.000 0.607 0.656 *

NA2 0.472 0.009 0.000 0.454 0.490 *
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Mplus results: Between

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
Between Level
NA1 ON
GROUP -0.031 0.136 0.408 -0.304 0.234
NA2 ON
NA1 1.000 0.000 0.000 1.000 1.000
GROUP -0.280 0.110 0.003 -0.500 -0.074 *
Intercepts
NA1 2.028 0.093 0.000 1.849 2.213 *
NA2 -0.027 0.076 0.345 -0.175 0.122
Residual Variances
NA1 0.520 0.074 0.000 0.398 0.683 *
NA2 0.316 0.049 0.000 0.237 0.431 *

Conclusion:

o No initial differences between the groups
e Significant (negative) change in NA due to treatment

e No change due to time
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Treatment and time effects on autoregression

Within level: AR(1) processes

Pre-treatment phase: NA1(" = ¢,;NA1!" 1+C1,,
Post-treatment phase: NA2 ¢2,NA2” 1+C2U

Between level: Pre-treatment phase

M1i = Yoo + Yo1 Group; + ug;
01, = Y0 + Y11 Group; + uy;

We expect y; and y;; to be zero.

Between level: Post-treatment phase

Moi = Y0 + Hii + Y21 Group; +uz; OF: Al = Yoo + Ya1Group; + u;
i = Y30+ 01 + V31Group; +u3;  or: Ad; = Y30 + V31 Group; + u3;

Where: y¢ and y represent the effects of time and: »; and
151 represent the effects of treatment



Mplus results (all effects random)

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
Between Level
PHI2 ON
PHN 1.000 0.000 0.000 1.000 1.000
PHI1 ON
GROUP 0.052 0.047 0.130 -0.039 0.142
PHI2 ON
GROUP -0.077 0.066 0.119 -0.209 0.057
NA1 ON
GROUP -0.079 0.134 0.284 -0.340 0.183
NA2 ON
NA1 1.000 0.000 0.000 1.000 1.000
GROUP -0.246 0.105 0.010 -0.457 -0.038 *
Intercepts
NA1 2.008 0.092 0.000 1.831 2.190 *
NA2 -0.005 0.071 0.470 -0.148 0.136
PHI1 0.454 0.034 0.000 0.390 0.522 *
PHI2 -0.092 0.047 0.022 -0.185 -0.004 *
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Mplus results with: phi2@0;

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
Between Level

PHI2 ON

PHN 1.000 0.000 0.000 1.000 1.000
PHI1 ON

GROUP 0.075 0.049 0.053 -0.014 0.174
PHI2 ON

GROUP -0.070 0.033 0.014 -0.137 -0.005 *
NA1 ON

GROUP -0.071 0.132 0.302 -0.327 0.192
NA2 ON

NA1 1.000 0.000 0.000 1.000 1.000

GROUP -0.247 0.105 0.010 -0.454 -0.043 *
Intercepts

NA1 2.012 0.090 0.000 1.837 2.194 *

NA2 -0.010 0.071 0.442 -0.152 0.133

PHI1 0.425 0.034 0.000 0.356 0.491 *

PHI2 -0.019 0.022 0.199 -0.062 0.026

61/88



Including a level 1 predictor

Let UP1;, and UP2;, be variables for phases 1 and 2, that
indicate whether something emotionally charged happened
since the previous beep (positive scores is Pleasant event,
negative score is Unpleasant event).

Within level

Pre-treatment phase: NA1(" q)hNAl, 1+ﬁ1zUP1” + &1
Post-treatment phase: NA2\" ¢2,NA2” 1+ B UP2Y + &y

where:
e ¢;; and ¢,; represent carry-over
e 31, and B3,; represent reactivity/sensitivity

Note that we have concurrent regressions in this model (i.e.,
Bi; and Ba:).
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Including a level 1 predictor

Group is a predictor at the between level:

Between level: Pre-treatment phase
Hii = Yoo + Yo1 Group; + uo;

¢1; = Yio + Y11 Group; + uy;
Bii = Y20 + 21Group; + uy;

where 10, %10, and o are expected to be zero.

The change in mean, carry-over, and reactivity is modeled as:

Between level: Post-treatment phase

Mai = Y30 + Mii + Y31Groupi +uzi Or: Al = Y30 + Y31 Group; + us;
¢2i = Yao + O1;+ Va1 Group; +us;  Or: Ad; = Yao + Ya1 Group; + ua;
Bai = Y50 + Bii + ¥51Group; +us;  or: AP; = 50 + ¥s1Group; + us;

where
* 50, Y40, and 5o represent change due to time

* 71, Y41, and 51 represent change due to treatment
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Mplus input: Centering within predictors

VARIABLE: NAMES = ID Time PrePost Group pal pa2 nal na2
PDLA1 PDLA2 up1 up2 ham1 ham2;
CLUSTER = ID;
USEVAR = nat na2 up1 up2 Group;
LAGGED = nai(1) na2(1);
BETWEEN = Group;
WITHIN = up1 up2;
TINTERVAL = Time(1);
MISSING = ALL(-999);

DEFINE:  CENTER up1 up2 (GROUPMEAN);

Note that the concurrent predictors UP1 and UP2 are:
¢ defined as within-level variables

¢ centered per person (i.e., group mean centering using
sample means rather than latent means)

This is to allow for lag zero (concurrent) regressions when
the predictor has missings.
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Mplus input: Within and between model

Note: The within-person predictor has missings; by asking for
the variances, Mplus treats it as a y-variable, which is allowed

to have missings.

MODEL:

%WITHIN%

phi1 | nat ON nal&1;
betal | na1 ON upft;
phi2 | na2 ON na2&1;
beta2 | na2 ON up2;

nal-up1 WITH na2-up2@0;
up1; up2;

%BETWEEN%

nail phit betal ON Group;
na2 ON na1@1 Group;
phi2 ON phit@1 Group;
beta2 ON beta1l@1 Group;
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Mplus output: Regressions at Between level

Between Level
PHI2 ON
PHI1

BETA2 ON
BETA1

PHI1 ON
GROUP

BETA1 ON
GROUP

PHI2 ON
GROUP

BETA2 ON
GROUP

NA1 ON
GROUP

NA2 ON
NA1
GROUP

Estimate

1.000

1.000

0.050

0.001

-0.077

-0.016

-0.070

1.000
-0.255

Posterior

S.D.

0.000

0.000

0.046

0.019

0.068

0.026

0.134

0.000
0.105

One-Tailed
P-Value

0.000

0.000

0.119

0.470

0.123

0.264

0.297

0.000
0.007

95% C.I.

Lower 2.5%

1.000

1.000

-0.035

-0.034

-0.214

-0.069

-0.340

1.000
-0.463

Upper 2.5%

1.000

1.000

0.144

0.041

0.053

0.032

0.180

1.000
-0.059
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Mplus output: Intercepts and random effects

Posterior  One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance
Between Level
Intercepts
NA1 2.012 0.091 0.000 1.835 2.189
NA2 -0.014 0.071 0.422 -0.155 0.126
PHI 0.423 0.033 0.000 0.357 0.487
BETA1 -0.123 0.013 0.000 -0.150 -0.097
PHI2 -0.082 0.047 0.039 -0.173 0.011
BETA2 0.005 0.018 0.388 -0.027 0.041
Residual Variances
NA1 0.466 0.070 0.000 0.355 0.632
NA2 0.268 0.042 0.000 0.199 0.359
PHN 0.038 0.008 0.000 0.026 0.056
BETA1 0.006 0.001 0.000 0.004 0.009
PHI2 0.078 0.016 0.000 0.051 0.114
BETA2 0.008 0.003 0.000 0.005 0.015
Conclusion:

e means of uy;, ¢1;, and By; deviate from zero

e no change due to time (intercepts for w,;, ¢,;, and B,; are zero)
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Mplus output: Standardized regressions

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance

Within-Level Standardized Estimates Averaged Over Clusters

PHI1 | NA1 ON

NA1&1 0.449 0.014 0.000 0.419 0.475 *
BETA1 | NA1 ON

UP1 -0.254 0.013 0.000 -0.279 -0.229 *
PHI2 | NA2 ON

NA2&1 0.328 0.016 0.000 0.297 0.358 *

BETA2 | NA2 ON
upP2 -0.259 0.015 0.000 -0.287 -0.230 *

Conclusion:

e the standardized parameters are standardized per person first

e the standardized parameters for the post treatment phase are for the
“total” parameter (e.g., ¢2; = Va0 + @1 + Va1 Group; + ug; )
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Outline

e Time series analysis

o Multilevel time series analysis

e DSEM application 1: Multilevel VAR(1) model

e DSEM application 2: Mediation

e DSEM application 3: Random innovation variance
e DSEM application 4: Intervention study

e DSEM application 5: Latent variable model
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Multilevel AR factor model

Using the 10 indicators of PA from the COGITO study, we can
specify a multilevel factor model:

Decomposition

pAl, || PA2,| .. |PA1l0,

Within

Between
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Multilevel latent AR(1) model

Decomposition

Yir = Mi +Y,(,W)

Within level: State positive affect
v = AIsPA, +€™ €™~ MN(0,0)

i

SPA;; = ¢iSPAi,t71 arF Ci(tw> Ci(W) ~ N(0, 627,')

Between level: Trait positive affect
pi =Vv+ ATPA; + €;

TPA; Yrra UTPA,i
0i =| Y% |+| upi
log(c? ) 4
8 i YiogVar UlogVar,i
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Mplus input latent AR(1) model

VARIABLE:

ANALYSIS:

MODEL:

NAMES = id sessdate nal na2 na3 na4 na5 na6 na7 na8 na9 na10
pal pa2 pa3 pa4 pab5 pab pa7 pa8 pa9 pal0

sessionNr age_pre sex CESDpre CESDpost dayNA dayPA older;
CLUSTER = id;

USEVAR = pa1-pail0 sessdate;

TINTERVAL = sessdate(1);

MISSING = ALL(-999);

TYPE = TWOLEVEL RANDOM; ESTIMATOR = BAYES;
PROCESSORS = 2; BITER = (5000); THIN = 10;

%WITHIN%

SPA BY pat-pal0 (&1 LW1-LW10);
phi | SPA ON SPA&T1;

logVSPA | SPA;

%BETWEEN%
PAB BY pai-pa10 (LB1-LB10);
PAB WITH phi logVSPA;

phi WITH logVSPA;

Note: We are now making a latent lagged variable; this is
done in the MODEL command (using: (&1)), rather than in the
VARIABLE command.
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Extra: Computing differences in factor loadings

A key question here is whether there is weak factorial
invariance across the levels: Are the state-like, within-person
fluctuations taking place on the same underlying dimension as
the one on which the trait-like, between-person differences are
located?

MODEL CONSTRAINT: new (difL2
new (difL3
new (difL4
new (difL5

( difL2=LB2-LW2;
(
(
(
new (difL6
(
(
(
(

; difL3=LB3-LW3;
difL4=LB4-LW4;
difL5=LB5-LWS5;
difL6=LB6-LW6;
difL7=LB7-LW7;
new (difL8); difL8=LB8-LWS8;
new (difL9); difL9=LB9-LW9;
new difL10) difL10=LB10-LW10;

new (difL7

R e B

This will compute the differences in each iteration of the
MCMC sampler; hence, we get posterior distributions for
these quantities.

73/88



Results for differences in factor loadings

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance

New/Additional Parameters

DIFL2 -0.106 0.076 0.090 -0.242 0.060
DIFL3 -0.118 0.089 0.101 -0.277 0.069
DIFL4 -0.095 0.060 0.077 -0.199 0.037
DIFL5 0.361 0.129 0.002 0.117 0.621 *
DIFL6 -0.246 0.057 0.001 -0.346 -0.121 *
DIFL7 -0.202 0.076 0.009 -0.334 -0.037 *
DIFL8 -0.080 0.061 0.107 -0.187 0.053
DIFL9 -0.223 0.054 0.000 -0.315 -0.101 *
DIFL10 -0.199 0.060 0.003 -0.305 -0.066 *

Conclusion: 5 out of 10 factor loadings show evidence for being
different across levels.
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Factor loadings within-between for young-older

Factor loadings within and between for Young and Older

14 :
12 T r ]
. - B
1 —g—g R - = = M= T =
0.8 |
0.6
0.4 -
02
0
1 2 3 4 5 6 7 8 9 10

YoungWithin M YoungBetween OlderWithin W QlderBetween

Items: 1) enthusiastic; 2) excited; 3) strong; 4) interested; 5) proud; 6) alert;
7) inspired; 8) determined; 9) attentive; 10) active
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Mplus output: R-square within and between

Posterior  One-Tailed
Estimate S.D. P-Value

Within-Level R-Square Averaged Across Clusters
PA1 0.291 0.009 0.000
PA2 0.314 0.010 0.000
PA3 0.252 0.010 0.000
PA4 0.302 0.010 0.000
PA5 0.057 0.007 0.000
PA6 0.305 0.010 0.000
PA7 0.260 0.010 0.000
PA8 0.273 0.010 0.000
PA9 0.366 0.010 0.000
PA10 0.339 0.010 0.000
SPA 0.549 0.012 0.000
Between Level

PA1 0.767 0.045 0.000
PA2 0.844 0.031 0.000
PA3 0.614 0.064 0.000
PA4 0.876 0.025 0.000
PA5 0.295 0.077 0.000
PA6 0.872 0.027 0.000
PA7 0.835 0.033 0.000
PA8 0.947 0.013 0.000
PA9 0.975 0.008 0.000
PA10 0.935 0.015 0.000

Lower 2.5%

0.273
0.293
0.233
0.282
0.045
0.285
0.241
0.254
0.346
0.319
0.525

0.664
0.775
0.474
0.819
0.149
0.811
0.757
0.917
0.957
0.900

Upper 2.5%

0.310
0.333
0.272
0.323
0.071
0.325
0.282
0.294
0.386
0.360
0.573

0.843
0.895
0.728
0.916
0.450
0.914
0.889
0.966
0.986
0.958
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Mplus output: Correlations at between level

Posterior  One-Tailed 95% C.I.
Estimate S.D. P-Value  Lower 2.5% Upper 2.5% Significance

TPA WITH

PHI 0.067 0.110 0.263 -0.146 0.285

LOGVZ -0.303 0.096 0.002 -0.473 -0.100 *
PHI WITH

LOGVZ -0.728 0.063 0.000 -0.828 -0.584 *

Conclusion:

e trait level of PA and carry-over in state PA are not related

e trait level of PA is negatively related to innovation variance of state PA:
higher trait PA is associated with smaller innovation variance

e carry-over in state PA is negative related to innovation variance in state
PA: higher autoregression is associated with smaller innovation variance
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Between-level plots

Mplus output
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Mplus output: Estimated factor scores for ¢;

Using the statement:

OUTPUT: TECH1 TECH8 STDYX FSCOMPARISON;

PLOT: TYPE = PLOT3; FACTOR = ALL(1000);

Ranking Cluster

144
156
166
53

168
157
190
142

174
124
49
22

Factor Score Ranking Cluster

1.000
0.994

99
132
181

Factor Score Ranking Cluster

0.999
0.989

193
151
90
112
6
58
9
1

70
95
115

Factor Score
0.996
0.989
0.981
0.968
0.958
0.941
0.931
0.904

0.323
0.212
0.189
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Multilevel latent AR(2) model

Decomposition
vi = pi+y")
Within level:
yl(tw) = A(W)SPAi, a4 egw)
SPA;r = ¢1;SPA; 11 + §2;SPA; ;5 + Ci(,w)
Between level:

pi=V-+ASPA;+¢€;

Ni Vi Un.i
¢11: _ | Yor | | uen
L Vo2 Ui

log (O-C) YiogVar UlogVar,i
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Autoregressive parameters

1.0

0.5
|

b,

0.0

-0.5
|

______________________________

-1.0

Scatter plot of estimated autoregressive parameters (i.e., ¢;;
and ¢2i):

¢ values inside the triangle imply stationary processes

e values below the curve imply oscillating processes
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Outline

e Time series analysis

o Multilevel time series analysis

e DSEM application 1: Multilevel VAR(1) model

e DSEM application 2: Mediation

e DSEM application 3: Random innovation variance
e DSEM application 4: Intervention study

e DSEM application 5: Latent variable model

¢ Discussion
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Strengths of DSEM in Mplus

Compared to standard multilevel software:

Multiple outcome variables: this allows for correlated residuals and
correlated random effects

Unequal time interval: can be handled by choosing a grid for inserting
missings
Outcomes at between-person level

Person-mean centering integral part of model estimation (solves
Nickell’'s bias)

Latent variables: allows for measurement error to be split off and for
moving average terms

Cross-classified models: allows for random effects of time
Random variance: allows for individual difference in variability

Compared to other Bayesian software (e.g., WinBUGS, jags,
Stan):

Easy to use due to tailor-made code
Default uninformative priors for parameters (even for small variances)
Fast (which makes a difference in case of Bayes)
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Future

Other recent developments:

e mIVAR (Epskamp, Deserno and Bringmann)
ctsem (Driver, Voelkle and Oud)

open Mx (Boker, Neale, et al.)

DynR (Ou, Hunter and Chow)

BOUM (Oravecz, Tuerlinckx and Vanderkerckhove)
GIMME (Gates and Molenaar)

Future options Mplus will offer:
¢ Regime-switching models: allows for a process to switch
between distinct states

¢ Residual dynamic modeling: allows for easy combination
of time trends and residual lagged relationships
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