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Topics

General features:

Factor analysis model for a measurement instrument

Comparisons of many groups

Measurement invariance & factor mean and variance estimation

Approximate measurement invariance

Application areas:

Cross-cultural studies (International Social Survey Program,

European Social Survey)

Achievement comparisons across countries (PISA, TIMSS,

PIRLS)

School comparisons (LSAY, ECLS)

Organizational research
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Examples: 4 Data Sets

1 26 countries (n=49,894): ESS cross-cultural study of tradition &

conformity items

2 40 countries (n=9,787): PISA math achievement

3 53 countries (n=420,000): PISA items on teacher-student

relationships

4 67 hospitals (n=7,168): Health care ratings for different hospitals
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Analysis Choices for Multiple Groups/Clusters:

Fixed vs Random Effect Factor Analysis (IRT)

Fixed mode: Multiple-group analysis

Inference to the groups in the sample

Usually a relatively small number of groups

Random mode: Two-level factor analysis

Inference to a population from which the groups/clusters have

been sampled

Usually a relatively large number of groups/clusters
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Fixed Mode: Refresher on Multiple-Group Factor Analysis:

3 Different Degrees of Measurement Invariance

1 CONFIGURAL (invariant factor loading pattern)

2 METRIC (invariant factor loadings; ”weak factorial invariance”)

Needed in order to compare factor variances across groups

3 SCALAR (invariant factor loadings and intercepts/thresholds;
”strong factorial invariance”)

Needed in order to compare factor means across groups

These are automatically specified in Mplus Version 7.1 by 3 new

options in the ANALYSIS command:

MODEL=CONFIGURAL METRIC SCALAR;
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Refresher on Multiple-Group Factor Analysis:

Formulas for Individual i and Group j

Configural:

yij = νj +λj fij + εij,

E(fj) = αj = 0,V(fj) = ψj = 1.

Metric:

yij = νj +λ fij + εij,

E(fj) = αj = 0,V(fj) = ψj.

Scalar:

yij = ν +λ fij + εij,

E(fj) = αj,V(fj) = ψj.
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Specification Searches for Measurement Invariance

Measurement invariance (”item bias”, ”DIF”) has traditionally been

concerned with comparing a small number of groups such as with

gender or ethnicity.

Likelihood-ratio chi-square testing of one item at a time:

Bottom-up: Start with no invariance (configural case), imposing

invariance one item at a time

Top-down: Start with full invariance (scalar case), freeing

invariance one item at a time, e.g. using modification indices

Neither approach is scalable - both are very cumbersome when there

are many groups, such as 50 countries (50×49/2 = 1225 pairwise

comparisons for each item). The correct model may well be far from

either of the two starting points, which may lead to the wrong model.
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Example 1: ESS Tradition-Conformity Items

Beierlein, Davidov, Schmidt, & Schwartz (2012). Testing the

discriminant validity of Schwartz’ portrait value questionnaire items -

A replication and extension of Knoppen and Saris (2009). Survey

Research Methods, 6, 25-36.

European Social Survey comprising 26 countries and

approximately 50,000 subjects (average country size 1,900)

4 items measuring the concepts of tradition and conformity

1-factor model
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Excerpts from the ESS Human Values Scale

How similar to me is the person in the portrait?

Tradition (TR): 9. It is important for him to be humble and modest. He

tries not to draw attention to himself (ipmodst).

20. Tradition is important to him. He tries to follow the

customs handed down by his religion or family (imptrad).

Conformity (CO): 7. He believes that people should do what they’re told.

He thinks people should follow rules at all times, even

when no one is watching (ipfrule).

16. It is important for him to always behave properly.

He wants to avoid doing anything people would say is

wrong (ipbhprp).

Note: High value means low Tradition/Conformity.
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ESS Tradition-Conformity Items:

Multiple-Group CFA with Scalar Invariance

Poor fit: ML χ2(202) = 8,654, RMSEA = 0.148, CFI = 0.677

Many modification indices > 10:

33 for intercepts and loadings, 56 for residual covariances

Freeing just a few parameters will not improve model fit

sufficiently: 78 of the 89 modification indices are in the 10-40

range and none higher than 142

Conclusions:

Multiple-group CFA fails due to too many necessary model
modifications; the model search easily leads to the wrong model

The groups cannot be compared with respect to factor means

A new method is needed: Alignment (Asparouhov-Muthén,

2013, Web Note 18)
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Multiple-Group CFA Alignment Optimization

1 Estimate the configural model (loadings and intercepts free

across groups, factor means fixed @0, factor variances fixed @1)

2 Alignment optimization:

Free the factor means and variances and choose their values to

minimize the total amount of non-invariance using a simplicity

function

F = ∑
p

∑
j1<j2

wj1,j2 f (λpj1 −λpj2)+∑
p

∑
j1<j2

wj1,j2 f (νpj1 −νpj2),

for every pair of groups and every intercept and loading using a

component loss function (CLF) f from EFA rotations (Jennrich,

2006)

The simplicity function F is optimized at a few large

non-invariant parameters and many approximately invariant

parameters rather than many medium-sized non-invariant

parameters (compare with EFA rotations using functions that aim

for either large or small loadings, not mid-sized loadings)
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Alignment Optimization, Continued

In this way, a non-identified model where factor means and

factor variances are added to the configural model is made

identified by adding a simplicity requirement

This model has the same fit as the configural model:

Free the factor means αj and variances ψj, noting that for every

set of factor means and variances the same fit as the configural

model is obtained with loadings λj and intercepts νj changed as:

λj = λj,configural/
√

ψj,

νj = νj,configural −αj λj,configural/
√

ψj.

Simulation studies show that the alignment method works very

well unless there is a majority of significant non-invariant

parameters or small group sizes

For well-known examples with few groups and few

non-invariances, the results agree with the alignment method
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A Visual Answer to Why it is Called Alignment

Consider group-invariant intercepts for 10 items and 2 groups with

factor means = 0, -1 and factor variances = 1, 2

Unaligned: Configural model

(mean=0, variance=1 in both

groups)
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How Do We use the Alignment Results?

In addition to the estimated aligned model, the alignment procedure

gives

Measurement invariance test results produced by an algorithm

that determines the largest set of parameters that has no

significant difference between the parameters

Factor mean ordering among groups and significant differences

produced by z-tests
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Input for Alignment Analysis

of ESS Tradition-Conformity Items

DATA: FILE = ess05Traco.dat;

VARIABLE: NAMES = country essround ipfrule ipmodst ipbhprp imptrad;

USEVARIABLES = ipmodst imptrad ipfrule ipbhprp;

MISSING = ipfrule-imptrad (7-9);

CLASSES = c(26);

KNOWNCLASSES = c(country = 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 21 22 23 24 25 26 27 28 30);

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = ML;

ALIGNMENT = FREE;

MODEL: %OVERALL%

traco BY ipmodst-ipbhprp;

OUTPUT: TECH1 TECH8 ALIGN;

PLOT: TYPE = PLOT2;
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Output Excerpts for ESS Tradition-Conformity Items

STANDARD ERROR COMPARISON INDICATES THAT THE

FREE ALIGNMENT MODEL MAY BE POORLY

IDENTIFIED. USING THE FIXED ALIGNMENT OPTION

MAY RESOLVE THIS PROBLEM.

Choose group with smallest factor mean to be the reference group

(factor mean zero, factor variance 1) in a fixed alignment run:

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = ML;

ALIGNMENT = FIXED(22);
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ESS Tradition-Conformity Items:

Approximate Measurement (Non-) Invariance for Intercepts

Groups/countries in parenthesis are non-invariant.

IPMODST (1) (2) (3) 4 (5) (6) (7) 8 (9) (10) (11) 12 13 (14) 15 16 (17) (18) (19) (20)

(21) 22 23 (24) 25 (26)

IMPTRAD (1) (2) (3) (4) 5 (6) 7 8 (9) 10 (11) 12 (13) (14) (15) (16) 17 (18) (19) (20)

(21) (22) 23 24 (25) (26)

IPFRULE (1) 2 (3) (4) 5 (6) (7) (8) (9) 10 (11) (12) (13) (14) (15) (16) 17 (18) (19)

(20) 21 (22) 23 (24) 25 26

IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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ESS Tradition-Conformity Items:

Approximate Measurement (Non-) Invariance for Loadings

IPMODST (1) 2 (3) 4 5 (6) (7) 8 (9) (10) (11) (12) 13 14 15 16 17 18 19 20 21 22

(23) (24) 25 26

IMPTRAD 1 2 3 4 5 6 (7) 8 9 10 11 12 13 14 15 16 17 18 19 20 (21) 22 (23) 24

(25) 26

IPFRULE 1 2 3 4 5 (6) 7 8 9 (10) (11) 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26

IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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ESS Tradition-Conformity Items: Factor Mean Comparisons

Ranking Group Value Groups with significantly smaller factor mean

1 23 0.928 21 18 6 10 3 11 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

2 21 0.613 18 6 10 3 11 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

3 18 0.391 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

4 6 0.357 26 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

5 10 0.342 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

6 3 0.331 7 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

7 11 0.310 5 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

8 26 0.247 16 8 1 12 19 22 14 20 25 15 17 9 2 13 24 4

9 7 0.200 12 19 22 14 20 25 15 17 9 2 13 24 4

10 5 0.161 19 22 14 20 25 15 17 9 2 13 24 4

11 16 0.130 19 22 14 20 25 15 17 9 2 13 24 4

12 8 0.121 19 22 14 20 25 15 17 9 2 13 24 4

13 1 0.114 19 22 14 20 25 15 17 9 2 13 24 4
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ESS Tradition-Conformity Items: Factor Mean Comparison

Continued

Ranking Group Value Groups with significantly smaller factor mean

14 12 0.100 22 14 20 25 15 17 9 2 13 24 4

15 19 0.007 14 20 25 15 17 9 2 13 24 4

16 22 0.000 14 20 25 15 17 9 2 13 24 4

17 14 -0.114 17 9 2 13 24 4

18 20 -0.145 9 2 13 24 4

19 25 -0.185 2 13 24 4

20 15 -0.190 2 13 24 4

21 17 -0.214 13 24 4

22 9 -0.234 13 24 4

23 2 -0.288 4

24 13 -0.314 4

25 24 -0.327 4

26 4 -0.478
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Factor Mean Ordering: Scalar Model vs Alignment
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How Do We Know That We Can Trust

The Alignment Results? Monte Carlo Studies

Simulations in Asparouhov-Muthén Web Note 18

Simulations based on the estimated model:

Request SVALUES for real-data alignment run (parameter

estimates arranged as starting values)

Do a Monte Carlo run with these parameter values as population

values, choosing the sample size and check parameter bias, SE

bias, and the coverage

Do a ”real-data” run on Monte-Carlo generated data from one or

more replications to study the measurement invariance

assessment
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Input for Alignment Monte Carlo Study

Copy SVALUES results from real-data run into Monte Carlo run

Do a global change of the class label ”c” to ”g” (reverse

unwanted changes: Montegarlo, Progessors, etc)

Change f BY in OVERALL to give starting values

MONTECARLO: NAMES = ipfrule ipmodst ipbhprp imptrad;

NGROUPS= 26;

NOBSERVATIONS = 26(2000);

NREPS = 100;

REPSAVE = ALL;

SAVE = n2000f-22rep*.dat;

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = ML;

ALIGNMENT = FIXED(22);

PROCESSORS = 8;

MODEL POPULATION:

%OVERALL%

traco BY ipfrule-imptrad*1;

[ g#1*-0.10053 ];

etc
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Monte Carlo Results for ESS Tradition-Conformity Items

Average group size in real data: 1900.

Group size n = 100−300: Ok results, but not great

Group size n = 1000−2000: Good results

Group size n = 10,000: Great results

Bengt Muthén Measurement Invariance 24/ 61



Example 2: PISA Teacher-Student Relationship Items

Cheung (2013). Presentation at the IACCP Regional Conference in

LA (June 20-22) on cross-cultural research.

PISA (Program for International Student Assessment) 2009

study, 53 countries, 420,000 15-year olds

5 items measuring teacher-student relationships

1-factor model
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PISA Teacher-Student Relationship Items

Teacher-student Relationships Measure (PISA 2009 Student Questionnaire)

1=strongly disagree, 4=strongly agree

1. I get along with most of my teachers

2. Most of my teachers are interested in my well-being

3. Most of my teachers really listen to what I have to say

4. If I need extra help, I will receive it from my teachers

5. Most of my teachers treat me fairly
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Approximate Measurement (Non-) Invariance - PISA

Intercepts

Y1 (1) (2) (3) (4) (5) (6) (7) (8) (9) 10 (11) 12 13 14 (15) 16 (17) (18) (19) (20)

(21) (22) (23) (24) (25) 26 27 (28) (29) (30) 31 (32) (33) 34 (35) (36) 37

(38) 39 40 41 42 43 (44) (45) 46 47 (48) 49 (50) 51 (52) (53) (54) (55) 56

Y2 1 2 (3) (4) (5) (6) 7 8 9 10 (11) (12) 13 14 15 16 (17) (18) (19) 20 21 (22) 23

24 (25) (26) 27 (28) 29 (30) 31 32 33 (34) (35) (36) (37) 38 (39) (40) (41) 42

(43) 44 45 (46) 47 48 (49) 50 (51) (52) (53) 54 55 56

Y3 (1) (2) (3) (4) 5 6 (7) (8) 9 (10) (11) (12) 13 (14) 15 (16) (17) 18 (19) 20 21

(22) 23 (24) (25) 26 (27) 28 29 (30) (31) 32 (33) (34) 35 (36) (37) (38) 39

(40) (41) 42 43 (44) 45 (46) 47 48 (49) (50) (51) (52) (53) (54) (55) (56)

Y4 (1) 2 (3) 4 (5) 6 (7) 8 (9) (10) (11) (12) (13) (14) (15) 16 17 18 (19) (20) (21)

22 23 24 (25) (26) 27 (28) (29) (30) (31) (32) (33) 34 (35) 36 (37) 38 39 40

(41) 42 (43) (44) 45 (46) (47) (48) (49) 50 (51) 52 (53) (54) (55) (56)

Y5 1 2 (3) (4) (5) (6) (7) (8) (9) 10 (11) (12) (13) 14 15 (16) 17 (18) 19 (20) 21

(22) (23) (24) 25 26 27 28 29 (30) 31 (32) (33) 34 35 36 (37) (38) (39) (40)

41 (42) (43) 44 (45) 46 47 48 (49) (50) (51) (52) 53 (54) (55) (56)
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Approximate Measurement (Non-) Invariance - PISA

Loadings

Y1 1 2 (3) 4 5 6 7 8 9 (10) 11 (12) (13) 14 15 16 17 18 19 (20) (21) 22 23 24 25 (26)

27 (28) (29) 30 31 (32) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 (49) (50)

51 52 53 54 (55) 56

Y2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 (28) 29

30 31 32 33 34 35 36 37 38 39 40 (41) 42 (43) 44 45 (46) 47 48 49 50 51 52 53

54 55 56

Y3 1 2 (3) 4 5 6 7 8 9 (10) 11 12 13 (14) 15 (16) 17 18 (19) 20 21 22 (23) 24 25 26

27 (28) 29 (30) (31) 32 33 34 35 36 37 (38) 39 40 41 (42) 43 44 (45) 46 (47) 48

(49) 50 51 52 53 54 (55) 56

Y4 1 (2) 3 (4) 5 6 (7) 8 9 10 11 12 13 (14) (15) (16) (17) (18) 19 20 21 (22) 23 24 (25)

(26) 27 (28) 29 30 31 32 (33) (34) 35 (36) (37) 38 39 40 41 42 43 44 45 46 47 (48)

(49) 50 51 52 (53) 54 55 56

Y5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (18) 19 20 21 22 23 24 25 (26) 27 28 29

30 31 32 (33) 34 35 36 37 38 39 40 41 42 43 44 45 46 (47) 48 49 50 51 52 53 54

(55) 56
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PISA Teacher-Student Relationship Items:

Monte Carlo Simulations

Monte Carlo simulations based on these data show failure in

recovering the population values - too large degree of non-invariance.
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Example 3: PISA Binary Math Items

Items from the PISA (Program for International Student

Assessment) survey of 2003

A total of 9796 students from 40 countries

Analyzed by Fox (2010). Bayesian Item Response Modeling

A 40-group, one-factor model for eight mathematics test items

2-parameter probit IRT model that accommodates country

measurement non-invariance for all difficulty (threshold) and

discrimination (loading) parameters as well as country-specific

factor means and variances
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Input for PISA Alignment

DATA: FILE = pisa2003.dat;

VARIABLE: NAMES = cn y1-y8;

CATEGORICAL = y1-y8; ! Requires Bayesian analysis

USEVARIABLES = y1-y8;

MISSING = y1-y8(9);

CLASSES = c(40);

KNOWNCLASS = c(cn = 1-40);

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = BAYES;

PROCESSORS = 2;

ALIGNMENT = FREE;

THIN = 10;

BITERATIONS = (5000);

MODEL: %OVERALL%

f BY y1-y8;

OUTPUT: TECH1 TECH8 ALIGN;

PLOT: TYPE = PLOT2;
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Switching to Random Mode: What Can Two-Level Factor

Analysis Tell Us About Invariance?

Refresher on Two-Level Factor Analysis - 3 Major Types of Models:

1 Random intercepts: Different Within and Between factor

structures (from factor analysis tradition)

2 Non-random intercepts: Same Within and Between factor

structures and Between residual variances = 0 (used in IRT)

3 Random intercepts & random loadings (Bayesian analysis)
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Two-Level Factor Analysis:

Different Within and Between Factor Structures

Recall random effect ANOVA for individual i in cluster j,

yij = ν + yBj
+ yWij

.

Two-level factor analysis generalizes this to

yij = ν +λB fBj
+ εBj

+ λW fWij
+ εWij

with covariance structure V(yij) = ΣB +ΣW , where

ΣB = ΛB ΨB Λ′
B +ΘB,

ΣW = ΛW ΨW Λ′
W +ΘW .
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Random Intercept Two-Level Factor Analysis:

Different Within and Between Factor Structures

The two-level factor analysis model

yij = ν +λB fBj
+ εBj

+ λW fWij
+ εWij

can be viewed as a random intercept model:

Level 1 : yij = νj +λW fWij
+ εWij

,

Level 2 : νj = ν +λB fBj
+ εBj

.
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Random Intercept Two-Level Factor Analysis in Figure Form

Within

Between

f1w f2w

y1 y2 y3 y5 y6y4

y1 y2 y3 y5 y6y4

fb
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Connections Between Random Intercept Two-Level

Factor Analysis, Conventional Two-Level IRT,

and Measurement Invariance

Random intercept two-level factor analysis:

Level 1 : yij = νj +λW fWij
+ εWij

,

Level 2 : νj = ν +λB fBj
+ εBj

,

Conventional two-level IRT:

If λW = λB = λ and V(εBj
) = 0, then the above equations become

yij = ν +λ fij + εij,

fij = fBj
+ fWij

,

The IRT model implies that we have measurement invariance

across the clusters for both the intercepts and the loadings
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Testing Measurement Invariance with Random Intercept

Two-Level Factor Analysis

Jak et al. (2013a). A test for cluster bias: Detecting violations of

measurement invariance across clusters in multilevel data. SEM

journal, April-June issue.

Jak et al. (2013b). Measurement bias in multilevel data. To

appear in SEM.
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Example 4: Hospital Data Example

Shortell et al. (1995). Assessing the impact of continuous quality

improvement/total quality management: concept versus

implementation. Health Services Research, 30, 377-401.

Survey of 67 hospitals, n = 7168 employee respondents,

approximately 100/hospital

6 dimensions of an overall ”quality improvement

implementation” based on the Malcom Baldrige National

Quality Award criteria

Focus on 6 items measuring a quality management dimension
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Hospital as Random Mode: Regular Random Intercept,

Two-Level Factor Analysis using Jak’s Approach

Testing ΛB = ΛW , ΘB = 0: χ2(20) = 206.33, p-value = 0.000.

Modification indices for Between Level point to ΘB for QM53:

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

QMB BY QM53 41.191 0.307 0.075 0.619

QMB BY QM56 23.359 -0.213 -0.052 -0.343

QMB BY QM57 10.394 0.125 0.031 0.187

Residual Variances

QM53 248.063 0.021 0.021 1.402

QM54 41.552 0.006 0.006 0.257

QM55 57.373 0.008 0.008 0.369

QM57 15.049 0.003 0.003 0.121

QM58 14.616 0.004 0.004 0.185
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Hospital Data: Quality Management Items

QM53: The hospital regularly checks equipment and supplies to make

sure they meet quality requirements

QM54: The quality assurance staff effectively coordinate their efforts with

others to improve the quality of services the hospital provides.

QM55: Hospital employees have a good understanding of how to improve the

quality of services

QM56: Data from suppliers are used when developing the hospital’s plan to

improve quality

QM57: The hospital has effective policies for improving the quality of services

QM58: The hospital works closely with suppliers to improve the quality of

their products and services
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Hospital as Fixed Mode: Alignment Optimization with

Approximate Intercept (Non-) Invariance by Group

QM53 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 (50) 51 (52)

53 54 55 56 57 58 59 60 61 (62) 63 64 65 66 67

QM54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

QM55 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

QM56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

QM57 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

QM58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
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Two-Level Analysis with Random Item Parameters

De Jong, Steenkamp & Fox (2007). Relaxing measurement

invariance in cross-national consumer research using a

hierarchical IRT model. Journal of Consumer Research, 34,

260-278.

Fox (2010). Bayesian Item Response Modeling. Springer

Fox & Verhagen (2011). Random item effects modeling for

cross-national survey data. In E. Davidov & P. Schmidt, and J.

Billiet (Eds.), Cross-cultural Analysis: Methods and

Applications

Asparouhov & Muthén (2012). General random effect latent

variable modeling: Random subjects, items, contexts, and

parameters

Bayesian estimation needed because random loadings with ML

give rise to numerical integration with many dimensions
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Two-Level Analysis with Random Item Parameters:

A New Conceptualization of Measurement Invariance

Each measurement parameter varies across groups/clusters, but

groups/clusters have a common mean and variance. E.g.

λj ∼ N(µλ ,σ
2
λ ). (1)

1 1.20.8

l

95%

l ~ N(1, 0.01)
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Random Item Parameters In IRT

Yijk - outcome for student i, in country j and item k

P(Yijk = 1) = Φ(ajkθij +bjk)

ajk ∼ N(ak,σa,k),bjk ∼ N(bk,σb,k)

This is a 2-parameter probit IRT model where both

discrimination (a) and difficulty (b) vary across country

The θ ability factor is decomposed as

θij = θj + εij

The mean and variance of the ability vary across country

Model preserves common measurement scale while

accommodating measurement non-invariance

The ability for each country obtained by factor score estimation
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Violations of the Measurement Non-Invariance

Normality Assumption for the Item Parameter Distributions
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Alignment vs Two-Level Factor Analysis (Fixed vs Random)

Alignment advantages:

Convenient, one-step analysis

Points to which groups/clusters contribute to non-invariance

Is not limited to just > 30 clusters, but works well with any

number of groups/clusters (say < 100, or say < 3,000 configural

parameters)

Gives an ordering of the factor means without having to estimate

factor scores for each group/cluster

Allows factor variance variation across groups/clusters without

involving random slopes

Does not assume normally-distributed non-invariance

Two-level advantages:

Easy to handle a huge number of groups/clusters

Handles small group/cluster sizes

Easy to relate measurement non-invariance to variables on the

group/cluster level (Jak et al., 2013b)
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Fit of the Model in Each Group/Cluster:

How Important is Model Misfit?

Box & Draper (1987): ”essentially, all models are wrong, but some

are useful”.

Fixed mode: Alignment model fit same as configural model fit

Measurement invariance analysis is questionable if the configural

model does not fit in each group - and that is often the case

Fit judged by ML χ2 or Bayes Posterior Predictive Checking

Random mode: Two-level factor analysis does not automatically

judge fit in each cluster

What does Bayes contribute?
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The Several Uses of BSEM

Using zero-mean, small-variance priors for parameters not

identifiable in ML.

Single group analysis (2012 Psych Methods article):

Cross-loadings

Residual covariances

Direct effects in MIMIC

Multiple-group analysis:

Configural and scalar analysis with cross-loadings and/or residual

covariances

Approximate measurement invariance (Web Note 17)
BSEM-based alignment optimization (Web Note 18):

Residual covariances

Approximate measurement invariance
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Bayes and BSEM Alignment for Fixed Mode Analysis

What does Bayes contribute to assessing model fit?

1 Configural model: Bayes with informative, zero-mean,

small-variance priors for residual covariances can allow better

configural fit - configural misfit in some groups is a common

problem

2 Scalar model: Bayes with informative, zero-mean,
small-variance priors for measurement parameter differences
across groups (multiple-group BSEM) can allow better scalar fit

MG-BSEM as an alternative to alignment (finds non-invariance;

needs alignment unless non-invariant parameters are freed)

MG-BSEM-based alignment (advantageous for small samples?)

Further Bayes advantage: Bayes alignment can produce plausible

values for the subjects’ factor score values to be used in further

analyses
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BSEM Input for ESS Tradition-Conformity Items

Adding Residual Covariances

ANALYSIS: TYPE = MIXTURE;

ESTIMATOR = BAYES;

PROCESSORS = 2;

THIN = 10;

BITERATIONS = (1000);

ALIGNMENT = FIXED(4);

MODEL: %OVERALL%

traco BY ipmodst-ipbhprp;

ipmodst-ipbhprp (p# 1-p# 4);

ipmodst-ipbhprp WITH ipmodst-ipbhprp;

MODEL PRIORS: DO(1,26) p# 1∼iw(50,50);

DO(1,26) p# 2∼iw(50,50);

DO(1,26) p# 3∼iw(50,50);

DO(1,26) p# 4∼iw(50,50);
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ESS Tradition-Conformity Items: ML, Bayes and BSEM

Invariance Testing

ML scalar model:

χ2(202) = 8,654 (p=0.000), RMSEA = 0.148, CFI = 0.677

ML alignment - fit of configural model:

χ2(52) = 317 (p=0.000), RMSEA = 0.052, CFI = 0.990

Bayes Posterior Predictive Checking: 95% CIs for the difference
between observed and replicated χ2 values and Posterior
Predictive p-values:

Bayes Alignment - fit of configural model:

[194, 324], PPP=0.000

Bayes Alignment allowing for residual covariances (BSEM):

[-62, 99], PPP=0.458

For the last model, there are only a few significant residual

covariances.
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Approximate Measurement (Non-) Invariance for ESS Items

Intercepts

IPMODST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 (24) 25 26

IMPTRAD 1 (2) 3 (4) 5 6 7 8 9 10 11 12 (13) 14 15 16 17 18 19 (20) 21 22 23 24

25 26

IPFRULE 1 (2) 3 4 (5) 6 7 8 9 (10) 11 12 13 14 15 16 (17) (18) 19 (20) 21 22 23

24 (25) 26

IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Loadings

IPMODST 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IMPTRAD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IPFRULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IPBHPRP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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Factor Mean Comparison: ESS Tradition-Conformity Items

Factor mean comparison at the 5 % significance level in descending order

Ranking Group Value Groups with significantly smaller factor mean

1 23 1.827 26 7 5 8 16 1 12 19 22 14 20 15 9 25 17 2 13 24 4

2 21 1.228 22 14 20 15 9 25 17 2 13 24 4

3 18 1.217 16 1 22 14 20 15 9 25 17 2 13 24 4

4 10 1.178 5 16 1 12 22 14 20 15 9 25 17 2 13 24 4

5 6 1.172 16 1 22 14 20 15 9 25 17 2 13 24 4

6 3 1.123 22 14 20 15 9 25 17 2 13 24 4

7 11 1.118 22 14 20 15 9 25 17 2 13 24 4

8 26 1.030 22 14 20 15 9 25 17 2 13 24 4

9 7 0.955 20 15 9 25 17 2 13 24 4

10 5 0.913 14 20 15 9 25 17 2 13 24 4

11 8 0.900 14 20 15 9 25 17 2 13 24 4

12 16 0.868 20 15 9 25 17 2 13 24 4

13 1 0.855 20 15 25 17 2 13 24 4
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Factor Mean Comparison: ESS Tradition-Conformity Items,

Continued

Factor mean comparison at the 5 % significance level in descending order

Ranking Group Value Groups with significantly smaller factor mean

14 12 0.840 20 15 9 25 17 2 13 24 4

15 19 0.783 20 25 17 2 13 24 4

16 22 0.698 20 25 17 2 13 24 4

17 14 0.568 2 13 24 4

18 20 0.482 2 13 4

19 15 0.444 13 4

20 9 0.436 4

21 25 0.419 4

22 17 0.395 4

23 2 0.291 4

24 13 0.257 4

25 24 0.239 4

26 4 0.000
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Summary of ESS Tradition-Conformity Items Alignment

The configural model fits well only when using BSEM to allow

for a small degree of residual covariance

The residual covariances absorb the influence of minor factors,

the strength of which vary across countries, while the major

factor is sufficiently invariant

Most countries have negligible residual covariances

There are only 10 significant residual covariances and they are

small

Monte Carlo simulation of data generated by the model allowing
residual covariances, while ignored in the ML analysis, points to
the same non-invariance picture as seen in the initial real-data
analysis:

Residual covariances can be mistaken for non-invariance in

intercepts and loadings
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Sensitivity Analysis: How Much Difference Does it Make to

Allow BSEM Residual Covariances?
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How Does the Scalar Model Compare to BSEM Alignment?
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A Second Look at PISA Teacher-Student Relationship Items

using BSEM with Residual Covariances

Allowing residual covariances does not change the large degree

of non-invariance

The PISA teacher-student relationship items cannot be aligned in

a trustworthy way

Bengt Muthén Measurement Invariance 58/ 61

Summary

Multiple groups/clusters data can be represented by fixed or
random mode models

Having many groups/clusters does not preclude fixed-mode,

multiple-group analysis

Fixed mode modeling can explore the data using non-identified
models:

Alignment optimization

BSEM methods

Random mode modeling:

Conventional two-level factor analysis reveals some limited

forms of non-invariance (intercepts)

Random slope two-level factor analysis reveals more general

forms of non-invariance
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Summary, Continued

Fixed mode modeling using alignment optimization has many
advantages over random mode modeling:

Convenient, one-step analysis

Points to which groups/clusters contribute to non-invariance

Is not limited to just > 30 clusters, but works well with any

number of groups/clusters (say < 100, or say < 3,000 configural

parameters)

Gives an ordering of the factor means without having to estimate

factor scores for each group/cluster

Allows factor variance variation across groups/clusters without

involving random slopes

Does not assume normally-distributed non-invariance
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To Conclude

The big news: Alignment optimization

Does modeling with group-specific measurement intercepts,

measurement loadings, factor means, and factor variances

Aligns to minimal measurement non-invariance

Uses EFA-like tools to identify non-identified parameters

Is easy to do

The other news: The Alignment optimization companion technique -

Multiple-group BSEM

Bengt Muthén Measurement Invariance 61/ 61


