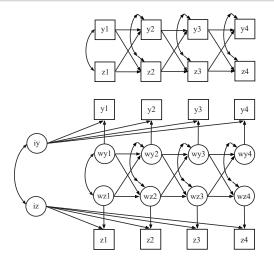
Can Cross-Lagged Panel Modeling Be Relied On to Establish Cross-Lagged Effects?

Bengt Muthén Professor Emeritus, UCLA Mplus bmuthen@statmodel.com

> Tihomir Asparouhov Mplus


Mplus Web Talks: No. 5 November, 2022

We thank Ellen Hamaker for insightful comments and Noah Hastings for expert assistance.

Outline

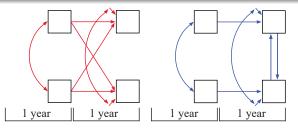
- Background, identification, and estimation
- Monte Carlo simulations
- Five examples
- Conclusions

Cross-Lagged Panel Modeling: CLPM and RI-CLPM

- Effects between observed variables vs latent within-person variables
 - Mplus Web Talk No. 4, Part 1 (continuous), Part 2 (categorical)

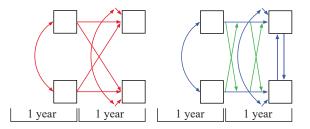
Focus of Talk

- Key question: Can cross-lagged panel modeling be relied on to establish cross-lagged effects?
 - Alternative models with contemporaneous (lag 0) effects may challenge the conclusions from CLPM and RI-CLPM
 - Are models with reciprocal contemporaneous effects identified?
 - Are models with both cross-lagged and reciprocal contemporaneous effects identified?
- Asparouhov & Muthén (2022). The identification of the reciprocal vector auto-regressive model
 - The answer is yes under certain conditions
- Do such models work well in practice?
 - What do simulations and real-data examples say?


Earlier Research

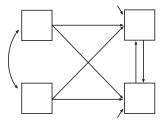
- Greenberg-Kessler (1982). Equilibrium and identification in linear panel models. Sociological Methods & Research, 435-451
 - Identification by imposing a certain degree of time invariance
 - Disappointing conclusions: "These results are discouraging", "the approach can be used in practice under a very restricted set of circumstances"
- Ormel, Rijsdijk, Sullivan, van Sonderen & Kempen (2002). Temporal and reciprocal relationship between IADL/ADL disability and depressive symptoms in late life. Journal of Gerontology: Psychological Sciences, vol 57B, No. 4, 338-347
 - Model estimated with both cross-lagged and reciprocal effects, as well as random intercepts
 - No proof of identification: "The full model is identified. Very different starting values gave the same solution"

Panel Data Measurement Instruments

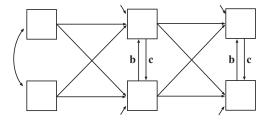

- Two common types of question format:
 - Past status: In the last [time interval], how frequently did you...
 - Current status: How much do you agree with...
- Time intervals for six data sets used in Orth et al. (2021): 2 months, 6 months, 1 year, 2 years
 - Orth et al. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology
- Cross-lagged effects may be less realistic with long time intervals and may call for allowing contemporaneous (lag 0) effects
- Dormann & Griffin (2015). Optimal time lags in panel studies. Psychological Methods, 24, 489-505
 - Deboeck & Preacher (2015). SEM journal

Two Competing Panel Data Models: Cross-Lagged vs Reciprocal Effects

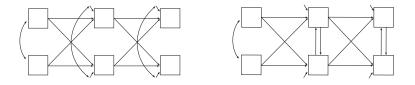
- Cross-lagged effects of events 1-2 years ago may be weak. The reciprocal (lag 0) model on the right may be more realistic with long time intervals and measurements referring to past experiences
- The reciprocal model is identified by the classic econometric rule that each reciprocal DV has its own predictor
- The two models are equivalent and cannot be statistically distinguished: Same number of parameters, same model fit to data: Finding cross-lagged effects does not rule out the reciprocal model and finding reciprocal effects does not rule out the cross-lagged model


Two Competing Panel Data Models: Cross-Lagged vs Reciprocal Effects, Cont'd

• The reciprocal model on the right in blue can be seen as a summary of several sets of cross-lagged effects (green arrows) and thereby does not disentangle the recursive "causal effects" due to not measuring frequently enough

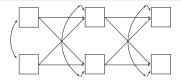

Reciprocal Cross-Lagged Panel Model, T = 2

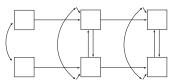
• Can we include both cross-lagged and reciprocal effects?:


- 6 regression parameters but only 5 sample covariances to identify them (ignoring the time 1 sample covariance)
- The model is not identified but is identifiable when T>2 !
- Greenberg-Kessler (1982) Soc Meth & Res., Ormel et al. (2002) J of Gerontology, Asparouhov & Muthén (2022)

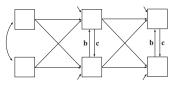
Reciprocal Cross-Lagged Panel Model, T = 3

- The model is identified with equality of the reciprocal effects across time 2 and time 3 (Asparouhov & Muthén, 2022)
- Adding random intercepts does not affect the identification status
- The model is not identified if all parameters are time invariant - reciprocal DSEM is not possible
- Special considerations are needed in the analysis


CLPM versus Reciprocal CLPM (T = 3)


(a) CLPM (b) Reciprocal CLPM

- The residual covariances of model (a) allow time-varying unmeasured common causes to influence the two outcomes while the residual covariances are zero in model (b)
- In line with regular regression, model (a) assumes that the residuals are uncorrelated with the two predictors at the previous time point if this is not the case, the cross-lagged effects are biased
- If data have been generated by model (b), model (a) residuals are correlated with the predictors because each outcome at time t is influenced by the other variable at time t


Three Equivalent Models (Random Intercepts or Not)

CLPM

Reciprocal Only

Reciprocal

Key Findings for the Reciprocal Model in Asparouhov & Muthén (2022)

- The model is identified for $T \ge 3$ with equality of the reciprocal effects across some of the time points
- The model has T-1 more parameters than CLPM/RI-CLPM
- The model is equivalent to CLPM/RI-CLPM under T-1 restrictions such as:
 - T=3: Reciprocal effects are invariant for time 2 and time 3 (2 restrictions)
 - T=5: Reciprocal effects are invariant for time 2 and 3 and for time 4 and 5 (4 restrictions)
 - T=4: No natural choice. Could use reciprocal 2=3, 4 (3 restrictions)
 - Full time invariance for reciprocals may be reasonable, using fewer parameters than CLPM/RI-CLPM
- The cross-lagged effects of the reciprocal model are different from those of CLPM/RI-CLPM

Key Findings for the Reciprocal Model in Asparouhov & Muthén (2022) Cont'd

- The model has 2 solutions restriction needed to choose the acceptable solution; essential for bootstrapping and Monte Carlo simulations
 - The 2 solutions can be seen as an innocuous type of non-identification in line with 1-factor analysis where factor loadings can be all positive or all negative and give the same fit (so not infinitely many solutions as in typical non-identification)
- R^2 may be negative when the restriction is not fulfilled/applied
- The distribution of the reciprocal estimates is non-normal and non-symmetric CIs may be needed (bootstrapping; Bayes not available yet)
- There is a need for larger sample sizes than for CLPM and RI-CLPM to get sufficient power to detect reciprocal effects
- When cross-lagged effects are not included, there are not 2 solutions, R^2 can still be negative, but non-symmetric CIs are not needed

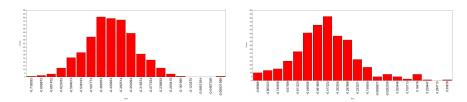
Restrictions on Reciprocal Effects in Asparouhov & Muthén (2022)

Two types of restrictions on the reciprocal effects r_y and r_z :

- (a): $0 < r_y r_z < 1$
 - Reciprocals are restricted to both be either positive or negative opposite signs not allowed
 - Avoids dual solutions and negative R-square
 - Suitable for real-data analysis
- (b): $(r_y r_z)^2 < 1$
 - Avoids dual solutions
 - Can be used to study bootstrap distributions before applying (a)
 - Suitable for MonteCarlo studies restriction (a) always gives power = 1 for reciprocal effects irrespective of sample size

Guidelines for Real-Data Analysis in Asparouhov & Muthén (2022)

- Estimate the model with the non-duality/R-square constraint (a) $0 < r_y r_z < 1$ and use the STARTS option to ensure getting the best solution
- 2 If both reciprocal effects are significant, use the model
- If one or both reciprocals are not significant, eliminate the parameter
- If one of the reciprocals has a zero estimate, the solution is at the border of the constraint. Re-estimate with non-duality constraint (b) (r_yr_z)² < 1 to check if a solution is found with different reciprocal signs and better fit


Monte Carlo Simulations

- Data generated under the same model as used in the analysis (H0 model correct)
- Data generated by the reciprocal model and analyzed by regular RI-CLPM and vice versa (presented later)

Monte Carlo Simulations: H0 Model Correct

- Parameter values based on T = 5 MWI analysis (but normality and no missing data) estimated by a Reciprocal RI-CLPM
- Cross-lagged effects same across time in data generation but time invariance not imposed in analyses
- Reciprocal effects time invariant in both data generation and analyses
- Bootstrap = 500 to capture non-normal estimate distributions and create non-symmetric CIs
- Non-duality reciprocal restriction (b) $(r_y r_z)^2 < 1$ is used
- Number of time points T varied as 3, 4, 5. T = 3 and 4 runs based on first 3 and 4 time points
- Sample size N varied as 500, 750, 1000
- Focus on quality of estimates and SEs as well as power (% Sig Coeff) for both BS and MLR. χ^2 5% reject proportions good

Monte Carlo Distribution of Reciprocal Effect $S_t \rightarrow D_t$ for N = 500: T = 5 and T = 3

- The skewness is only 0.107 for T = 5 and 0.513 for T = 3
 - MLR CIs may be good enough
- How the plot is done:
 - Use the RESULTS option in the MONTECARLO command to save estimates for all replications
 - Do a TYPE=BASIC run on the saved file to plot the distribution

		1							
		ESTIMATES		S. E.	MLR S.E.	M. S. E.	95%	% Sig	% Sig
	Population	Average	Std. Dev.	Average	Average		Cover	Coeff	MLŘ
	T = 5, N = 1000								
S5 [°] ON									
S4^	0.510	0.5121	0.0455	0.0550	0.0491	0.0021	0.976	1.000	1.000
D4^	-0.158	-0.1630	0.0674	0.0835	0.0729	0.0046	0.964	0.670	0.680
D5^	-0.091	-0.0760	0.1680	0.2242	0.1789	0.0284	0.964	0.060	0.120
D2 [^] ON									
D1^	0.214	0.2135	0.0417	0.0469	0.0438	0.0017	0.962	0.992	0.990
S1^	0.059	0.0569	0.0381	0.0394	0.0378	0.0014	0.946	0.294	0.334
S2^	-0.431	-0.4323	0.0966	0.1251	0.1028	0.0093	0.970	0.844	0.954
				T = 5, N =	750				
S5 [^] ON									
S4^	0.510	0.5114	0.0543	0.0665	0.0612	0.0029	0.972	1.000	0.992
D4^	-0.158	-0.1667	0.0894	0.0994	0.0912	0.0080	0.962	0.504	0.480
D5^	-0.091	-0.0693	0.2267	0.2704	0.2319	0.0518	0.962	0.048	0.112
D2 [^] ON									
D1^	0.214	0.2141	0.0505	0.0560	0.0631	0.0025	0.960	0.966	0.964
S1^	0.059	0.0582	0.0427	0.0472	0.0445	0.0018	0.964	0.228	0.254
S2^	-0.431	-0.4311	0.1265	0.1535	0.1303	0.0160	0.962	0.712	0.876
				T = 5, N =	500				
S5 [^] ON									
S4^	0.510	0.5115	0.0745	0.0830	0.0782	0.0055	0.970	1.000	0.992
D4^	-0.158	-0.1693	0.1136	0.1211	0.1171	0.0130	0.956	0.368	0.354
D5^	-0.091	-0.0644	0.2925	0.3214	0.2989	0.0861	0.968	0.056	0.130
D2 [°] ON									
D1^	0.214	0.2157	0.0629	0.0699	0.0672	0.0040	0.964	0.898	0.898
S1^	0.059	0.0551	0.0546	0.0610	0.0566	0.0030	0.974	0.118	0.166
S2^	-0.431	-0.4255	0.1639	0.1855	0.1681	0.0269	0.964	0.564	0.792

T = 5: Bootstrap Results with Two Added MLR Columns

Bengt Muthén RI-CLPM 20/53

T = 4

		ESTIMATES		S. E.	MLR S.E.	M. S. E.	95%	% Sig	% Sig
	Population	Average	Std. Dev.	Average	Average		Cover	Coeff	MLR
				T = 4, N = 1	1000				
S4^ ON									
S3^	0.412	0.4113	0.0503	0.0574	0.0538	0.0025	0.974	1.000	0.998
D3^	-0.158	-0.1652	0.0911	0.1004	0.0911	0.0083	0.964	0.451	0.431
D4^	-0.091	-0.0642	0.1969	0.2371	0.2043	0.0394	0.966	0.048	0.100
D2 [°] ON									
D1^	0.214	0.2142	0.0495	0.0515	0.0488	0.0024	0.956	0.988	0.982
S1^	0.059	0.0591	0.0419	0.0434	0.0415	0.0018	0.950	0.248	0.273
S2^	-0.431	-0.4369	0.1073	0.1299	0.1122	0.0115	0.962	0.830	0.934
				T = 4, N =	750				
S4 [^] ON									
S3^	0.412	0.4103	0.0604	0.0684	0.643	0.0036	0.968	1.000	1.000
D3^	-0.158	-0.1688	0.1064	0.1171	0.1109	0.0116	0.966	0.357	0.301
D4^	-0.091	-0.0577	0.2466	0.2765	0.2540	0.0618	0.978	0.040	0.116
D2 [^] ON									
D1^	0.214	0.2141	0.0578	0.0610	0.0587	0.0033	0.970	0.964	0.956
S1^	0.059	0.0595	0.0481	0.0519	0.0492	0.0023	0.962	0.210	0.240
S2^	-0.431	-0.4348	0.1325	0.1523	0.1362	0.0175	0.972	0.727	0.866
				T = 4, N =	500				
S4 [^] ON									
S3^	0.412	0.4079	0.0773	0.0876	0.0845	0.0060	0.972	0.988	0.974
D3^	-0.158	-0.1763	0.1464	0.1438	0.1499	0.0217	0.956	0.251	0.196
D4^	-0.091	-0.0427	0.3349	0.3324	0.3491	0.1143	0.956	0.059	0.119
D A i O i									
D2 [^] ON									
D1^	0.214	0.2126	0.0729	0.0765	0.0777	0.0053	0.962	0.834	0.826
S1^	0.059	0.0581	0.0561	0.0669	0.0625	0.0031	0.976	0.115	0.145
S2^	-0.431	-0.4329	0.1774	0.1857	0.1911	0.0314	0.960	0.600	0.739

Bengt Muthén RI-CLPM 21/53

T = 3

	ESTIMATES			S. E.	MLR S.E.	M. S. E.	95%	% Sig	% Sig
	Population	Average	Std. Dev.	Average	Average		Cover	Coeff	MLR
				T = 3, N = 1	1000				
\$3^ ON									
S2^	0.020	0.0195	0.1141	0.1237	0.1183	0.0130	0.956	0.040	0.036
D2^	-0.158	-0.1623	0.0875	0.1020	0.0961	0.0077	0.968	0.396	0.420
D3^	-0.091	-0.0452	0.3015	0.2900	0.2912	0.0928	0.940	0.068	0.080
D2^ ON									
D1^	0.214	0.2182	0.0602	0.0663	0.0666	0.0036	0.954	0.944	0.918
S1^	0.059	0.0594	0.0621	0.0598	0.0583	0.0039	0.946	0.180	0.178
S2^	-0.431	-0.4339	0.1337	0.1414	0.1401	0.0179	0.948	0.784	0.860
				T = 3, N =	750				
S3 [^] ON									
S2^	0.020	0.0176	0.1310	0.1486	0.1406	0.0171	0.958	0.036	0.034
D2^	-0.158	-0.1587	0.1094	0.1232	0.1183	0.0119	0.964	0.282	0.276
D3^	-0.091	-0.0221	0.3642	0.3221	0.3427	0.1372	0.938	0.068	0.093
D2 [^] ON									
D1^	0.214	0.2189	0.0699	0.0764	0.0771	0.0049	0.958	0.875	0.827
S1^	0.059	0.0631	0.0704	0.0708	0.0687	0.0050	0.948	0.145	0.169
S2^	-0.431	-0.4346	0.1662	0.1597	0.1632	0.0276	0.934	0.710	0.791
				T = 3, N =	500				
S3 [°] ON									
S2^	0.020	0.0105	0.1666	0.1965	0.1788	0.0278	0.974	0.022	0.022
D2^	-0.158	-0.1639	0.1338	0.1653	0.1540	0.0179	0.976	0.163	0.187
D3^	-0.091	-0.0054	0.4363	0.3743	0.4169	0.1974	0.936	0.070	0.099
D2 [^] ON									
D1^	0.214	0.2260	0.0946	0.0961	0.0967	0.0091	0.960	0.708	0.648
S1^	0.059	0.0618	0.0862	0.0908	0.0876	0.0074	0.952	0.109	0.113
S2^	-0.431	-0.4311	0.2003	0.1948	0.2021	0.0400	0.940	0.584	0.682

Bengt Muthén RI-CLPM 22/53

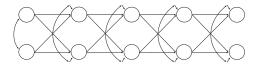
Five Examples

- 3 examples from Orth et al. (2021) concerning depression and self-esteem:
 - MWI data: N = 663, T = 5, Interval = 2 months
 - BLS data: N = 404, T = 4, Interval = 1 year
 - NLSY data: N = 8,259, T = 11, Interval = 2 years
- Depression and disability (Ormel et al., 2002): N = 753, T = 3, Interval = 1 year

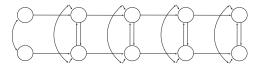
Academic self-concept and achievement (Nunez-Regueiro et al., 2021; Kenny & McCoach, 2022):
 N = 933, T = 5, Interval = 4 months

Example 1: The MWI Data on Depression and Self-Esteem

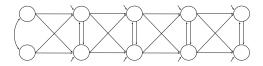
- Adult sample, N = 663, T = 5, Coverage = 0.99 0.57
- Self-esteem and depression measured two months apart
- Self-esteem: Participants were asked how much they agree with each of the statements included in the scale (no time frame stated, so could include current and past status)
- Depression: Participants were instructed to assess how frequently they had experienced each symptom within the preceding 30 days
- RI-CLPM with time invariant cross-lagged effects points to a small but significant cross-lagged effect of depression on self esteem (Orth et al., 2021, Table 6)
- Orth et al. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology


Choice of Estimators for Reciprocal RI-CLPM

- MLR gives good chi-square and SE's but does not provide non-symmetric confidence intervals
- MLR parameter estimates = ML parameter estimates = parameter estimates using bootstrap
- Bootstrap analysis uses ML and gives bootstrap SEs and bootstrap non-symmetric confidence intervals matching a skewed distribution for the reciprocal estimates. The bootstrap SE's are bit inflated and the CIs may be a bit too wide (conservative)
- Conclusion: Do 2 runs, 1 with MLR to get chi-square and 1 with bootstrap to get CIs


Mplus Input for Reciprocal RI-CLPM with MWI Data

TITLE: DATA: VARIABLES:	Reciprocal RI-CLPM for MWI data FILE = mwi.dat; NAMES = id s1-s5 d1-d5; USEVAR = s1-s5 d1-d5; MISSING = ALL (-999);		! Cross-lags: s2 ⁻ -s5 [^] PON d1 [^] -d4 [^] ; d2 [^] -d5 [^] PON s1 [^] -s4 [^] ; ! Reciprocals: s2 [^] -s5 [^] PON d2 [^] -d5 [^] (rsd); d2 [^] -d5 [^] PON s2 [^] -s5 [^] (rds);
ANALYSIS:	ESTIMATOR = ML; ! ML for bootstrap. ! Use MLR for chi-2 BOOTSTRAP = 500; STARTS = 20;	MODEL CONSTRAINT	 s1[^] WITH d1[^]; ! 2 alternatives ! (a) R2 pos and non-duality: 0 <rsd*rds;< li=""> 0 <1 - rsd*rds; </rsd*rds;<>
MODEL:	! Random intercepts: is BY s1-s5@1; id BY d1-d5@1; ! ARs: s2^-s5^ PON s1^-s4^; d2^-d5^ PON d1^-d4^;	OUTPUT: PLOT:	! (b) Non-duality: ! 0 >(rsd*rds)^2 - 1; STDYX RESIDUAL TECH1 CINTERVAL(BOOTSTRAP); TYPE = PLOT3;

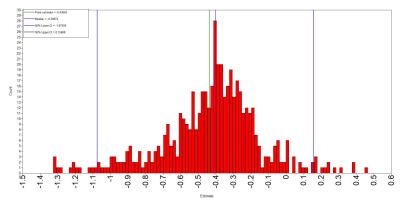

Three Key Models: Within Part of Random Intercept Version

A: RI-CLPM

B: Reciprocal Only

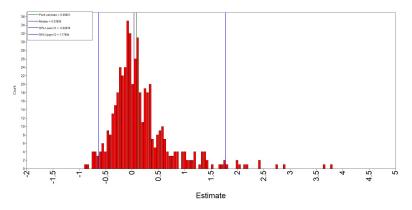
C: Reciprocal

Model Fit for Three Equivalent Random Intercept Cross-Lagged and Reciprocal Models (MLR)


Model	# par's	LogL	BIC	χ^2	Df	P-value	RMSEA	P-value
A. RI-CLPM	44	-1532	3349	34	21	0.0323	0.031	0.958
B. Reciprocal Only	44	-1532	3349	34	21	0.0323	0.031	0.958
C. Reciprocal 4 reciprocals: 2=3, 4=5	44	-1532	3349	34	21	0.0323	0.031	0.958

- Model C uses restriction (b) of non-duality and gets 2 negative R-square values: Solution should not be used
- Model C using restriction (a) of non-duality and positive R-square gets a worse logL = -1535 (BIC = 3357): Equivalence with Model A is lost
- Model C with fully time-invariant reciprocals (2 instead of 4 reciprocals estimated) gets the same logL = -1532 in these data with 2 fewer parameters and therefore a better BIC value (see next slide)

Model	# par's	LogL	BIC	χ^2	Df	P-value	RMSEA	P-value
1. RI-CLPM	44	-1532	3349	34	21	0.0323	0.031	0.958
2. RI-CLPM Invar. X-lags	38	-1546	3338	60	27	0.0002	0.043	0.763
3. Reciprocal Only	44	-1532	3349	34	21	0.0323	0.031	0.958
4. Reciprocal Only Invar. Recips	38	-1538	3323	45	27	0.0181	0.031	0.975
5. Reciprocal Invar Recips	42	-1532	3337	34	23	0.0637	0.025	0.990
6. Reciprocal Invar. X-lags and Recips	36	-1539	3312	45	29	0.0289	0.027	0.992


Model 1 is equivalent to Model 3. Model 1 is also equivalent to a reciprocal RI-CLPM with reciprocals restricted to equality for e.g. times 2=3, 4=5. This means that comparing Model 5 to Model 1 tests full reciprocal invariance 2=3=4=5: Model 5 not rejected (same LogL)

Bootstrap Distribution of Reciprocal Effect St →Dt: Reciprocal RI-CLPM with Time Invariant Cross-Lagged and Reciprocal Effects (Model 6)

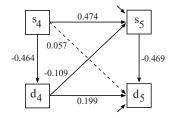
- Skewed distribution
- Peak around -0.4 but not quite significant (the run does not apply reciprocal restrictions)

Bootstrap Distribution of Reciprocal Effect Dt →St: Reciprocal RI-CLPM with Time Invariant Cross-Lagged and Reciprocal Effects (Model 6)

• Peak around zero and insignificant - parameter can be fixed at zero

Model Fit Continued (MLR)

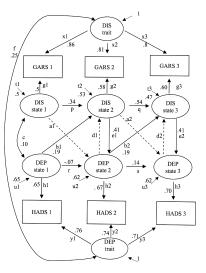
Model	# par's	LogL	BIC	χ^2	Df	P-value	RMSEA	P-value
1. RI-CLPM	44	-1532	3349	34	21	0.0323	0.031	0.958
2. RI-CLPM	38	-1546	3338	60	27	0.0002	0.043	0.763
Invar. X-lags								
3. Reciprocal Only	44	-1532	3349	34	21	0.0323	0.031	0.958
4. Reciprocal Only	38	-1538	3323	45	27	0.0181	0.031	0.975
Invar. Recips								
5. Reciprocal	42	-1532	3337	34	23	0.0637	0.025	0.990
Invar Recips								
 Reciprocal Invar. X-lags and Recips 	36	-1539	3312	45	29	0.0289	0.027	0.992
7. Reciprocal	35	-1539	3306	45	30	0.0386	0.027	0.993
Invar. X-lags and Recips $S_t \rightarrow D_t$ only								
 Reciprocal Invar. X-lags and Recips 	35	-1546	3319	59	30	0.0011	0.038	0.906
$D_t \rightarrow S_t$ only								


Estimated Effects in Three Key Models for the MWI Data

• Several models fit the data about the same but have different interpretations

Model	Significant Cross-lags	Significant Reciprocals
2. RI-CLPM Invar. X-lags	$D_{t\text{-}1} \xrightarrow{-} S_t$	NA
4. Reciprocal Only Invar. Recips	NA	None
7. Reciprocal Invar. X-lags and Recips $S_t \rightarrow D_t$ only	$D_{t-1} \xrightarrow{-} S_t$ (sig. also with bootstrap CI)	$S_t \xrightarrow{-} D_t$ (sig. also with bootstrap CI)

- Model 7 may be preferrable because it is more informative than the others, containing Model 2 as a subset, and does not fit worse. Model 7 has the best BIC (BIC is useful because the 3 models are not nested)
- Standardized $D_{t-1} \xrightarrow{-} S_t$ estimates for models 2 and 7 are very close


Model 7 Indirect Effects on D5 (Standard'd, Bootstrap CIs)

- Total s4 → d5: -0.282, BS CI [-0.421 0.148]
- Total indirect s4 →d5: -0.339, BS CI [-0.459 -0.206]
- s4 →s5 →d5: -0.223, BS CI [-0.302 -0.128]
- s4 →d4 →d5: -0.092, BS CI [-0.157 -0.015]
- s4 →d4 →s5 →d5: insignificant
- $s4 \rightarrow d5$ (direct effect): insignificant
- Total d4 → d5: 0.250, BS CI [0.070 0.402]
- Total indirect d4 → d5: 0.051, BS CI [0.012 0.103]
- d4→s5→d5: 0.051, BS CI [0.012 0.103]
- d4 → d5 (direct effect): 0.199, BS CI [0.028 0.341]

Example 2: Depression and Disability, N=753, T = 3

 Ormel, Rijsdijk, Sullivan, van Sonderen & Kempen (2002). Temporal and reciprocal relationship between IADL/ADL disability and depressive symptoms in late life. Journal of Gerontology: Psychological Sciences, vol 57B, No. 4, 338-347

Example 2 Continued: Depression and Disability, N=753, T = 3, Interval = 1 Year (Ormel et al., 2002)

- Their reciprocal RI-CLPM findings mimic our MWI example:
 - One of the reciprocal effects is found insignificant (small negative effect, whereas the significant effect is positive and larger)
- Comments:
 - The analysis uses time-invariant reciprocal effects (and time-invariant cross-lagged effects), but does not make clear that this model is equivalent to the regular RI-CLPM (with T = 3, there are 2 reciprocal parameters vs 2 residual covariances), that is, reciprocal interaction is just one interpretation of the data
- Raw data no longer available, but Table 2 gives the estimated covariance matrix for the saturated model taking missing data into account (76% have complete data for all 3 time points)
 - This matrix can be used as the sample covariance matrix to give estimates close to what the raw data would give (χ^2 and SE's are not correct)

Example 2: Depression and Disability. Model Fit (ML)

	#par's	LogL	BIC
1. RI-CLPM	20	-9139	18410
2. RI-CLPM	18	-9139	18397
Invar X-lags			
3. Reciprocals Only	20	-9139	18410
Reciprocals Only	18	-9142	18403
Invar Recip's			
5. Reciprocal Invar Recip's	20	-9139	18410
6. Reciprocals	18	-9139	18397
Invar X-lags and Recip's			
7. Reciprocals	17	-9139	18391
Invar X-lags			
and Recip's			
$DIS_t \to DEP_t \text{ only }$			

- Models 3 and 4 converged only with starting values derived from RI-CLPM but obtained negative R-square values and did not converge with restrictions (a) or (b)
- Model 7 estimates close to those presented in Figure 2 of the Ormel at al. article

Estimated Effects in Three Key Models for the Depression and Disability Data

Model	Significant Cross-lags	Significant Reciprocals
2. RI-CLPM Invar. X-lags	$\begin{array}{c} DIS_{t\text{-}1} \xrightarrow{+} DEP_t \\ DEP_{t\text{-}1} \xrightarrow{+} DIS_t \end{array}$	NA
4. Reciprocal Only Invar. Recips	NA	No solution
7. Reciprocal Invar. X-lags and Recips	$DEP_{t\text{-}1} \xrightarrow{+} DIS_t$	$DIS_t \xrightarrow{+} DEP_t$

Example 3: BLS Data on Depression and Self-Esteem Orth et al. (2021), N = 404, T = 4: Model Fit (MLR)

	#par's	LogL	BIC	χ^2	Df	P-value	RMSEA	P-value
1. RI-CLPM	35	-1579	3368	6	9	0.6910	0.000	0.973
2. RI-CLPM Invar X-lags	31	-1581	3349	10	13	0.6567	0.000	0.984
3. Reciprocals Only	35	-1579	3368	6	9	0.6911	0.000	0.973
4. Reciprocals Only Invar Recip's	31	-1580	3347	9	13	0.7908	0.000	0.994
5. Reciprocal Invar Recip's	34	-1581	3366	12	10	0.3048	0.021	0.871
 Reciprocals Invar X-lags and Recip's 	30	-1582	3344	11	14	0.6793	0.000	0.990

• Several models fit the data about the same but have different interpretations

Estimated Effects in Three Key Models for the BLS Data

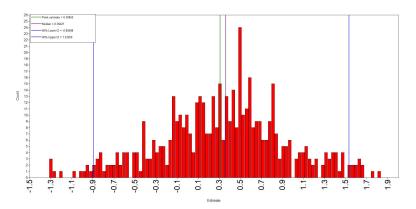
Model	Significant Cross-lags	Significant Reciprocals
2. RI-CLPM Invar. X-lags	None	NA
4. Reciprocal Only Invar. Recips	NA	None
6. Reciprocal Invar. X-lags and Recips	None *	$D_t \xrightarrow{-} S_t$ (sig. also with bootstrap CI)

- Model 6 may be preferred over models 2 and 4 because it finds a relationship between the two variables and does not fit worse than alternative models. It has the best BIC
- * Unlike the MWI example, fixing $S_t \rightarrow D_t$ at its Model 6 estimate of zero, does not give a significant cross-lagged effect $D_{t-1} \rightarrow S_t$

- Adolescents and young adults, N = 8,259, T = 11
- Depression and self-esteem measured 2 years apart 1994-2014 (Orth et al., 2021)
- Max 7-8 points for any one person gives low coverage
- Time-invariant modeling using ML (the MLR H1 model cannot be estimated, so no MLR chi-2)

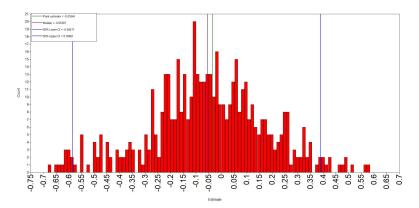
Model	# par's	LogL	BIC	χ^2	Df	P-value	RMSEA	P-value
1. RI-CLPM Inv Xlags	80	-37461	75644	403	179	0.000	0.012	1.000
2. Reciprocal Only Invar. Recips	80	-37445	75612	371	179	0.000	0.011	1.000
 Reciprocal Inv Xlags Invar Recips 	72	-37465	75580	412	187	0.000	0.012	1.000
4. Reciprocal Inv Xlags Invar Recips $DEP_t \rightarrow SE_t$ only	71	-37466	75572	412	188	0.000	0.012	1.000

• Model 4 has the best BIC


Estimated Effects in Three Key Models for the NLSY Data

Model	Significant Cross-lags	Significant Reciprocals
1. RI-CLPM Invar. X-lags	$\begin{array}{c} SE_{t-1} \xrightarrow{-} DEP_t \\ DEP_{t-1} \xrightarrow{-} SE_t \end{array}$	NA
2. Reciprocal Only Invar. Recips	NA	$\begin{array}{c} SE_t \xrightarrow{-} DEP_t \\ DEP_t \xrightarrow{-} SE_t \end{array}$
4. Reciprocal Invar. X-lags Invar. Recips $DEP_t \xrightarrow{-} SE_t$ only	$SE_{t\text{-}1} \xrightarrow{-} DEP_t$	$DEP_t \xrightarrow{-} SE_t$

• Model 2 contradicts Model 1 and is partly supported by Model 4


- French high school students, N = 944, T = 5
- Academic self-concept and achievement (GPA) measured 5 times over 6 trimesters during first and second years of high school (no data for the 5th trimester so non-equidistant)
- Nunez-Regueiro et al. (2021) analyzed in Kenny & McCoach (2022)
- Reciprocal RI-CLPM with non-invariant cross-lags and invariant reciprocals (model 4)

Bootstrap Distribution of Reciprocal Effects for Model 4: $GPA_t \rightarrow Academic Self-Concept_t$

• Peak around +0.4 but insignificant (non-duality restriction only applied)

Bootstrap Distribution of Reciprocal Effects for Model 4: Academic Self-Concept_t \rightarrow GPA_t

• Peak around zero - parameter can be fixed at zero (non-duality restriction only applied)

Model	# par's	LogL	BIC	χ^2	Df	P-value	RMSEA (p-value)
1. RI-CLPM Non-inv Xlags	44	-12876	26054	71	21	0.000	0.051 (.446)
2. RI-CLPM First 3 Xlags Inv	40	-12878	26029	73	25	0.000	0.045 (0.722)
3. Reciprocal Only							
 Reciprocal Non-inv Xlags Invar Recips 	42	-12877	26040	71	23	0.000	0.047 (.608)
5. Reciprocal Non-inv. Xlags Invar. Recips $GPA_t \rightarrow ASC_t$ only	41	-12877	26034	84	24	0.000	0.052 (.382)

Model Fit for Cross-Lagged and Reciprocal Models (MLR)

- Model 3 no solution for the 44-parameter equivalent model version or the invariant reciprocals version: Model 3 not suitable for this data set
- Model 4 no solution for the 44-parameter equivalent version that applies T-1 = 4 restrictions on the 8 reciprocals (e.g., 2=3, 4=5: 4 par's)

Model	Significant Cross-lags	Significant Reciprocals
2. RI-CLPM First 3 X-lags inv	$\text{GPA}_{t\text{-}1} \xrightarrow{+} \text{ASC}_t$	NA
3. Reciprocal Only	NA	No solution
5. Reciprocal Non-inv X-lags Invar. Recips GPA → ASC only	None	$\begin{array}{c} \text{GPA}_t \xrightarrow{+} \text{ASC}_t \\ (\text{sig. also with} \\ \text{boostrap CI}) \end{array}$

Model 2 and Model 5 disagree

Analysis Summary for the Examples

Model	Sig. Cross-lags	Sig. Reciprocals
RI-CLPM	$D_{t\text{-}1} \xrightarrow{-} S_t$	NA
Reciprocal Only	NA	None
Reciprocal	$D_{t-1} \xrightarrow{-} S_t$	$S_t \xrightarrow{-} D_t$

Ormel:	N = 753	T = 3	Interval	= 1 year
--------	---------	-------	----------	----------

Model	Sig. Cross-lags	Sig. Reciprocals
RI-CLPM	$\begin{array}{c} DIS_{t\text{-}1} \xrightarrow{+} DEP_t \\ DEP_{t\text{-}1} \xrightarrow{+} DIS_t \end{array}$	NA
Reciprocal Only	NA	No Solution
Reciprocal	$DEP_{t\text{-}1} \xrightarrow{+} DIS_t$	$DIS_t \xrightarrow{+} DEP_t$

Analysis Summary for the Examples, Continued

BLS: $N = 404$, $T = 4$, Interval = 1 year				GPA: $N = 933$, $T = 5$, Interval = 4 months					
Model	Sig. (Cross-lags	Sig. Reci	procals	Mode	1	Sig. Cro	oss-lags	Sig. Reciprocals
RI-CLPM	I	None	NA		RI-CLPM		$\text{GPA}_{t\text{-}1} \xrightarrow{+} \text{ASC}_t$		NA
Reciprocal Only		NA	NA None		Reciprocal Only		NA		No solution
Reciprocal	1	None	$D_t \xrightarrow{-}$	· St	Recipro	cal	No	ne	$\text{GPA}_t \xrightarrow{+} \text{ASC}_t$
NLSY: N = 8,259, T = 11, Interval = 2 years									
		Mod	lel	Sig. Ci	ross-lags	Sig. Rec	iprocals		
		RI-CL	PM		$\xrightarrow{-} DEP_t$ $\xrightarrow{-} SE_t$	Ν	A		
		Recip	rocal Only	Ν	NA	$SE_t \xrightarrow{-} DEP_t -$			
		Recip	rocal	SE _{t-1} -	$\xrightarrow{-}$ DEP _t	DEP _t -	\rightarrow SE _t		

Monte Carlo Simulations: H0 Model Incorrect, N=500

Generate	Analyze (χ^2 5%)	Data analysis				
	3 30 /					
MWI						
<u>RI-CLPM</u>	Reciprocal (0.134)					
$D_{t\text{-}1} \xrightarrow{-} S_t$	None	Different				
Reciprocal	<u>RI-CLPM</u> (0.342)					
$D_{t\text{-}1} \xrightarrow{-} S_t$	$D_{t-1} \xrightarrow{-} S_t$ (same)	Same				
$S_t \xrightarrow{-} D_t$						
BLS						
Reciprocal	RI-CLPM (0.280)					
$D_t \xrightarrow{-} S_t$	None	Same				
NLSY						
RI-CLPM	Reciprocal Only (0.162)					
$SE_{t\text{-}1} \xrightarrow{-} DEP_t$	None	Different				
$DEP_{t\text{-}1} \xrightarrow{-} SE_t$						
Reciprocal Only	RI-CLPM (0.188)					
$SE_t \xrightarrow{-} DEP_t$	$\underbrace{SE_{t-1} \xrightarrow{-} DEP_t (small)}$	Similar				
$DEP_t \xrightarrow{-} SE_t$						

Conclusions

- The three model types either fit equally well or about the same all models have log likelihood values that are not far apart
 - Statistics cannot give a strong indication of which model is best
- What's the answer to the question in the title? It looks like No
 - It is hard to claim that a cross-lagged effect has been found if it might just as well be a contemporaneous effect
 - See for example the GPA and NLSY analyses where the two reciprocal models give different answers than the regular model

GPA: $N = 933$, $T = 5$, Interval = 4 months		NLSY: $N = 8,259$, $T = 11$, Interval = 2 years			
Model	Sig. Cross-lags	Sig. Reciprocals	Model	Sig. Cross-lags	Sig. Reciprocals
RI-CLPM	$\text{GPA}_{t\text{-}1} \xrightarrow{+} \text{ASC}_t$	NA	RI-CLPM	$SE_{t-1} \xrightarrow{-} DEP_t$	NA
Reciprocal Only	NA	No solution		$DEP_{t-1} \xrightarrow{-} SE_t$	
Reciprocal	None	$\text{GPA}_t \xrightarrow{+} \text{ASC}_t$	Reciprocal Only	NA	$\begin{array}{l} SE_t \xrightarrow{-} DEP_t \\ DEP_t \xrightarrow{-} SE_t \end{array}$
			Reciprocal	$SE_{t\text{-}1} \xrightarrow{-} DEP_t$	$DEP_t \xrightarrow{-} SE_t$

Conclusions Continued

- With similarly fitting models, it is tempting to choose RI-CLPM because cross-lagged effects offer a more interesting "causal" interpretation given the time lag between cause and effect
- This may be wishful thinking because RI-CLPM assumes zero lag0 effects don't overemphasize lag1 effects over lag0 effects
- Recommendation: Report results of all 3 model types
 - Reciprocal and Reciprocal Only models are useful complements to RI-CLPM, enriching the understanding of the data
- The reciprocal model may facilitate the search for a parsimonious model by its natural time invariance restrictions
 - Regular RI-CLPM typically has worse BIC in the five examples
- Is the situation different with Intensive Longitudinal Data?
 - Depending on the subject matter and type of measurements, intensive longitudinal data with more frequent measurements may have less of a need to include contemporaneous effects