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ON MUTHÉN’S MAXIMUM LIKELIHOOD FOR TWO-LEVEL COVARIANCE
STRUCTURE MODELS
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Data in social and behavioral sciences are often hierarchically organized. Special statistical proce-
dures that take into account the dependence of such observations have been developed. Among procedures
for 2-level covariance structure analysis, Muthén’s maximum likelihood (MUML) has the advantage of
easier computation and faster convergence. When data are balanced, MUML is equivalent to the max-
imum likelihood procedure. Simulation results in the literature endorse the MUML procedure also for
unbalanced data. This paper studies the analytical properties of the MUML procedure in general. The
results indicate that the MUML procedure leads to correct model inference asymptotically when level-2
sample size goes to infinity and the coefficient of variation of the level-1 sample sizes goes to zero. The
study clearly identifies the impact of level-1 and level-2 sample sizes on the standard errors and test statistic
of the MUML procedure. Analytical results explain previous simulation results and will guide the design
or data collection for the future applications of MUML.
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1. Introduction

Data in social and behavioral sciences often exhibit hierarchical structure. For example,
households are nested within neighborhoods, neighborhoods are nested within cities, and cities
are further nested within countries; students are nested within classes, classes are nested within
schools, and schools are further nested within school districts. Cases within a cluster are generally
correlated. Analysis of such data has to explicitly account for these correlations. The develop-
ment of statistical methods for hierarchical data is documented by monographs and edited books
(Goldstein, 1995; Heck & Thomas, 2000; Hox, 2002; Kreft & de Leeuw, 1998; Raudenbush &
Bryk, 2002; Reise & Duan, 2003; Snijders & Bosker, 1999). Among these are the hierarchical
linear model (HLM) and the multilevel structural equation model (SEM) (Bentler & Liang, 2003;
du Toit & du Toit, 2004 Goldstein & McDonald, 1988; Lee, 1990; Lee & Poon, 1998; Liang &
Bentler, in 2004; Little, Schnabel & Baumert, 2000; Longford, 1993; McArdle & Hamagami,
1996; McDonald & Goldstein, 1989; Muthén, 1994, 1997; Muthén & Satorra, 1995; Poon & Lee,
1994; Yuan & Bentler, 2002, 2003a).

In a multilevel covariance structure model, parameters appear at each level. Parameter esti-
mates can be obtained by maximizing the normal-theory based likelihood function. Iterative
procedures are used in this process (Bentler & Liang, 2003; du Toit & du Toit, in press; Gold-
stein, 1986; Lee & Poon, 1998; Liang & Bentler, 2004; Longford, 1987). As a multilevel SEM
typically involves many variables, with unbalanced data many high dimensional matrices have to
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be inverted at each iteration (see du Toit & du Toit, in press; Liang & Bentler, 2004; McDonald &
Goldstein, 1989). When a large number of level-1 units contain small sample sizes, maximizing
the likelihood function is not just time consuming but may also put the convergence in jeop-
ardy. Muthén (1989) observed that, for balanced data, a 2-level covariance structure model can
be solved by a conventional SEM program with the 2-group option. Muthén (1990) further pro-
posed an ad hoc 2-group procedure to deal with unbalanced data for 2-level covariance structure
models. Using real data, Muthén (1990) showed that it yields essentially the same results as the
maximum likelihood (ML). In a parallel development with balanced data, McDonald and Gold-
stein (1989) obtained a compact expression of the likelihood ratio statistic in terms of sufficient
statistics (the sample mean and the between and within level sample covariance matrices). Using
pseudobalanced sufficient statistics for unbalanced data, McDonald (1994) further illustrated that
the McDonald-Goldstein’s (1989) balanced data likelihood discrepancy function is equivalent to
Muthén’s (1990) procedure. Using examples with simulated data, McDonald (1994) also com-
pared the ad hoc and ML procedures. His results indicate that they lead to the same conclusion
for model inference. Using simulation and a 2-level factor model, Hox (1993) studied Muthén’s
ad hoc procedure and found that it recovers the population parameters well when level-1 sample
sizes are relatively large. Hox and Maas (2001) further studied standard errors and the test statistic
resulting from Muthén’s (1990) procedure. They found that the standard error estimates for the
between-level parameters are negatively biased; the test statistic for the overall model evaluation
tends to over-reject correct models (or positively biased).

Obtaining a set of converged solutions is the prerequisite in evaluating any model. Conver-
gence problems arise with small samples when fitting a conventional covariance structure model
(See e.g., Anderson & Gerbing, 1984; Boomsma, 1982; Curran et al., 2002). Convergence is
more challenging with 2-level models when many level-1 sample sizes are small and unequal.
Due to the computational and convergent advantage of Muthén’s(1990) procedure, it has been
implemented in popular software (e.g., EQS 6.0, Mplus 2.12) and formally introduced in standard
textbooks (e.g., Duncan, Durcan, strycker, Li, & Alpert, 1999; Hox, 2002; Kano & Miura, 2002).
This procedure is now commonly called MUML. Simulation or numerical results about MUML
are important but have limitations. For example, the biases in standard errors or test statistic of
MUML may come from two sources, one is related to sample sizes and gradually disappears as
sample sizes increase, the other remains as sample sizes get larger.Analytical results are necessary
to distinguish the two sources. Because of the computational advantage of the MUML procedure,
it is becoming increasingly popular. A systematic analytical study is needed to better guide its
application. We are especially interested in finding conditions under which standard errors and the
test statistic in the MUML procedure are statistically valid. We will study the MUML estimators
and their standard errors in Section 2, and the test statistic of the MUML procedure in Section 3.
Illustrations of biases in standard errors and the test statistic are provided in Section 4, verifying
the effect of sample size and model conditions identified in Sections 2 and 3. A brief discussion
of correcting the biases in MUML and its extension to non-normal data are given in Section 5.
Technical details are provided in two appendices.

2. The Asymptotic Distribution of the MUML Estimator

Let the p × 1 vectors yij , i = 1, . . . , nj be observations from cluster j with j = 1, . . . , J .
The 2-level structure of yij can be described by

yij = µ + vj + uij , (1)

where µ is a mean vector, vj and uij are independent with E(vj ) = E(uij ) = 0, Cov(vj ) = �b

and Cov(uij ) = �w. Let θ denote the vector of parameters in the structural models �b(θ) and
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�w(θ). Assume vj and uij following multivariate normal distributions, then so does yij . Conse-
quently, parameter estimation and model testing can proceed with the normal-theory based ML
and the likelihood ratio statistic. With unbalanced data, the ML procedure needs special programs
and will take longer to converge. Muthén (1989, 1990) proposed a procedure by which param-
eter estimation and model testing can proceed with the 2-group option of a conventional SEM
program. Let

ȳ.j = 1

nj

nj∑

i=1

yij , ȳ = 1

N

J∑

j=1

nj∑

i=1

yij ,

Sw = 1

N − J

J∑

j=1

nj∑

i=1

(yij − ȳ.j )(yij − ȳ.j )′,

Sb = 1

J − 1

J∑

j=1

nj (ȳ.j − ȳ)(ȳ.j − ȳ)′,

where N = n1 + · · · + nJ . Muthén’s ML1 estimator θ̂ minimizes

FMUML(θ) = J {tr[(�w + c�b)
−1Sb] − log |(�w + c�b)

−1Sb| − p}
+(N − J ){tr(�−1

w Sw)− log |�−1
w Sw| − p}, (2)

where c = (N2 −∑J
j=1 n

2
j )/[N(J − 1)]. Obviously E(Sw) = �w, Muthén (1990) has showed

that E(Sb) = �w + c�b. When data are balanced and the denominator J − 1 in Sb is replaced
by J , FMUML is −2 multiple of the log likelihood ratio of the structural model and the saturated
model. So, MUML is equivalent to the normal-theory ML for balanced data (Muthén, 1990).
We are interested in the properties of the MUML estimator θ̂ and the associated test statistic
TMUML = FMUML(θ̂) when data are unbalanced.

We introduce some notation for the technical development. For a p×p symmetric matrix A,
vec(A) is the p2-dimensional vector formed by stacking the columns of A. The p∗ = p(p+1)/2-
dimensional vector vech(A) is obtained by removing the elements above the diagonal of A from
vec(A). Consequently, there exists a unique p2 ×p∗ matrix Dp (see Magnus & Neudecker, 1999,
p. 49) such that vec(A) = Dpvech(A) and vech(A) = D+

p vec(A), where D+
p = (D′

pDp)−1D′
p is

the generalized inverse of Dp. We will use σ b = vech(�b), σw = vech(�w), and σ c = vech(�c),
where �c = �w+c�b.A function with a dot on top means derivative, e.g., σ̇w(θ) = dσw(θ)/dθ .
When a function is evaluated at the true value of the parameter, we often omit the argument. Fur-
ther, tn = op(an) means that tn/an approaches zero in probability as n approaches infinity,

tn = Op(an) means that tn/an is bounded in probability, and
L−→ denotes converging in distri-

bution. We will denote by the boldface counterpart op or Op when every element in a vector or a
matrix is of order op or Op. Parallel nonstochastic notation omits the subscript p.

Let θw be the parameters in �w(θ) and the remaining parameters of θ be θb. Yuan and
Bentler (2002) argued that the normal-theory MLE θ̂w and θ̂b converge to their population values
at different speeds as characterized by

θ̂w − θw0 = Op

(
1/

√
N − J

)
and θ̂b − θb0 = Op(1/

√
J ). (3)

1Muthén (1997, (9)) has extended MUML to include mean structures.
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Using essentially the same argument as inYuan and Bentler (2002) one can show that the MUML

estimator θ̂ = (θ̂
′
b, θ̂

′
w)

′ also satisfies (3). Thus, J has to be large in order for θ̂b to be near its
population value (see also Hox & Maas, 2002). It is not necessary for nj to approach infinity in
order for θ̂b or θ̂w to be near their population values in θ0 = (θ ′

b0, θ
′
w0)

′. So we will implicitly
assume J → ∞ when we say θ̂ is consistent or asymptotically normally distributed. We will
explicitly mention nj or its average approaching infinity when needed for special results. Because
FMUML is not a likelihood function for unbalanced data, standard result for ML cannot be applied
to obtain the property of the MUML estimator θ̂ . We will characterize the distribution of θ̂ by
the theory of estimating equations (see Liang & Zeger, 1986; Yuan & Jennrich, 1998). In this
approach, the asymptotic covariance matrix of θ̂ is of a sandwich-type. Our effort below mainly
involves obtaining and simplifying this covariance matrix for the MUML estimator.

Denote

Wc = 2−1D′
p(�

−1
c ⊗ �−1

c )Dp, Ww = 2−1D′
p(�

−1
w ⊗ �−1

w )Dp.

Taking the derivative of FMUML with respect to θ we get the estimating function

g(θ) = N − J

J
σ̇ ′
w(θ)Ww(θ)[sw − σw(θ)] + σ̇ ′

c(θ)Wc(θ)[sb − σ c(θ)]. (4)

Because E[g(θ0)] = 0, under standard regularity conditions (see Yuan & Jennrich, 1998), the
MUML estimator θ̂ satisfies the estimating equation g(θ̂) = 0 and is consistent for θ0. So, as
an estimator for θ0, θ̂ does not contain any asymptotic biases. Applying the Taylor expansion on
g(θ̂) = 0, we obtain

√
J (θ̂ − θ0) = −ġ−1(θ̄)

√
Jg(θ0) (5)

= −ġ−1(θ0)
√
Jg(θ0)+ op(1),

where θ̄ is a vector between θ̂ and θ0. Hence

√
J (θ̂ − θ0)

L−→N(0,�), (6)

where � = A−1BA−1 with A = −E(ġ) and B = JVar(g) = JE(gg′). The matrix A is the “infor-
mation matrix” associated with minimizing (2). In the default MUML, the covariance matrix of√
J (θ̂ − θ0) is A−1. Standard errors of θ̂ based on

√
J (θ̂ − θ0)

L−→N(0,A−1) (6a)

are asymptotically correct when A = B. To study the conditions under which A ≈ B in the fol-
lowing, we will obtain the B matrix and then relate � to A−1 through level-1 and level-2 sample
sizes. Conditions will be identified when � = A−1.

Using E(sb) = σw and E(sc) = σ c we obtain

A =
(
N

J
− 1

)
σ̇ ′
wWwσ̇w + σ̇ ′

cWcσ̇ c. (7)

Notice that the g in (4) involves the random vectors sw and sb, and

Var(g) = (
N
J

− 1
)2

σ̇ ′
wWwVar(sw)Wwσ̇w + σ̇ ′

cWcVar(sb)Wcσ̇ c

+ (N
J

− 1
)
σ̇ ′
wWwCov(sw, sb)Wcσ̇ c + (N

J
− 1
)
σ̇ ′
cWcCov(sb, sw)Wwσ̇w. (8)
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We need to obtain the variance–covariance matrices Var(sb), Var(sw) and Cov(sb, sw) before
obtaining the B matrix. Let

hj2 = vech[(ȳ.j − µ)(ȳ.j − µ)′] −
(

σ b + 1

nj
σw

)
,

hj3 = vech

[ nj∑

i=1

(yij − ȳ.j )(yij − ȳ.j )′
]

− (nj − 1)σw,

and denote Cj22 = E(hj2h′
j2), Cj33 = E(hj3h′

j3), Cj23 = E(hj2h′
j3). The Appendix A pro-

vides details leading to

Var(sb) = 1

(J − 1)2

J∑

j=1

(
n2
j +

n4
j

N2 −
2n3
j

N

)
Cj22

+ 2

N2(J − 1)2
D+
p









J∑

j=1

n2
j

(
�b + 1

nj
�w

)

⊗



J∑

j=1

n2
j

(
�b + 1

nj
�w

)






D+
p

′

− 2

N2(J − 1)2

J∑

j=1

n4
jD+

p

[(
�b + 1

nj
�w

)
⊗
(

�b + 1

nj
�w

)]
D+
p

′, (9)

Var(sw) = 1

(N − J )2

J∑

j=1

Cj33, (10)

and

Cov(sb, sw) = 1

(J − 1)(N − J )

J∑

j=1

(
nj −

n2
j

N

)
Cj23. (11)

We are mainly interested in the property of MUML when data are normal. With normal data,

Cj22 = 2D+
p

[(
�b + 1

nj
�w

)
⊗
(

�b + 1

nj
�w

)]
D+
p

′, Cj23 = 0, (12)

and

Cj33 = 2(nj − 1)D+
p (�w ⊗ �w)D+

p
′. (13)

Denote N2 =∑J
j=1 n

2
j , N3 =∑J

j=1 n
3
j , N4 =∑J

j=1 n
4
j , it follows from (9) and (12) that

Var(sb) = 2

(J − 1)2
D+
p

{(
N2 + N4

N2 − 2N3

N

)
�b ⊗ �b

+
(
N + N3

N2 − 2N2

N

)
(�b ⊗ �w + �w ⊗ �b)+

(
J + N2

N2 − 2

)
�w ⊗ �w

}
D+
p

′

+ 2

N2(J − 1)2
D+
p

{
N2

2 �b ⊗ �b +NN2(�b ⊗ �w+�w ⊗ �b)+N2�w ⊗ �w

}
D+
p

′
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− 2

N2(J − 1)2
D+
p {N4�b ⊗ �b +N3(�b ⊗ �w + �w ⊗ �b)+N2�w ⊗ �w} D+

p
′

= 2

(J − 1)2
D+
p

{(
N2 + N2

2

N2 − 2N3

N

)
�b ⊗ �b

+
(
N − N2

N

)
(�b ⊗ �w + �w ⊗ �b)+ (J − 1)�w ⊗ �w

}
D+
p

′.

Let n̄1 = N/J , n̄2 = N2/J , n̄3 = N3/J . To simplify the expression for matrix B = JE(gg′),
we rewrite Var(sb) as

Var(sb) = 2

(J − 1)2
D+
p

{(
J n̄2 + n̄2

2

n̄2
1

− 2n̄3

n̄1

)
�b ⊗ �b

+
(
J n̄1 − n̄2

n̄1

)
(�b ⊗ �w + �w ⊗ �b)+ (J − 1)�w ⊗ �w

}
D+
p

′

= 2

(J − 1)
D+
p (�c ⊗ �c)D+

p
′ + 2aD+

p (�b ⊗ �b)D+
p

′, (14a)

where

a = 1

(J − 1)3

[
J 2(n̄2 − n̄2

1)+ J

(
n̄2

2

n̄2
1

− 2n̄3

n̄1
+ n̄2

)
+ 2

(
n̄3

n̄1
− n̄2

2

n̄2
1

)]
. (14b)

It follows from (10) and (13) that

Var(sw) = 2

N − J
D+
p (�w ⊗ �w)D+

p
′. (15)

Equations (11) and (12) imply

Cov(sb, sw) = 0. (16)

Note that

W−1
c = 2D+

p [(�w + c�b)⊗ (�w + c�b)]D+
p

′ and W−1
w = 2D+

p (�w ⊗ �w)D+
p

′.

Combining (8), (14a), (15) and (16) we obtain

B =
(
N

J
− 1

)
σ̇ ′
wWwσ̇w + J

J − 1
σ̇ ′
cWcσ̇ c + Ja�, (17)

where

� = σ̇ ′
cWcW

−1
b Wcσ̇ c (18)

with

Wb = 2−1D′
p(�

−1
b ⊗ �−1

b )Dp.

When data are balanced, a = 0. It follows from (17) that the matrix � in (6) is given by

� = A−1
[(
N

J
− 1

)
σ̇ ′
wWwσ̇w + J

J − 1
σ̇ ′
cWcσ̇ c

]
A−1. (19a)
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When J is large, � ≈ A−1. For unbalanced data we have

� = A−1 + JaA−1�A−1. (19b)

It follows from (19b) that Ja plays an important role in whether � ≈ A−1. Let

v2
n =

J∑

j=1

(nj − n̄1)
2

J
= n̄2 − n̄2

1.

When J is large and the nj s are bounded, it follows from (14b) that Ja ≈ v2
n. For more insight

into the magnitude of a, suppose the nj s are uniformly distributed on an interval [na + 1, nb]
with nb = na + n. Then the variance of the nj s is v2

n = (n2 − 1)/12. The Appendix B gives the
outline leading to

a = (J − 2)

(J − 1)2
v2
n + (J − 2)

(J − 1)3
v4
n

[na + (n+ 1)/2]2 . (20)

Because v2
n < [na + (n+ 1)/2]2/3,

(J − 2)

(J − 1)2
v2
n < a <

v2
n

(J − 1)
.

So, regardless of the range of the nj s, limJ→∞ Ja = v2
n when nj s are uniformly distributed.

Notice that

c = N2 −N2

N(J − 1)
= J n̄1 − n̄2/n̄1

J − 1
= n̄1 − v2

n

n̄1(J − 1)
. (21)

So c → ∞ when the average sample size goes to infinity and v2
n/(J − 1) is bounded. Assume

the elements of �w are uniformly bounded, we have

Wc = c−2Wb + O(c−3) (22)

and

� = c−2σ̇ ′
bWbσ̇ b + O(c−3).

It follows from (7) and (22) that the submatrix of A corresponding to θb is of order O(1). Because
Ja = O(v2

n), σ̇ ′
bWbσ̇ b = O(1), (19b) implies � → A−1 as J → ∞ and v2

n/c
2 → 0. It follows

from (21) that

vn

c
= vn

n̄1{1 − v2
n/[n̄

2
1(J − 1)]} = vn

n̄1

{
1 +O

(
v2
n

[n̄2
1(J − 1)]

)}
= CV(n)+O

[
CV3(n)

(J − 1)

]
,

where CV(n) = vn/n̄1 is the coefficient of variation of the level-1 sample sizes n1, . . ., nJ . Hence,
for large J , vn/c ≈ CV(n). Consequently, standard errors by MUML are asymptotically correct
as J → ∞ and CV(n) → 0.

Hox and Maas (2001) studied standard errors of θ̂ by simulation. Their results imply that
there are little or no biases for the standard errors of θ̂w while the standard errors of θ̂b possess
substantial biases. We next look at the effect of � on standard errors of θ̂b and θ̂w separately.
For this purpose, we assume that �b(θ) and �w(θ) have separate and unrelated parameters.
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That is θ = (θ ′
b, θ

′
w)

′ with �b = �b(θb) and �w = �w(θw). Denote σ̇ bb = dσ b/dθb and
σ̇ww = dσw/dθw, then σ̇w = (0, σ̇ww) and σ̇ c = (cσ̇ bb, σ̇ww). It follows from (7) and (18) that

A =
(

A11 A12
A21 A22

)
=
(
c2σ̇ ′

bbWcσ̇ bb cσ̇ ′
bbWcσ̇ww

cσ̇ ′
wwWcσ̇ bb σ̇ ′

wwWcσ̇ww + (n̄1 − 1)σ̇ ′
wwWwσ̇ww

)
,

and

� =
(

�11 �12
�21 �22

)
=
(
c2σ̇ ′

bbWcW
−1
b Wcσ̇ bb cσ̇ ′

bbWcW
−1
b Wcσ̇ww

cσ̇ ′
wwWcW

−1
b Wcσ̇ bb σ̇ ′

wwWcW
−1
b Wcσ̇ww

)
.

Denote

A−1 =
(

A11 A12

A21 A22

)
,

standard formula (e.g., Magnus & Neudecker, 1999, p. 11) gives

A11 = (A11 − A12A−1
22 A21)

−1, A12 = −A11A12A−1
22 ,

A21 = −A−1
22 A21A11, A22 = (A22 − A21A−1

11 A12)
−1.

Let

D = A−1�A−1 =
(

D11 D12
D21 D22

)
,

then

D11 = A11(�11 − A12A−1
22 �21 − �12A−1

22 A21 + A12A−1
22 �22A−1

22 A21)A11 (23)

and

D22 = A−1
22 A21A11�11A11A12A−1

22 − A22�21A11A12A−1
22

−A−1
22 A21A11�12A22 + A22�22A22. (24)

Approximations are needed to simplify (23) and (24). Actually, we only need to identify the
leading terms in D11 and D22. It follows from (22) that

A−1
22 = [σ̇ ′

wwWcσ̇ww+(n̄1 − 1)σ̇ ′
wwWwσ̇ww]−1 = n̄−1

1 (σ̇ ′
wwWwσ̇ww)

−1+O(n̄−2
1 ), (25)

and

A11 =(c2σ̇ ′
bbWcσ̇ bb−c2σ̇ ′

bbWcσ̇wwA−1
22 σ̇ ′

wwWcσ̇ bb)
−1 =(σ̇ ′

bbWbσ̇ bb)
−1+O(c−1). (26)

Substituting (25) and (26) in (23), and using (22), we have

D11 =c−2(σ̇ ′
bbWbσ̇ bb)

−1
[
σ̇ ′
bbWbσ̇ bb − 2

n̄1c2 σ̇ ′
bbWbσ̇ww(σ̇

′
wwWwσ̇ww)

−1σ̇ ′
wwWbσ̇ bb

+ 1

n̄2
1c

4
σ̇ ′
bbWbσ̇ww(σ̇

′
wwWwσ̇ww)

−1σ̇ ′
wwWbσ̇ww(σ̇

′
wwWwσ̇ww)

−1σ̇ ′
wwWbσ̇ bb

]

(σ̇ ′
bbWbσ̇ bb)

−1 + O(c−3). (27)
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The leading term in (27) is c−2(σ̇ ′
bbWbσ̇ bb)

−1. Because Ja ≈ v2
n, the variance of θ̂b is inflated

by approximately c−2v2
n(σ̇

′
bbWbσ̇ bb)

−1. Using (26), the relative inflation in the standard errors

of θ̂b is approximately (1 + v2
n/c

2)1/2 − 1 ≈ v2
n/(2c

2) ≈ CV2(n)/2 when CV(n) is small. The
number of groups J will reduce the absolute biases in the standard errors of θ̂b but not their
relative biases.

Using (22), (24), (25), (26) and

A22 = [σ̇ ′
wwWcσ̇ww + (n̄1 − 1)σ̇ ′

wwWwσ̇ww − σ̇ ′
wwWcσ̇ bb(σ̇

′
bbWcσ̇ bb)

−1σ̇ ′
bbWcσ̇ww]−1

= n̄−1
1 (σ̇ ′

wwWwσ̇ww)
−1 + O(n̄−2

1 ),

we have

D22 = 1

n̄2
1c

4
(σ̇ ′
wwWwσ̇ww)

−1[σ̇ ′
wwWbσ̇ww − σ̇ ′

wwWbσ̇ bb(σ̇
′
bbWbσ̇ bb)

−1σ̇ ′
bbWbσ̇ww]

(σ̇ ′
wwWwσ̇ww)

−1 + o(n̄2
1c

4).

When

σ̇ ′
bbWbσ̇ bb = σ̇ ′

bbWbσ̇ww = σ̇ ′
wwWwσ̇ww = σ̇ ′

wwWbσ̇ww (28)

holds, the leading term of D22 vanishes. Even when (28) does not hold, the magnitude of D22
is of order O(n̄−6

1 ), which will be tiny even when n̄1 is small. Because A22 is of order O(n̄−1
1 ),

the relative inflation in the standard errors of θ̂w is approximately CV2(n)/n̄3
1. This explains why

Hox and Maas (2001) found little or no biases in the standard errors of θ̂w.

3. The Asymptotic Distribution of the MUML Statistic

We will study the distribution of the MUML statistic TMUML = FMUML(θ̂). The default
MUML procedure refersTMUML to a chi-square distribution. We will analytically compareTMUML
to this reference distribution. By decomposing TMUML into several terms, we will show that one
term asymptotically follows the reference distribution. The other terms contribute to the discrep-
ancy between TMUML and the reference chi-square distribution. We will also relate the discrepancy
to level-1 and level-2 sample sizes and model structures.

Notice that θ̂ is consistent for θ0 as J → ∞. Using (3) and the appendix of Yuan, Marshall,
and Bentler (2002) we obtain

TMUML =J [sb−σ c(θ̂)]
′Wc[sb−σ c(θ̂)]+(N−J )[sw−σw(θ̂)]

′Ww[sw−σw(θ̂)]+op(1). (29)

Let

W =
(

Wc 0

0
(

N
J−1

)
Ww

)
, ξ = (σ ′

c, σ
′
w)

′, s = (s′
b, s′

w)
′.

Equation (29) can be rewritten as

TMUML = J [s − ξ(θ̂)]′W[s − ξ(θ̂)] + op(1). (30)

Similarly, we can rewrite the g in (4) as g(θ0) = ξ̇
′
W(s − ξ0) and the A in (7) as A = ξ̇

′
Wξ̇ . It

follows from (5) that
√
J [ξ(θ̂)− ξ(θ0)] =

√
J ξ̇(θ̂ − θ0)+ op(1) = ξ̇(ξ̇

′
Wξ̇)−1ξ̇

′
W

√
J (s − ξ0)+ op(1).
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Thus,
√
J [s − ξ(θ̂)] = {I − ξ̇(ξ̇

′
Wξ̇)−1ξ̇

′
W}

√
J (s − ξ0)+ op(1). (31)

It follows from (30) and (31) that

TMUML =
√
J [W1/2(s − ξ0)]

′Q
√
J [W1/2(s − ξ0)] + op(1), (32)

where

Q = I − W1/2ξ̇(ξ̇
′
Wξ̇)−1ξ̇

′
W1/2

is a projection matrix.
It follows from (14a), (15) and (16) that

Var(s − ξ0) =
(
(J − 1)−1W−1

c 0
0 (N − J )−1W−1

w

)
+ a

(
W−1
b 0
0 0

)
. (33)

Let z1 ∼ N(0, I2p∗), z2 ∼ N(0, Ip∗) and z1 and z2 be independent. Then it follows from (33)
and the central limit theorem that

√
JW1/2(s − ξ0) = z1 +

√
aJWbcz2 + op(1), (34)

where

Wbc =
(

W1/2
c W−1/2

b

0

)
.

Combining (32) and (34) leads to

TMUML = z′
1Qz1 + 2

√
aJ z′

1QWbcz2 + aJ z′
2W′

bcQWbcz2 + op(1). (35)

The first term on the right of (35) follows χ2
2p∗−q (see Section 1.4 of Muirhead, 1982), where q

is the number of free parameters in θ . When data are balanced, a = 0. Thus, TMUML
L−→χ2

2p∗−q
as J → ∞. Notice that Wbc = O(1/c), Q = O(1), and aJ = O(v2

n). Substituting them in (35)
leads to

TMUML = z′
1Qz1 +Op

(vn
c

)
+ op(1). (35a)

It follows from (35a) that TMUML
L−→χ2

2p∗−q when J → ∞ and vn/c or CV(n) → 0. When
CV(n) is substantial, TMUML will not behave like a chi-square variate in general even when
J → ∞.

Let’s look at the difference in the first-order moments of TMUML and χ2
2p∗−q . Because z1 and

z2 are independent,E(z′
1QWbcz2) = 0. It isE(z′

2W′
bcQWbcz2) that makes TMUML stochastically

greater than χ2
2p∗−q . For a large J ,

E(z′
2W′

bcQWbcz2) = tr(QM),

where

M =
(

W1/2
c W−1

b W1/2
c 0

0 0

)
.
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Let P = W1/2ξ̇(ξ̇
′
Wξ̇)−1ξ̇

′
W1/2, then

tr(QM) = tr(M)− tr(PM). (36)

It follows from (22) that

tr(M) = tr(W−1
b Wc) = c−2p∗ +O(c−3), (37)

ξ̇
′
Wξ̇ = c−2σ̇ ′

wWbσ̇w + c−1σ̇ ′
wWbσ̇ b + c−1σ̇ ′

bWbσ̇w

+σ̇ ′
bWbσ̇ b + (n̄1 − 1)σ̇ ′

wWwσ̇w + O(c−1)

= σ̇ ′
bWbσ̇ b + (n̄1 − 1)σ̇ ′

wWwσ̇w + O(c−1),

and

σ̇ ′
cWcW

−1
b Wcσ̇ c = c−4σ̇ ′

wWbσ̇w + c−3σ̇ ′
bWbσ̇w + c−3σ̇ ′

wWbσ̇ b + c−2σ̇ ′
bWbσ̇ b + O(c−3)

= c−2σ̇ ′
bWbσ̇ b + O(c−3).

Thus,

tr(PM) = tr[(ξ̇
′
Wξ̇)−1(σ̇ ′

cWcW
−1
b Wcσ̇ c)]

= tr{[σ̇ ′
bWbσ̇ b + (n̄1 − 1)σ̇ ′

wWwσ̇w + O(c−1)]−1[c−2σ̇ ′
bWbσ̇ b + O(c−3)]} (38)

= (n̄−1
1 c−2)tr[(σ̇ ′

wWwσ̇w)
−1(σ̇ ′

bWbσ̇ b)] + o(n̄−1
1 c−2).

It follows from (36), (37) and (38) that

tr(QM) = c−2{p∗ − n̄−1
1 tr[(σ̇ ′

wWwσ̇w)
−1(σ̇ ′

bWbσ̇ b)]} + o(c−2).

When σ̇ ′
wWwσ̇w = σ̇ ′

bWbσ̇ b, tr[(σ̇ ′
wWwσ̇w)

−1(σ̇ ′
bWbσ̇ b)] = q. So TMUML is stochastically

greater than χ2
2p∗−q by a random term whose expectation is

v2
n

c2 (p
∗ − n̄−1

1 q)+ o

(
v2
n

c2

)
.

This term goes to zero as v2
n/c

2 or CV(n) goes to zero. When CV(n) is substantial, v2
np

∗/c2 also
becomes substantial because p∗ is often a large number.

When models �b(θb) and �w(θw) do not share any parameters, we have tr(PM) = c−2qb+
O(c−3), where qb is the number of free parameters in θb. So TMUML is stochastically greater than
χ2

2p∗−q by a random term whose expectation is

v2
n

c2 (p
∗ − qb)+ o

(
v2
n

c2

)
.

For the given level-1 and level-2 sample sizes, TMUML behaves more like a chi-square when
�b(θb) is less restricted.
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4. Illustrations

We have shown that the biases in standard errors by MUML are closely related to the coeffi-
cient of variation CV(n) of the level-1 sample sizes. We also showed that the difference between
the statistic TMUML and χ2

2p∗−q is related to CV(n). The biases in the standard errors and in
TMUML disappear when CV(n) goes to zero. In practice, it is of interest to know when the biases
are small enough so that they can be ignored. Although it is easy to come up with a threshold
number such that biases below this number are regarded as small, any such attempt would involve
some arbitrary or subjective decision. Instead, we use numerical examples to provide empirical
information about the biases as CV(n) changes. For such a purpose, we can only illustrate the
biases under a few selected conditions.

The population covariance matrices �b and �w are created by factor models

�b = �b�b�
′
b +�b, �w = �w�w�′

w +�w, (39)

where

�b = �w =
(

0.5 0.6 0.7 0.8 0 0 0 0
0 0 0 0 0.5 0.6 0.7 0.8

)′
,

�b =
(

1 0.5
0.5 1

)
, �w =

(
1 0.3

0.3 1

)
,

	b is a diagonal matrix such that �b is a correlation matrix, and 	w is a diagonal matrix such that
all the diagonal elements of �w are equal to 2. Because both standard errors and their biases con-
verge to zero as the level-2 sample size J → ∞, while J has little effect on the relative biases, we
arbitrarily chooseJ = 100. To contrast the effect of CV(n) on the biases, we choose level-1 sample
sizes uniformly distributed on the interval [na+1, na+n] with n = 20, and na = 5, 50. The corre-
sponding CV(n) for na = 5 is 0.372 and for na = 50 is 0.095. When na = 5, level-1 sample sizes
range from nj = 6 to nj = 25, which might represent various sizes of classes when yij represents
observations for student i from class j . When na = 50, level-1 sample sizes range from nj = 51
to nj = 70, which is to see the effect of a smaller CV(n) on standard errors and the test statistic.
As we shall see, the biases in standard errors and TMUML are quite small when na = 50, and
consequently when CV(n) ≤ 0.095. We use three models to fit the population generated above.

The first model is as specified in (39) and the factor loadings satisfy the constraint �b = �w.
All the factor variances are fixed at 1.0 for identification purposes. So there are a total of q = 26
free parameters in the model and eight of them are shared by the between- and within- levels. Table
1 contains standard errors by MUML (SDMUML) and standard errors based on the sandwich-type
covariance matrix � (SDSW). The absolute biases in SDMUML are SDSW − SDMUML. The more
interesting quantity is the relative bias defined as

RSD = (SDSW − SDMUML)

SDSW
,

which does not depend on J . When CV(n) = 0.372, the left panel of Table 1 implies that RSDs
are about 1.2% for the common factor loadings, 5% for the between-level parameters, and 0.3%
for the within-level parameters. E(TMUML) is greater than E(χ2

2p∗−q) = 2p∗ − q by 2.586. With
2p∗ − q = 46, the relative bias

RT = aJ tr(QM)

[2p∗ − q + aJ tr(QM)]
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Table 1.
Standard errors and their biases (�b = �w)

CV(n) = 0.372 CV(n) = 0.095

SDMUML SDSW R∗
SD SDMUML SDSW RSD

λ11 0.046 0.046 0.010 0.024 0.024 0.001
λ21 0.046 0.046 0.011 0.024 0.024 0.001
λ31 0.047 0.047 0.012 0.025 0.025 0.001
λ41 0.048 0.049 0.013 0.026 0.026 0.001
λ52 0.046 0.046 0.010 0.024 0.024 0.001
λ62 0.046 0.046 0.011 0.024 0.024 0.001
λ72 0.047 0.047 0.012 0.025 0.025 0.001
λ82 0.048 0.049 0.013 0.026 0.026 0.001

φb12 0.114 0.121 0.054 0.105 0.106 0.009
ψb11 0.132 0.139 0.052 0.119 0.120 0.009
ψb22 0.121 0.127 0.050 0.107 0.108 0.009
ψb33 0.110 0.115 0.048 0.096 0.097 0.009
ψb44 0.103 0.108 0.045 0.087 0.088 0.009
ψb55 0.132 0.139 0.052 0.119 0.120 0.009
ψb66 0.121 0.127 0.050 0.107 0.108 0.009
ψb77 0.110 0.115 0.048 0.096 0.097 0.009
ψb88 0.103 0.108 0.045 0.087 0.088 0.009

φw12 0.047 0.047 0.000 0.023 0.023 0.000
ψw11 0.073 0.073 0.001 0.036 0.036 0.000
ψw22 0.074 0.074 0.002 0.037 0.037 0.000
ψw33 0.076 0.076 0.003 0.039 0.039 0.000
ψw44 0.081 0.081 0.005 0.042 0.042 0.000
ψw55 0.073 0.073 0.001 0.036 0.036 0.000
ψw66 0.074 0.074 0.002 0.037 0.037 0.000
ψw77 0.076 0.076 0.003 0.039 0.039 0.000
ψw88 0.081 0.081 0.005 0.042 0.042 0.000

Note: ∗RSD = (SDSW − SDMUML)/SDSW

is about 5%. The right panel of Table 1 contains standard errors and their biases when CV(n) =
0.095. The RSDs for the between-level parameters are only about 0.9%, which should be consid-
ered ignorable in practice because they might be smaller than sampling errors (see Curran, 1994;
Yuan & Bentler, 1997). With aJ tr(QM) = 0.219, the relative bias in TMUML is only about 0.5%.

The second model is also as specified in (39) but there is no constraint on the between- and
within-level factor loadings. There are q = 34 free parameters in this model. Standard errors and
their biases are in Table 2. Even when CV(n) = 0.372, the RSDs at the within-level are zero down
to the third decimal place. However, standard errors for the between-level parameters still contain
about 5% biases, which are comparable to those for the between-level parameters in Table 1. With
38 degrees of freedom and aJ tr(QM) = 1.898, the RT is about 5%, also comparable to that
for the first model. When CV(n) = 0.095, the RSDs at the between-level are about 0.9%, again
comparable to those in Table 1 while the relative bias in TMUML is only about 0.4%.

When �b(θb) and �w(θw) have no overlap in parameters, results in the previous section
indicate that there is little bias in TMUML when p∗ = qb. In the third model, we choose a satu-
rated between-level model while the within-level model is specified as in (39). So there are only
19 degrees of freedom in this model. As expected, RT is zero down to the tenth decimal place
even when CV(n) = 0.372. Standard errors and their biases are in Table 3; we only report the
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Table 2.
Standard errors and their biases �b(θ) and �w(θ) have no overlaping parameters

CV(n) = 0.372 CV(n) = 0.095
SDMUML SDSW RSD SDMUML SDSW RSD

λb11 0.117 0.124 0.055 0.108 0.109 0.009
λb21 0.114 0.121 0.055 0.105 0.106 0.009
λb31 0.112 0.119 0.054 0.103 0.104 0.009
λb41 0.111 0.117 0.054 0.101 0.102 0.009
λb52 0.117 0.124 0.055 0.108 0.109 0.009
λb62 0.114 0.121 0.055 0.105 0.106 0.009
λb72 0.112 0.119 0.054 0.103 0.104 0.009
λb82 0.111 0.117 0.054 0.101 0.102 0.009
φb12 0.116 0.123 0.055 0.107 0.108 0.009
ψb11 0.134 0.142 0.052 0.121 0.122 0.009
ψb22 0.125 0.132 0.051 0.112 0.113 0.009
ψb33 0.119 0.125 0.049 0.105 0.106 0.009
ψb44 0.119 0.125 0.048 0.104 0.105 0.009
ψb55 0.134 0.142 0.052 0.121 0.122 0.009
ψb66 0.125 0.132 0.051 0.112 0.113 0.009
ψb77 0.119 0.125 0.049 0.105 0.106 0.009
ψb88 0.119 0.125 0.048 0.104 0.105 0.009

λw11 0.050 0.050 0.000 0.025 0.025 0.000
λw21 0.051 0.051 0.000 0.025 0.025 0.000
λw31 0.053 0.053 0.000 0.026 0.026 0.000
λw41 0.055 0.055 0.000 0.027 0.027 0.000
λw52 0.050 0.050 0.000 0.025 0.025 0.000
λw62 0.051 0.051 0.000 0.025 0.025 0.000
λw72 0.053 0.053 0.000 0.026 0.026 0.000
λw82 0.055 0.055 0.000 0.027 0.027 0.000
φw12 0.047 0.047 0.000 0.023 0.023 0.000
ψw11 0.074 0.074 0.000 0.037 0.037 0.000
ψw22 0.075 0.075 0.000 0.037 0.037 0.000
ψw33 0.079 0.079 0.000 0.039 0.039 0.000
ψw44 0.086 0.086 0.000 0.042 0.042 0.000
ψw55 0.074 0.074 0.000 0.037 0.037 0.000
ψw66 0.075 0.075 0.000 0.037 0.037 0.000
ψw77 0.079 0.079 0.000 0.039 0.039 0.000
ψw88 0.086 0.086 0.000 0.042 0.042 0.000

SDs for the first two columns of parameters in �b to save space. There are zero biases for the
within-level standard errors up to the third decimal place even when CV(n) = 0.372. The RSDs at
the between-level are about 5.4% when CV(n) = 0.372 and 0.9% when CV(n) = 0.095. These
are comparable to those in the previous Tables.

In these illustrations, we considered only the expected biases in SDMUML with a large J . In
practice, both SDSW and SDMUML also contain sampling errors because they have to be estimated
by data with finite sample sizes. The overall relative bias in SDMUML at the between-level is
about 5% when CV(n) = 0.372, and will be smaller for a smaller CV(n). Whether 5% of errors
are ignorable is subject to judgment. Sampling errors in the commonly used standard error esti-
mates for conventional structural equation models might be greater than 5% under unfavorable
conditions (see Yuan & Bentler, 1997).
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Table 3.
Standard errors and their biases (�b(θ) is saturated)

CV(n) = 0.372 CV(n) = 0.095
SDMUML SDSW RSD SDMUML SDSW RSD

σb11 0.160 0.169 0.054 0.146 0.147 0.009
σb21 0.117 0.124 0.054 0.108 0.109 0.009
σb31 0.119 0.126 0.054 0.109 0.110 0.009
σb41 0.121 0.128 0.055 0.111 0.112 0.009
σb51 0.114 0.120 0.054 0.104 0.105 0.009
σb61 0.114 0.120 0.054 0.104 0.105 0.009
σb71 0.114 0.121 0.054 0.105 0.106 0.009
σb81 0.115 0.121 0.054 0.105 0.106 0.009
σb22 0.160 0.169 0.054 0.146 0.147 0.009
σb32 0.121 0.128 0.055 0.112 0.113 0.009
σb42 0.124 0.131 0.055 0.114 0.115 0.009
σb52 0.114 0.120 0.054 0.104 0.105 0.009
σb62 0.114 0.121 0.054 0.105 0.106 0.009
σb72 0.115 0.121 0.054 0.105 0.106 0.009
σb82 0.116 0.122 0.054 0.106 0.107 0.009

λw11 0.050 0.050 0.000 0.025 0.025 0.000
λw21 0.051 0.051 0.000 0.025 0.025 0.000
λw31 0.053 0.053 0.000 0.026 0.026 0.000
λw41 0.055 0.055 0.000 0.027 0.027 0.000
λw52 0.050 0.050 0.000 0.025 0.025 0.000
λw62 0.051 0.051 0.000 0.025 0.025 0.000
λw72 0.053 0.053 0.000 0.026 0.026 0.000
λw82 0.055 0.055 0.000 0.027 0.027 0.000
φw12 0.047 0.047 0.000 0.023 0.023 0.000
ψw11 0.074 0.074 0.000 0.037 0.037 0.000
ψw22 0.075 0.075 0.000 0.037 0.037 0.000
ψw33 0.079 0.079 0.000 0.039 0.039 0.000
ψw44 0.086 0.086 0.000 0.042 0.042 0.000
ψw55 0.074 0.074 0.000 0.037 0.037 0.000
ψw66 0.075 0.075 0.000 0.037 0.037 0.000
ψw77 0.079 0.079 0.000 0.039 0.039 0.000
ψw88 0.086 0.086 0.000 0.042 0.042 0.000

5. Discussion

Muthén’s (1990) maximum likelihood procedure has the advantage of easier calculation
and faster convergence than the normal-theory based ML procedure. Consequently, the MUML
procedure is becoming increasingly popular and has been implemented in SEM software and
introduced in textbooks. This paper studies the analytical statistical properties of the MUML
procedure. The results indicate that the last term in (14a) or (33) is responsible for the biases
in standard errors of θ̂ and in the test statistic TMUML. When this term vanishes, inference with
MUML contains no asymptotic biases. Because this term is generally positive, standard errors
based on � = A−1 in (6a) is underestimated and the test statistic TMUML is stochastically greater
than the reference χ2

2p∗−q . This is comparable to the normal-theory based methodology for the
conventional covariance structure analysis, where the sample covariance matrix S is fitted to a
structure model �(θ). Let s = vech(S) and 
0 = Var(s). When 
0 −2D+

p (�⊗�)D+
p

′ is positive
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definite, the normal-theory standard errors have negative biases and the normal-theory likelihood
ratio statistic has a positive bias (Browne, 1984).

Our results identify the role of the level-1 and level-2 sample sizes in the MUML procedure.
The level-2 sample size J is responsible for θ̂ to be near θ0 and the stability of the distribution of
TMUML. The average level-1 sample size n̄1 and the standard deviation vn are responsible for the
validity of statistical inference by MUML. When the coefficient of variation CV(n) = vn/n̄1 is
small, MUML leads to valid inferences. When CV(n) is substantial, standard errors of θ̂b and the
overall model evaluation based on TMUML are biased. This suggests that, if feasible, one should
try to avoid level-1 units with small nj s in the data collection process, because small nj s not only
contribute to a small n̄1 but also to a large vn.

The results in Sections 2 and 3 can be used to correct the biases in MUML. When adding
the term JaA−1�A−1 to A−1 in estimating the covariance matrix of

√
J θ̂ , according to (19b),

the corresponding standard error estimates become consistent for unbalanced data. Similarly, one
may correct the bias in TMUML. Let 
 = Var(s − ξ0) as given in (33) and

U = W1/2QW1/2 = W − Wξ̇(ξ̇
′
Wξ̇)−1ξ̇

′
W.

Parallel to the corrected statistic of Satorra and Bentler (1994), we can get a corrected statistic

TCMUML = (2p∗ − q)TMUML

tr(Û
̂)
.

It follows from (32) that the asymptotic distribution of TCMUML has a mean of 2p∗ −q. Although
TCMUML does not asymptotically follow the reference distribution χ2

2p∗−q in general, it may
behave like the Satorra and Bentler’s (1994) rescaled statistic that works well in practice. Fur-
ther study is needed to actually evaluate the performance of TCMUML. Note that all the elements
for evaluating �, U and 
 have already been computed in obtaining θ̂ and its standard errors.
Including these corrections by a software that already contains the MUML procedure is straight-
forward. The above corrections can be extended to non-normal data. Then the matrix B in (6)
and 
 = Var(s − ξ0) need to be estimated using the fourth-order moments of the observed data.
The details are complicated and can be pursued parallel to the development in Yuan and Bentler
(2002, 2003a).

Note that the paper only studies the biases in MUML when models at both level-1 and level-2
are correctly specified. Because E(Sb) = �w + c�b, both θ̂b and θ̂w depend on the data matrix
Sb when they are obtained by minimizing the FMUML(θ) in (2). When a model at one level is
misspecified, both parameter estimates θ̂b and θ̂w may contain biases even for balanced data (see
Yuan et al., 2003). Of course, biases due to model misspecification apply not only to the MUML
procedure but also the ML procedure. To avoid the biases in θ̂w caused by a misspecified �b(θ),
one may just fit Sw by �w(θ) using the conventional SEM software with sample size N − J .
Within the MUML setup, Sb also contains the information of �w, it is not clear how to avoid the
biases in θ̂b caused by a misspecified �w(θ). Within the context of maximum likelihood, Yuan
and Bentler (2003b) proposed a stepwise approach to avoid possible biases of parameter estimates
at one level caused by misspecifications at different levels as well as other related complications
of model evaluation.

Finally, the purpose of MUML was to provide a procedure for analyzing hierarchical data
using the conventional SEM software (see Muthén, 1990). For unbalanced data, MUML is com-
putationally easier than ML. Recently, several important developments were made towards over-
coming the computation hurdles with the ML procedure for unbalanced data (du Toit & du Toit,
in press; Liang & Bentler, 2004). The demand for MUML may be lessened due to these develop-
ments.
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Appendix A

This appendix provides the expressions for Var(sb), Var(sw) and Cov(sb, sw) as given in (9),
(10) and (11). After some algebraic operation, we have

sb = 1

J − 1

J∑

j=1

nj tjj − 1

N(J − 1)

J∑

i=1

J∑

j=1

ninj tij , (A1)

where tjj = vech[(ȳ.j − µ)(ȳ.j − µ)′] and tij = vech[(ȳ.i − µ)(ȳ.j − µ)′]. Because vech(A) =
D+
p vec(A), and for vectors a and b there exists vec(ab′) = b ⊗ a,

tij t′kl = D+
p vec[(ȳ.i − µ)(ȳ.j − µ)′]vec′[(ȳ.k − µ)(ȳ.l − µ)′]D+

p
′

= D+
p {[(ȳ.j − µ)⊗ (ȳ.i − µ)][(ȳ.l − µ)⊗ (ȳ.k − µ)]′D+

p
′}

= D+
p {[(ȳ.j − µ)(ȳ.l − µ)′] ⊗ [(ȳ.i − µ)(ȳ.k − µ)′]D+

p
′}. (A2)

When i = j = k = l, denote

E(tjj t′jj ) = Cjjjj and Var(tjj ) = Cj22. (A3a)

When i = j and k = l but i 
= k, it is easy to see

E(tjj t′kk) =
(

σ b + 1

nj
σw

)(
σ b + 1

nk
σw

)′
, (A3b)

When i = k and j = l but i 
= j , it follows from (A2) that

E(tkj t′kj ) = D+
p

[(
�b + 1

nj
�w

)
⊗
(

�b + 1

nk
�w

)]
D+
p

′. (A3c)

Let Kp be the commutation matrix (see Magnus & Neudecker, 1999, p. 47) such that Kpvec(A) =
vec(A′). It follows from (A2) that

tij t′kl = D+
pKpvec[(ȳ.j − µ)(ȳ.i − µ)′]vec′[(ȳ.k − µ)(ȳ.l − µ)′]D+

p
′

= D+
pKp{[(ȳ.i − µ)(ȳ.l − µ)′] ⊗ [(ȳ.j − µ)(ȳ.k − µ)′]}D+

p
′. (A4)

When i = l and j = k but i 
= j , it follows from (A4) that

E(tij t′ji) = D+
pKp

[(
�b + 1

ni
�w

)
⊗ (�b + 1

nj
�w)

]
D+
p

′

= D+
p

[(
�b + 1

nj
�w

)
⊗
(

�b + 1

ni
�w

)]
D+
p

′. (A3d)

Let

δij =
{

1 if i = j,

0 if i 
= j,

hj2 = hjj = tjj −
(

σ b + 1

nj
σw

)
, and hij = tij − δij

(
σ b + 1

nj
σw

)
. (A5)
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Then it is easy to see E(hjj ) = E(hij ) = 0. It follows from (A1)

Var(sb) = 1

(J − 1)2

J∑

j=1

J∑

k=1

njnkE(hjjh′
kk)

+ 1

N2(J − 1)2

J∑

i=1

J∑

j=1

J∑

k=1

J∑

l=1

ninjnknlE(hijh′
kl)

− 1

N(J − 1)2

J∑

i=1

J∑

j=1

J∑

k=1

ninjnkE(hiih′
jk)

− 1

N(J − 1)2

J∑

i=1

J∑

j=1

J∑

k=1

ninjnkE(hijh′
kk). (A6)

When j 
= k, E(hjjh′
kk) = 0,

J∑

j=1

J∑

k=1

njnkE(hjjh′
kk) =

J∑

j=1

n2
jE(hjjh′

jj ) =
J∑

j=1

n2
jCj22. (A7a)

Note that

J∑

i=1

J∑

j=1

J∑

k=1

J∑

l=1

=



∑

i=j=k=l
+

∑

i=j,k=l,i 
=k
+

∑

i=k,j=l,i 
=j
+

∑

i=l,j=k,i 
=j
+
∑

else



,

it follows from (A3a) to (A3d) and (A5),

J∑

i=1

J∑

j=1

J∑

k=1

J∑

l=1

ninjnknlE(hijh′
kl) =

J∑

j=1

n4
jCj22 + 2D+

p









J∑

j=1

n2
j

(
�b + 1

nj
�w

)



⊗



J∑

j=1

n2
j

(
�b + 1

nj
�w

)






D+
p

′

−2
J∑

j=1

n4
jD+

p

[(
�b + 1

nj
�w

)
⊗
(

�b + 1

nj
�w

)]
D+
p

′.

(A7b)

It follows from (A3a), (A3b) and (A5)

J∑

i=1

J∑

j=1

J∑

k=1

ninjnkE(hiih′
jk)=




∑

i=j=k
+
∑

i 
=j=k
+
∑

else



 ninjnkE
(
hiih′

jk

)
=

J∑

j=1

n3
jCj22, (A7c)

and

J∑

i=1

J∑

j=1

J∑

k=1

ninjnkE(hijh′
kk) =

J∑

j=1

n3
jCj22. (A7d)
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By combining (A6) and (A7) we obtain

Var(sb) = 1

(J − 1)2

J∑

j=1

(
n2
j +

n4
j

N2 −
2n3
j

N

)
Cj22

+ 2

N2(J − 1)2
D+
p









J∑

j=1

n2
j

(
�b + 1

nj
�w

)

⊗



J∑

j=1

n2
j

(
�b + 1

nj
�w

)






D+
p

′

− 2

N2(J − 1)2

J∑

j=1

n4
jD+

p

[(
�b + 1

nj
�w

)
⊗
(

�b + 1

nj
�w

)]
D+
p

′.
(A8)

Let

hj3 = vech

[ nj∑

i=1

(yij − ȳ.j )(yij − ȳ.j )′
]

− (nj − 1)σw,

and E(hj3h′
j3) = Cj33. Then

Var(sw) = 1

(N − J )2

J∑

j=1

J∑

k=1

E(hj3h′
k3) = 1

(N − J )2




∑

j=k
+
∑

j 
=k



E(hj3h′
k3)

= 1

(N − J )2

J∑

j=1

Cj33. (A9)

Let E(hjjh′
j3) = Cj23. Then

Cov(sb, sw) = 1

(J − 1)(N − J )

J∑

j=1

J∑

k=1

njE(hjjh′
k3)

− 1

N(J − 1)(N − J )

J∑

i=1

J∑

j=1

J∑

k=1

ninjE(hijh′
k3)

= 1

(J − 1)(N − J )




∑

j=k
+
∑

j 
=k



 njE(hjjh′
k3)

− 1

N(J − 1)(N − J )




∑

i=j=k
+
∑

else



 ninjE(hijh′
k3)

= 1

(J − 1)(N − J )

J∑

j=1

njCj23 − 1

N(J − 1)(N − J )

J∑

j=1

n2
jCj23

= 1

(J − 1)(N − J )

J∑

j=1

(
nj −

n2
j

N

)
Cj23. (A10)
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Appendix B

This appendix outlines the steps leading to (20). When nj ∼ U [na + 1, na + n], then

n̄1 = na + 1

n

n∑

j=1

j = na + n+ 1

2
, (B1)

n̄2 = 1

n

n∑

j=1

(na + j)2 = 1

n

n∑

j=1

(n2
a + 2naj + j2)=n2

a+na(n+ 1)+ (n+ 1)(2n+ 1)

6
, (B2)

n̄3 = 1

n

n∑

j=1

(na + j)3 = 1

n

n∑

j=1

(n3
a + 3n2

aj + 3naj
2 + j3)

= n3
a + 3n2

a(n+ 1)

2
+ na(n+ 1)(2n+ 1)

2
+ n(n+ 1)2

4
. (B3)

Combining (14b) and (B1) to (B3) leads to the a in (20).
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