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Introduction

PSEM is similar to regularized SEM in that penalty is added to
the fit function.

PSEM is not quite regularized SEM. PSEM is based on 2 models
with the same likelihood: null and penalized models. Penalized
model is always unidentified if penalty is removed, i.e., the
penalty main function is to identify the PSEM extension of the
null model

The penalty function is specific to the type of model we estimate.
If we estimate an EFA model we use Geomin penalty

Penalty is interpreted and constructed as Prior for model
parameter

Underlying the existence of PSEM is the vision that:
Penalty=Prior=Rotation/Alignment

Tihomir Asparouhov PSEM 2/ 64



Introduction

PSEM is meant to be a generalization for
EFA/ESEM/MG-Alignment/Logitudinal
Alignment/ASEM/AESEM

All of these methods are based on conditional optimization.

The log-likelihood or the data fit function is optimized with
respect to all parameters as a first step

The subspace of all model parameters that maximizes the data
likelihood is determined. Since the model is overparameterized
this is a multidimensional space

In that subspace, a secondary function is optimized such as
rotation criterion and/or alignment loss function, to determine
the model closest to a desired model such as simple loading
structure or scalar invariance
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Introduction

Conditional optimization is quite complex because the first stage
optimal subspace is complex. Standard errors are also
computationally complex and are based on implicitly solving
non-linear equation.

Longitudinal EFA and AESEM are even more complex because
these use two objective functions: alignment and rotation in
addition to the data fit. This implies that the conditional
optimization has 3 stages and the order of the stages is important

PSEM mimics and approximates conditional optimization by
adding all objective functions together and using small weight to
ensure that data fit is optimized completely before the penalty is
optimized

However, PSEM is a one step optimization. Simpler to work
with and can be used in generalized settings: it can work with
any penalty (rotation, alignment or any other)
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Introduction

Why did we need PSEM? We wanted to align the intercepts in a
growth model (as in longitudinal alignment). Such a model
doesn’t even have a factor analysis measurement model. So the
existing methods can’t be used. Instead of developing a new
conditional optimization for every model, we embraced PSEM
as a simpler alternative, which applies to other models as well

Subsequently the connections between PSEM and BSEM,
ESEM, Alignment, and RegSEM were made

Subsequently we realized that a large number of unsolved SEM
problems can be solved with PSEM
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Introduction

We have been using PSEM for the last 9 months and we keep
discovering new things with it. Here is the list of findings from
the last month

Some EFA/ESEM models don’t need a rotation criterion - the
model can estimate all loadings without rotation
Rotations are not always equivalent in terms of log-likelihood
For some models, the best rotations can be estimated from the
data because maximizing the data fit determines the best rotation
In Longitudinal-CFA/EFA, time-invariant correlated uniqueness
can be identified even if it is not identified at each individual time
point

PSEM allows us to manually estimate and customize EFA,
measurement model alignment across groups and time, structural
alignment of model parameters, tuckerization of curves
(exploratory growth curve modeling), etc.
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Introduction

The fundamental equation of PSEM

(Fit function)+w∗Penalty

Penalty =−log(Prior)

w = 1/(Prior variance)

w is the penalty weight

PSEM is based on w ≈ 0, however, 0 or very tiny weight is not
feasible due to limits in numerical precision
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Introduction

In addition to the null and the penalized model, there is also a
third model in the picture which we refer to as the standard SEM
model. This is when the penalty weight is infinity. The penalty is
held strictly at the minimum before the data is fitted.

This is where approximately equal parameters are equal and
approximately zero parameters are 0. This is why the model is a
standard SEM

The penalty weight provides a continuum between the SEM and
the null model. PSEM is on that continuum. RegSEM is also on
that continuum.

Example of model ordering SEM/PSEM/Null:
CFA/EFA/Unrotated EFA

Example of model ordering SEM/PSEM/Null: Scalar
Invariance/Multiple Group Alignment/ Configural Invariance
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Graphic definition of PSEM
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PSEM - Theory

The PSEM theory comes from the fact that the PSEM estimation
is an approximation for conditional optimization (data fit first,
then penalty) like EFA

PSEM is equivalent to ML estimation with parameter constraints.
The parameter constraints are hidden - they are the derivatives of
penalty and are generally not intuitive or very explicit

Standard errors are always MLR - sandwich based because the
penalized likelihood derivatives are treated as estimating
equations. Bootstrap SE can be used.

Theory guarantees consistent point estimates and standard errors
for large sample as long as PSEM is applied correctly
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PSEM - Theory

A key thing with PSEM is estimating the number of free
parameters. This is not a trivial task and is determined
numerically as the MLF rank. Something similar is used with
regularized models but not exactly the same.

Like in EFA - a zero loading is still a parameter, not quite how
LASSO regression/regularization is counting parameters

Counting the number of model parameters goes along the axes of
PSEM and Null models. The goal is to match DF for PSEM and
NULL. The NULL model is explicit only for simpler PSEM

For complex PSEM models NULL model formulation and
estimation might not be feasible. Must rely/trust the algorithm

Simulation studies provide an easy check for correct
performance. Average chi-2 must match DF.
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PSEM - Overview

There are currently 6 areas where PSEM can be applied

Structural alignment: PSEM-SA

PSEM-ESEM for structural EFA not supported by ESEM

ELGM: exploratory latent growth models

Alignment: Multiple group and longitudinal invariance
alignment not supported by ASEM and AESEM

PSEM-RegSEM: models where we sacrifice some of the data fit
in order to fulfill penalty demand

Regularized SEM: PSEM models where removing the penalty is
an identified model
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PSEM Overview

PSEM-SA
PSEM-ESEM

PSEM-ELGM

PSEM-Alignment

PSEM-RegSEM

Regularized SEM
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PSEM - SA

PSEM - SA can be used as a substitute for BSEM (small
variance prior Bayes SEM)

An imperfect structural model or a structural model that is
rejected is augmented with additional parameters which the
structural model implies are zero (or not equal). PSEM is
looking for a new structural model that is the best approximation
for the desired structural model with minimal number of added
parameters (given the use of ALF or LASSO penalty)

Parameters are aligned to fit as best as possible a proposed SEM
model. Alignment argument is derived not from invariance of
measurement model as in MGA but from the structure of the
model
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PSEM-SA advantages over BSEM
Based on ML and WLSMV which have more diagnostics and
inference utilities
PSEM-SA is faster than BSEM
PSEM-SA is less sensitive to prior variance specification
PSEM-SA requires fewer number of runs than BSEM
PSEM-SA is more stable
PSEM-SA can use random starting values and deal with multiple
solutions
PSEM-SA has access to the ALF priors which deliver
parsimonious models
PSEM-SA has easier specification techniques (avoids IW priors)
If prior variance is too large the model is unidentified: PSEM
uses information matrix condition number diagnostics. BSEM
uses inefficient poor convergence performance
PSEM-SA has the null model log-likelihood value as a great
reference point which can show if prior variance is too small/big.
Prior proportion ratio in PSEM is similarly helpful
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Examples of PSEM-SA

PSEM Growth models with time specific intercept parameters at
all time points in addition to means for random intercepts and
slopes.

CFA/SEM/EFA/ESEM with full residual covariance for the
indicators to discover a minimal number of correlated
uniqueness needed to support the model

In MIMIC models: adding all direct effect from covariates to
indicators in addition to the covariate effects on the factors

Cross loadings detection - adding all cross loadings - better than
standard Target EFA
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Examples of PSEM-SA

PSEM Growth model

Yit = α(t)+ Ii +Si · t+ εit (1)

εit = rεi,t−1 + ε
′
it (2)

ε
′
it ∼ N(0,θt) (3)(

Ii

Si

)
∼ N

((
µI

µS

)
,

(
vI ρ

ρ vS

))
(4)

α(t)∼ LASSO(0,1) (5)

Tihomir Asparouhov PSEM 17/ 64



PSEM Growth model simulation

   MONTECARLO:
 NAMES = Y1-Y8;
 NOBSERVATIONS = 500;
 NREPS = 100;

MODEL POPULATION:
i s | Y1@0 Y2@0.1 Y3@0.2 Y4@0.4 Y5@0.6 Y6@1 Y7@1.2 Y8@1.5;
[i*0.4 s*0.1];
i*0.9 s*0.4; i with s*0.3;
[Y1-Y4*0 Y5*-0.3 Y6*0.2 Y7-Y8*0];
Y1-Y8*1;

MODEL:
i s | Y1@0 Y2@0.1 Y3@0.2 Y4@0.4 Y5@0.6 Y6@1 Y7@1.2 Y8@1.5;
[i*0.4 s*0.1];
i*0.9 s*0.4; i with s*0.3;
[Y1-Y4*0 Y5*-0.3 Y6*0.2 Y7-Y8*0] (m1-m8);
Y1-Y8*1;

MODEL PRIORS:  m1-m8~ALF(0,1);
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PSEM Growth model simulation results

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 I        WITH
  S                   0.300     0.2956     0.0489     0.0467     0.0024 0.940 1.000

 Means
  I                   0.400     0.3973     0.0576     0.0549     0.0033 0.930 1.000
  S                   0.100     0.1105     0.0446     0.0493     0.0021 0.960 0.610

 Intercepts
  Y1                  0.000     0.0005     0.0364     0.0390     0.0013 1.000 0.000
  Y2                  0.000    -0.0015     0.0416     0.0394     0.0017 0.970 0.030
  Y3                  0.000     0.0011     0.0415     0.0397     0.0017 0.990 0.010
  Y4                  0.000     0.0064     0.0446     0.0426     0.0020 0.960 0.040
  Y5                 -0.300    -0.3021     0.0474     0.0515     0.0022 0.960 1.000
  Y6                  0.200     0.1827     0.0604     0.0540     0.0039 0.930 0.920
  Y7                  0.000    -0.0102     0.0456     0.0387     0.0022 0.970 0.030
  Y8                  0.000    -0.0119     0.0316     0.0251     0.0011 0.940 0.060

 Variances
  I                   0.900     0.8905     0.0718     0.0757     0.0052 0.960 1.000
  S                   0.400     0.3995     0.0603     0.0574     0.0036 0.920 1.000

 Residual Variances
  Y1                  1.000     0.9899     0.0684     0.0728     0.0047 0.980 1.000
  Y2                  1.000     1.0177     0.0742     0.0733     0.0058 0.940 1.000
  Y3                  1.000     1.0011     0.0703     0.0717     0.0049 0.950 1.000
  Y4                  1.000     0.9983     0.0680     0.0705     0.0046 0.950 1.000
  Y5                  1.000     0.9983     0.0719     0.0704     0.0051 0.930 1.000
  Y6                  1.000     0.9974     0.0792     0.0751     0.0062 0.950 1.000
  Y7                  1.000     1.0028     0.0759     0.0789     0.0057 0.920 1.000
  Y8                  1.000     0.9901     0.0875     0.0898     0.0077 0.950 1.000
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PSEM Growth model: Stress in the COMBINE Study (T = 9)

Data from COMBINE, a 16-week, multisite randomized
double-blind clinical trial comparing treatments of alcohol
dependence (Anton et al., 2006, JAMA)

Measurement occasions: Baseline, week 1, week 2, week 4,
week 6, week 8, week 10, week 12, week 16 and week 52
follow-up (first 9 timepoints used here, week 0-week 16)
Consider 4 models:

The SEM model is the standard growth model
The PSEM growth model from previous slide
The Null model where µI = µS = 0 and α(t) is not constrained by
LASSO
The PSEM-follow up model where only significant α(t) are
retained without LASSO.
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Standard growth model fit
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PSEM Growth model

  Analysis: estimator = mlr; 

  Model:
  i s | y0@0 y1@.1 y2@.2 y3@.4 y4@.6 y5@.8 y6@1 y7@1.2 y8@1.6;                
  y1^-y8^ pon y0^-y7^ (r);
  [y0-y8] (m0-m8); 

  Model prior: m0-m8~LASSO(0,1);
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PSEM Growth model results

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 Means
    I                  5.040      0.083     60.827      0.000
    S                 -0.668      0.078     -8.553      0.000

 Intercepts
    Y0                 0.723      0.071     10.163      0.000
    Y1                 0.021      0.027      0.774      0.439
    Y2                -0.151      0.056     -2.694      0.007
    Y3                 0.022      0.041      0.536      0.592
    Y4                -0.091      0.063     -1.439      0.150
    Y5                -0.207      0.065     -3.208      0.001
    Y6                 0.011      0.036      0.310      0.757
    Y7                -0.020      0.039     -0.522      0.602
    Y8                 0.256      0.094      2.728      0.006

Tihomir Asparouhov PSEM 23/ 64



PSEM Growth model BIC results

Table: PSEM growth model

Model BIC
Standard LG 46263

Null 46123
PSEM LG 46123

PSEM LG follow-up 46104
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PSEM follow up model fit

5 out of 9 sample means actually are on a straight line
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Alignment of cross-loadings simulation study

MONTECARLO:
        NAMES = y1-y6;
 NOBSERVATIONS = 500;
 NREPS = 100;

MODEL POPULATION:
 f1 by y1-y3*1 y6*0.3;
 f2 by y4-y6*1;
 f1-f2@1;
  f1 with f2*.25;
 y1-y6*.5;

  MODEL:
        f1 by y1-y3*1 
          y4-y5*0 y6*0.3 (a1-a3);
 f2 by y4-y6*1
          y1-y3*0 (a4-a6);
 f1-f2@1;
  f1 with f2*.25;
 y1-y6*.5;

MODEL PRIORS: a1-a6~ALF(0,1);
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Alignment of cross-loadings simulation study results

Table: Alignment of cross-loadings: Absolute Bias(Coverage)

True PSEM PSEM PSEM ESEM
Parameter Value ALF LASSO Normal Target BSEM

λ11 1 .00(.93) .00(.93) .01(.93) .00(.93) .02(.98)
λ12 0 .00(1.0) .00(1.0) .01(.94) .01(.95) .30(.95)
λ61 .3 .02(.99) .03(.92) .09(.27) .09(.27) .15(.97)
λ62 1 .00(.95) .00(.95) .02(.91) .02(.91) .08(.99)
ψ12 .25 .00(.96) .02(.94) .06(.71) .07(.63) .35(.98)
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Alignment of cross-loadings

ALF and LASSO are generally similar. Only for larger sample
sizes 10000, ALF becomes better and LASSO yields significant
biases. ALF is more aggressive in seeking parsimonious models.

In our Alignment development LASSO |x| was not in the top two
links, ALF

√
|x| was the best and 4

√
|x| was second best

EFA-Target is identical to PSEM-Normal. Rotation criterion =
Penalty.

EFA-Target may be obsolete as it can not compete with
PSEM-ALF.

The main drawback of EFA-Target is that if a target is not zero, it
must be removed to improve performance, becomes a
multi-stage iterative procedure as in CFA-ModInd

BSEM requires multiple runs to get good results but it can be
adjusted to yield results similar to PSEM-Normal
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Alignment of residual correlations in EFA
PSEM can estimate an EFA model and LASSO-include all
residual correlations

MODEL:
 f1-f2 by u1-u10*0 (*1); 
 u1-u10 with u1-u10 (c1-c45);

MODEL PRIORS: c1-c45~LASSO(0,1);
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Alignment of residual correlations in EFA simulation study
2 factors, 10 indicators, 1 cross loading, and 3 residual
covariances, N=500
ALF prior is better almost universally in PSEM, LASSO used
mostly for comparative purposes.
ALF bias is 0 at N=5000 as theory guarantees

LASSO PRIOR
 U1       WITH
  U2                  0.500     0.4181     0.0869     0.0835     0.0142 0.850 1.000
 U4       WITH
  U8                  0.300     0.2574     0.0641     0.0607     0.0059 0.850 1.000
 U9       WITH
  U10                 0.400     0.3315     0.0701     0.0757     0.0096 0.870 0.990

ALF PRIOR
 U1       WITH
  U2                  0.500     0.4503     0.1147     0.0846     0.0155 0.869 0.990
 U4       WITH
  U8                  0.300     0.2767     0.0704     0.0694     0.0054 0.939 0.949
 U9       WITH
  U10                 0.400     0.3672     0.0710     0.0864     0.0061 0.960 0.990
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The PSEM recovery concept

The same concept exist in EFA and Alignment, and could be the
most misunderstood concept in SEM

If you construct a model for a simulation study, will PSEM
recover the parameter estimates?

PSEM-SA-ALF recovers the ”most parsimonious” models only.
If you generate data from a less parsimonious model and PSEM
finds another equivalent model that is more parsimonious then it
won’t be recovered. This doesn’t mean that PSEM is biased

The concept only applies to simulation studies. By definition
PSEM real data analysis yields the most parsimonious model

Asymptotically this is all clear but for finite sample size things
may get messier

Example: if we add 20 residual correlations in the above EFA
model - PSEM will not recover the generating parameter and
will yield another model with 10 residual correlations
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PSEM Overview

PSEM-SA

PSEM-ESEM
PSEM-ELGM

PSEM-Alignment

PSEM-RegSEM

Regularized SEM
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PSEM-ESEM

EFA/ESEM can be estimated with PSEM by specifying Geomin
prior for a loading matrix. Penalty becomes exact replica of
Geomin rotation criteria.

Other rotations can be specified manually by constructing new
parameters in model constraint and then specifying a prior for
those new parameters.

Regularized EFA models: LASSO prior is specified for every
loading parameter, suggested for large P EFA models, Scharf &
Nestler (2019): Should Regularization Replace Simple Structure
Rotation in Exploratory Factor Analysis?, SEM Journal.

ESEM and PSEM can be combined for some models where the
rotation can be done with traditional rotation while PSEM
penalty can be used for another purpose such as free residual
covariances of indicators
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PSEM-ESEM Applications

PSEM can be given starting values and may give better
convergence rates than EFA, which estimates the more difficult
unrotated model. Useful in gradually increasing the number of
factors.

Structural EFA models may not be available with ESEM. ESEM
has many restrictions: not just the loadings is rotated but the
entire model

Regressions / path analysis among EFA factors

Partial EFA invariance for multiple groups or longitudinal
models

Scalar or Metric invariant multiple group or longitudinal EFA
with orthogonal rotation. ESEM yields orthogonal rotation only
in the reference block.

Tihomir Asparouhov PSEM 34/ 64



PSEM-ESEM Applications

Growth and various AR modeling for EFA factors
Rotations that are neither orthogonal or oblique, i.e., factors are
not independent but not completely unrestricted as in oblique
rotation

Bi-factor EFA with 2 or more general factors
Second order factor analysis. There are three new models:

First order CFA, second order EFA
First order EFA, second order CFA
First order EFA, second order EFA
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PSEM-ESEM Example: RI-CLPM for EFA factors
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RI-CLPM for EFA factors

The lagged model can be CLPM or only AR

Without the RI, PSEM is not needed and ESEM can estimate the
CLPM

Illustration is based on Bengt’s example: 6 positive affect items
measure 2 EFA factor over a T=7 periods

The model uses scalar invariance for the factors

RI for all indicators are independent which allows us to estimate
RI for the factors (one or the other)
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RI-CLPM for EFA factors

model:
! random intercepts for all 6 items:
i1 by relax1-relax7@1;
i2 by satis1-satis7@1;
i3 by conf1-conf7@1;
i4 by happy1-happy7@1;
i5 by energ1-energ7@1;
i6 by excit1-excit7@1;

! auto-regressions among factor indicator residual:
relax2^-relax7^ pon relax1^-relax6^ (ar1);
satis2^-satis7^ pon satis1^-satis6^ (ar2);
conf2^-conf7^ pon conf1^-conf6^ (ar3);
happy2^-happy7^ pon happy1^-happy6^ (ar4);
energ2^-energ7^ pon energ1^-energ6^ (ar5);
excit2^-excit7^ pon excit1^-excit6^ (ar6);

! 2-factor ESEM for each of the 7 time points:
f11-f12 by relax1*1 satis1 conf1 happy1 energ1 excit1 (a1-a12);
f21-f22 by relax2*1 satis2 conf2 happy2 energ2 excit2 (a1-a12);
f31-f32 by relax3*1 satis3 conf3 happy3 energ3 excit3 (a1-a12);
f41-f42 by relax4*1 satis4 conf4 happy4 energ4 excit4 (a1-a12);
f51-f52 by relax5*1 satis5 conf5 happy5 energ5 excit5 (a1-a12);
f61-f62 by relax6*1 satis6 conf6 happy6 energ6 excit6 (a1-a12);
f71-f72 by relax7*1 satis7 conf7 happy7 energ7 excit7 (a1-a12);

! Oblique rotation
f11 f21 f31 f41 f51 f61 f71 PWITH
f12 f22 f32 f42 f52 f62 f72;
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RI-CLPM for EFA factors

! Random intercept for the EFA factors
f1 by f11@1 f21@1 f31@1 f41@1 f51@1 f61@1 f71@1; f1*1;
f2 by f12@1 f22@1 f32@1 f42@1 f52@1 f62@1 f72@1; f2*1;

! CLPM for the factors
f21^-f22^ on f11^-f12^;
f31^-f32^ on f21^-f22^;
f41^-f42^ on f31^-f32^;
f51^-f52^ on f41^-f42^;
f61^-f62^ on f51^-f52^;
f71^-f72^ on f61^-f62^;

! Scalar Invariance
[relax1 satis1 conf1 happy1 energ1 excit1] (m1-m6);
[relax2 satis2 conf2 happy2 energ2 excit2] (m1-m6);
[relax3 satis3 conf3 happy3 energ3 excit3] (m1-m6);
[relax4 satis4 conf4 happy4 energ4 excit4] (m1-m6);
[relax5 satis5 conf5 happy5 energ5 excit5] (m1-m6);
[relax6 satis6 conf6 happy6 energ6 excit6] (m1-m6);
[relax7 satis7 conf7 happy7 energ7 excit7] (m1-m6);

[f11-f12@0]; [f21-f72*0]; 
f11-f12@1; f21-f72*1; 
i1-i6 with i1-i6@0;
i1-i6 with f1-f2@0;
i1-i6 with f11-f72@0;

model prior: a1-a12~Geomin(2,1);
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RI-CLPM for EFA factors results
Results for this model are pretty competitive. Better BIC (13796)
than the model without factor RI and with correlated RI for the
indicators (13812).
CFA for this model gives better BIC (13785) than EFA. The CFA
mode doesn’t need PSEM.
Replacing CLPM with TI-AR (time invariant auto-regression) in
EFA or CFA for the factors yields even better results BIC=13731
EFA with TI-AR (13737) does not need rotation (no PSEM):
native model rotation estimated from the data. CL and rotation
are interconnected. Stability of factor as rotation criterion.
Native model rotation: if you keep lowering the penalty weight
and log-likelihood keeps improving and is identified, the penalty
can be taken out. Loadings are identified without rotation
criterion. Requires AR> 0, in this case 0.5 and 0.2. Native
rotation exits iff Null doesn’t exist
Another model that requires PSEM-ESEM is if you estimate
EFA for the indicator intercepts Ij
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Hierarchical EFA
20 items measure 4 EFA factors
The 4 EFA factors measure 1 second order factor

Y = ν +Λ1F+ ε

F = Λ2η +ξ

Rotation is not oblique or orthogonal since EFA factor variance
covariance is structured
Estimation can use loading starting values from the oblique EFA

analysis: starts=10; iter=10000;

MODEL:
 f1-f4 BY y1*0 y2-y20 (a1-a80); f1-f4@1;
 f0 by f1-f4*1; f0@1;

model prior: 
a1-a80~Geomin(4,.1,.001);
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HEFA Simulation study results N=2000

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig
                 Population   Average   Std. Dev.   Average             Cover Coeff

 F1       BY
  Y1                  0.700     0.6943     0.0307     0.0305     0.0010 0.940 1.000
  Y2                  1.300     1.2916     0.0453     0.0466     0.0021 0.950 1.000
  Y3                  0.800     0.7950     0.0321     0.0327     0.0010 0.950 1.000
  Y4                  0.800     0.7943     0.0296     0.0326     0.0009 0.970 1.000
  Y5                  0.300     0.2953     0.0270     0.0272     0.0007 0.930 1.000
  Y6                  0.000    -0.0007     0.0210     0.0221     0.0004 0.990 0.010
....
 F2       BY
  Y1                  0.000    -0.0014     0.0208     0.0221     0.0004 0.980 0.020
  Y2                  0.000     0.0018     0.0170     0.0162     0.0003 1.000 0.000
  Y3                  0.000    -0.0020     0.0209     0.0218     0.0004 0.970 0.030
  Y4                  0.000    -0.0025     0.0224     0.0221     0.0005 0.970 0.030
  Y5                  0.600     0.5969     0.0291     0.0307     0.0008 0.970 1.000
  Y6                  0.700     0.6961     0.0307     0.0320     0.0009 0.960 1.000
  Y7                  0.500     0.4992     0.0330     0.0276     0.0011 0.910 1.000
  Y8                  0.800     0.7959     0.0345     0.0347     0.0012 0.950 1.000
....

 F0       BY
  F1                  1.400     1.4187     0.0693     0.0763     0.0051 0.970 1.000
  F2                  1.500     1.5289     0.0873     0.0902     0.0084 0.980 1.000
  F3                  1.500     1.5221     0.1017     0.1016     0.0107 0.960 1.000
  F4                  1.000     1.0131     0.0553     0.0609     0.0032 0.980 1.000
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PSEM Overview

PSEM-SA

PSEM-ESEM

PSEM-ELGM
PSEM-Alignment

PSEM-RegSEM

Regularized SEM
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PSEM-ELGM
Exploratory Latent Growth Curve Model: factor rotation to
growth curve shapes.
The idea dates back to Tucker (1958, 1966) and more recently in
Grimm et al. (2013) with ESEM
It expands PSEM-LG by freeing all loadings
PSEM-LG fits means structure perfectly, PSEM-ELGM aims at
fitting the variance covariance perfectly as good as EFA

Yit = α(t)+λ1(t)Ii +λ2(t)Si + εit (6)

εit = rεi,t−1 + ε
′
it (7)

ε
′
it ∼ N(0,θt) (8)(

Ii

Si

)
∼ N

((
µI

µS

)
,

(
1 ρ

ρ 1

))
(9)

α(t)∼ LASSO(0,1) (10)

λ1(t),λ2(t)∼? (11)
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PSEM-ELGM

Factor rotation is desired to get the most interpretable model, i.e.,
rotation criteria that yield growth curve shapes

Rotations need to be custom made

Rotations must NOT aim for simple loading structure. No
Geomin

Random intercept loads on all equally. Random developmental
slope loads progressively on all.

First step in such growth models is to establish the number of
latent factors with EFA and EFA-AR

The NULL for PSEM-ELGM is EFA and EFA-AR

PSEM-ELGM estimated individual trajectories are a weighted
sum of the three curves: α(t), λ1(t) and λ2(t). The weights are 1
and the factor scores for I and S
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PSEM-ELGM

Rotation criterion that seems to work universally well for a two
factor ELGM

DIFF(λ1(t))∼ LASSO(0,1),λ2(1)∼ LASSO(0,1) (12)

The DIFF prior/penalty consists of a sum of pairwise differences
in a group of parameters. It is used to establish equality among
the parameters. Similar to a multivariate normal prior with
correlations .9999 used in BSEM, but for ALF/LASSO

DIFF(P1 −PN)∼ LASSO(0,1)

Penalty = ∑
i<j

|pi −pj|

The DIFF prior sets the first factor as a random intercept and the
second as a developmental curve
It is tempting to put more structure on the slope curve but it is
not necessary as there are only 2 parameters to identify
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PSEM-ELGM application

Using the PSEM-LG example discussed earlier: Stress in the
COMBINE Study (T = 9) over 16 weeks

Table: PSEM growth model

Model LL NP chi-2 p-val BIC
PSEM LG -22982 22 122 0 46123

PSEM LG follow-up -22983 19 127 0 46104
EFA -22947 35 64 0 46148

EFA-AR -22924 36 27 .06 46109
PSEM-ELGM-AR -22924 36 27 .06 46109

PSEM-ELGM-AR follow-up -22941 23 58 .002 46049

Both PSEM-ELGM-AR and PSEM-ELGM-AR followup are of
interest depending on the preferred fit criteria. The follow-up retains
significant parameters, and OUTPUT:ALIGN scrutinizes equality for
the DIFF loadings: only the first loading is significantly different.
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PSEM-ELGM

Comparing loading matrices

ΛEFA =

(
2.2 2.4 2.7 1.8 1.2 0.3 0.0 −0.3 0.1
−0.2 0.1 0.0 0.9 1.4 2.3 2.5 2.9 2.4

)

ΛELGM =

(
2.1 2.4 2.7 2.7 2.6 2.6 2.4 2.5 2.4
−0.1 0.1 0.0 0.6 0.8 1.4 1.5 1.7 1.4

)
Better interpretation for ELGM: ”baseline” and ”growth
development”
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The three curves of PSEM-ELGM:
Stress development over 16 weeks

time

-1

0

1

2

3

0.0 2.0 4.0 6.0 8.0

a(t), w=1 L1(t), w=1.86+-1.96 L2(t), w=-0.23+-1.96

Blue=α(t): population level adjustment, weight=1

Red=λ1(t): baseline curve, weight=I=1.86+-1.96

Yellow=λ2(t): growth curve, weight=S=-0.23+-1.96
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PSEM-ELGM Height in adolescents example

Modeling height in adolescents: the ”baseline” curve for height
continuously increases, Asparouhov & Muthén (2023)

One possibility is to NOT use a random intercept but instead to
use a linear growth curve λ tIi as the baseline curve

This means that the loadings are approximately a linear function
of t

ELGM rotation

DIFF(λ1(t)−λ1(t−1))∼ LASSO(0,1)

λ2(1)∼ LASSO(0,1)

Tihomir Asparouhov PSEM 50/ 64



PSEM-ELGM Height in adolescents example

Baseline linear growth curve and a puberty growth spurt adjustment
curve. Individual height growth is a weighted sum of the two curves.
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PSEM Overview

PSEM-SA

PSEM-ESEM

PSEM-ELGM

PSEM-Alignment
PSEM-RegSEM

Regularized SEM
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PSEM-Alignment

Alignment is used to establish approximate measurement
invariance across time or across groups. Automatic
implementation via ALIGNMENT=FIXED/FREE
option(conditional optimization)

AESEM/ASEM expands Alignment to general ESEM, SEM and
longitudinal models. Asparouhov and Muthén (2022).

PSEM-Alignment can be used when AESEM/ASEM models are
not available. AESEM/ASEM models are fairly restricted.

Using DIFF(parameters)∼ALF(0,1) establishes approximate
invariance for a group of parameters and yields a penalty that is
nearly identical to alignment loss function.

Huang (2018) also uses regularized SEM for Alignment
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PSEM-Alignment Applications

Growth modeling for aligned factors

Metric alignment: alignment for loadings only

Separately establishing metric and scalar alignment: splitting
means and covariance fit

Partial alignment models: if certain indicators have a lot of
non-invariance it is better to exclude them from the alignment

Between level predictors for aligned factors (coefficient is
invariant across group/time)

RI-AR and RI-CLPM for aligned factors
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PSEM-Alignment Example
Longitudinal EFA with 4 time points, 10 indicators, 2 factors, Metric
invariance, scalar alignment, RI-AR for each factor. Alignment,
ESEM, RSEM combination estimated with PSEM.

MODEL:
    f11-f12 BY y11-y20*1 (a1-a20);
    f21-f22 BY y21-y30*1 (a1-a20);
    f31-f32 BY y31-y40*1 (a1-a20);
    f41-f42 BY y41-y50*1 (a1-a20);
    f11-f12@1; f21-f42*1; 
    [f21-f42*0];
    f1 by f11@1 f21@1 f31@1 f41@1; 
    f2 by f12@1 f22@1 f32@1 f42@1;
    [y11-y20] (m1-m10);
    [y21-y30] (n1-n10);
    [y31-y40] (p1-p10);
    [y41-y50] (q1-q10);
    f21^ f31^ f41^ pon f11^ f21^ f31^ (r1); 
    f22^ f32^ f42^ pon f12^ f22^ f32^ (r2); 

MODEL PRIORS:
    a1-a20~geomin(2,1);
    do(#,1,10) DIFF(n# m# p# q#)~ALF(0,1);
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PSEM-Longitudinal Alignment growth modeling
Growth model for a factor with scalar alignment (no scalar
invariance). Consistent estimates for time-specific invariant and
non-invariant measurement parameters as well as growth factor
distribution.

  MODEL:
      f1 BY y11-y13*1 (a11-a13); 
      f2 BY y21-y23*1 (a21-a23);
      f3 BY y31-y33*1 (a31-a33);
      f4 BY y41-y43*1 (a41-a43);
      f5 BY y51-y53*1 (a51-a53);
      [y11-y53] (n1-n15);
      i s | f1@0 f2@1 f3@2 f4@3 f5@4;
      [i@0]; i@1; 

  MODEL PRIOR:
      DIFF(a11 a21 a31 a41 a51)~ALF(0,1);
      DIFF(a12 a22 a32 a42 a52)~ALF(0,1);
      DIFF(a13 a23 a33 a43 a53)~ALF(0,1);
      DIFF(n1 n4 n7 n10 n13)~ALF(0,1);
      DIFF(n2 n5 n8 n11 n14)~ALF(0,1);
      DIFF(n3 n6 n9 n12 n15)~ALF(0,1);
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PSEM-Longitudinal Alignment growth modeling

 F1       BY
  Y11                 1.000     0.9930     0.0499     0.0557     0.0025 0.980 1.000
  Y12                 1.000     0.9893     0.0526     0.0562     0.0029 0.960 1.000
  Y13                 1.000     0.9943     0.0496     0.0559     0.0025 0.960 1.000

 F2       BY
  Y21                 1.000     0.9919     0.0516     0.0599     0.0027 0.980 1.000
  Y22                 0.500     0.5008     0.0332     0.0379     0.0011 0.990 1.000
  Y23                 1.000     0.9923     0.0531     0.0595     0.0028 0.980 1.000

 Means
  I                   0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
  S                   0.300     0.3109     0.0271     0.0281     0.0008 0.950 1.000

 Variances
  I                   1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
  S                   0.300     0.3078     0.0319     0.0341     0.0011 0.990 1.000

 I        WITH
  S                  -0.200    -0.2004     0.0254     0.0261     0.0006 0.960 1.000

 Intercepts
  Y11                 0.000    -0.0084     0.0498     0.0520     0.0025 0.950 0.050
  Y12                 0.000     0.0003     0.0492     0.0520     0.0024 0.950 0.050
  Y13                 0.000    -0.0008     0.0520     0.0521     0.0027 0.950 0.050
  Y41                 0.000    -0.0154     0.0603     0.0607     0.0038 0.960 0.040
  Y42                 0.500     0.4839     0.0633     0.0665     0.0042 0.950 1.000
  Y43                 0.000    -0.0135     0.0634     0.0608     0.0042 0.930 0.070

 Residual Variances
  F1                  1.000     1.0128     0.1802     0.1873     0.0323 0.990 1.000
  F2                  1.000     1.0179     0.1396     0.1612     0.0196 0.990 1.000
  F3                  1.000     1.0364     0.1586     0.1477     0.0262 0.940 1.000
  F4                  1.000     1.0430     0.1723     0.1643     0.0312 0.940 1.000
  F5                  1.000     1.0663     0.2083     0.2234     0.0473 0.990 1.000
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PSEM Overview
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PSEM-RegSEM

PSEM is based on a duality of two models that have identical fit:
null and penalized model.

The penalized model includes parameters of interest that can not
be identified without the penalty

The penalty reflects a key important substantive concept usually
and satisfying the penalty is of interest as well and not just the
chi-square

PSEM-RegSEM sacrifices some of the data fit to get a better fit
for the penalty.

Suppose that model M1 is the duality PSEM model and model
M2 is a PSEM model with a higher penalty weight and worse fit
than the null/M1 model but with much better satisfied penalty

Suppose M2 and M1 are both not rejected by the chi-square test.
M2 can be preferred on substantive grounds.
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PSEM-RegSEM

This puts us in the realm of broken duality: the PSEM-RegSEM
model M2 no longer has the same likelihood as the Null

It can be viewed as ”Bayes” where prior variance/penalty weight
is no longer a technical matter but can be chosen subjectively on
substantive grounds

Priors/Penalty are a form of adding parameter constraints to a
model, i.e., PSEM-duality can be viewed as a regular SEM with
penalty derivatives as the parameter constraints

Similarly, PSEM-RegSEM can be viewed as a regular SEM with
parameter inequality constraints ( Penalty/Geomin < 1 or
estimate EFA with no more than 5 cross-loadings even if you
can’t get the log-likelihood of the standard EFA)
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PSEM-RegSEM

Example 1: putting higher Geomin weight than the duality
weight, may reduce cross-loadings, give worse fit than EFA, but
it may still give an acceptable chi-square or approximate fit and
much fewer cross-loadings

Example 2: putting higher alignment weight than the duality
weight, may reduce differences across loadings/intercepts and
thresholds, give worse fit than the configural model, but it may
still give an acceptable chi-square or approximate fit and the
model can be much closer to scalar invariance model than
Alignment

PSEM-RegSEM can estimate the best approximation to a
proposed model with CFI ≥ 0.95 or p-value≥ 0.05.

Possibly automate what we do or is this a slippery slope where
every model we use will have a p-value of .05?
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PSEM framework for estimating regularized SEM

PSEM can be used for regularized SEM estimation, Jacobucci et
alt. (2016) and the other way around

Regularized SEM estimation is ML/WLS estimation of
identified models with priors.

There is no model duality for such applications
Applications:

LASSO/ridge regressions as part of SEM
Dealing with general empirical unidentification due to small
sample size
Models where priors can be obtained from a previous study

There is a large body of statistical literature on
regularized/penalized models
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PSEM conclusion

PSEM is a masterful technique that will produce many
discoveries for SEM

Hypothetical Example. Mplus support question: Can I regress
only one of the EFA factors on gender. Mplus answer for the past
15 years: No, you have to regress all EFA factors on gender or
we can’t rotate your model. Mplus new answer: sure but you
might want to use the model native rotation instead of Geomin

PSEM has promising future also for Mixture and Multilevel
models
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