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Previously on DSEM at PSMG:
A Paradigm Shift (Hamaker 3/14/17)
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Intensive Longitudinal Data Collection (Hamaker 3/14/17)

Different forms of intensive longitudinal data (ILD):
daily diary (DD); self-report end-of-day

experience sampling method (ESM); self-report of subjective experience

ecological momentary assessment (EMA); healthcare related self-report

ambulatory assessment (AA); physiological measurements

event-based measurements; self-report after a particular event

observational measurements; expert rater

For more info on methodology, check out:
Seminar of Tamlin Conner and Joshua Smyth on YouTube
(https://www.youtube.com/watch?v=nQBBVp9vBIQ)

Society for Ambulatory Assessment (http://www.saa2009.org/)

Life Data (https://www.lifedatacorp.com/)

Quantified Self (http://quantifiedself.com/)
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Characteristics of ILD (Hamaker 3/14/17)

Data structure:
one or more measurements per day

typically for multiple days

sometimes multiple waves (i.e., Nesselroade’s measurement-burst design)

Advantages of ESM, EMA and AA
no recall bias

high ecological validity

physiological measures over a large time span

monitoring of symptoms and behavior, with new possibilities for feedback and
intervention (e-Health and m-Health)

window into the dynamics of processes
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Mplus Version 8:
Methods for Analyzing Intensive Longitudinal Data

Time series analysis (N = 1)

Two-level time series analysis (N > 1)

Random effects varying across subjects (subject is level 2, so
many more random effects than usual)

Cross-classified time series analysis

Random effects varying across subjects and time
Dynamic Structural Equation Modeling (DSEM)

General latent variable modeling
Bayesian estimation
Statistical background:

Asparouhov, Hamaker & Muthén (in preparation). Dynamic
structural equation models
Asparouhov, Hamaker & Muthén (2017). Dynamic latent class
analysis. Structural Equation Modeling, 24, 257-269

The Version 8 Mplus User’s Guide adds N=1 examples 6.23 - 6.28 and N > 1

examples 9.30 - 9.40, many with two parts (basic and advanced).
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Overview

Example: Smoking cessation (EMA)

Prelude 1: Brief overview of some familiar methods for longitudinal data

Why is regular growth modeling not sufficient for ILD?
Prelude 2: Bayesian analysis - a thumbnail sketch

Smoking data applications:

N = 1 time series analysis
Two-level time series analysis
Cross-classified time series analysis - looking for trends over time
Adding trend to two-level time series analysis
Cross-classified time series analysis with a trend

Time-varying effect modeling (TVEM) using cross-classified time series
analysis

Miscellaneous:

Latent variable models
Upcoming talks and workshops on DSEM
Non-time series news in Mplus version 8
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EMA Example: Smoking Urge Data

Shiffman smoking cessation data

N = 230, T ≈ 150: Random prompts from Personal Digital Assistant
(hand held PC) approx. 5 times per day for a month

Variables: Smoking urge (0-10 scale), negative affect (unhappy,
irritable, miserable, tense, discontent, frustrated-angry, sad), gender,
age, quit/relapse

Shiyko et al. (2012). Using the time-varying effect model (TVEM) to
examine dynamic associations between negative affect and self
confidence on smoking urges. Prevention Science, 13, 288-299

Bengt Muthén DSEM at PSMG: Part 2 7/ 90



Prelude 1: Methods for Longitudinal Data

Non-intensive longitudinal data:
T small (2 - 10) and N large
Modeling: Auto-regressive (cross-lagged) and growth modeling

Intensive longitudinal data:
T large (30-200) and N smallish (even N = 1) but can be 1,000.
Often T > N
Modeling: We shall see
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Common Methods for Non-Intensive Longitudinal Data
N large and T small (2 - 10):

(1) Auto-Regressive Modeling

y1 y2 y3 y4 y5

Cross-lagged modeling (e.g. y = urge, z = negative affect):

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5
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Recent References for Cross-Lagged Modeling

Extensions of the classic cross-lagged panel model:

Hamaker et al., Psych Methods 2015: The random intercepts
cross-lagged panel model

Curran et al., J of Consulting & Clinical Psych 2014: The
separation of between-person and within-person components
Berry and Willoughby, Child Development 2016: Rethinking the
cross-lagged panel model (growth model added)

Both models are fitted in Mplus
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Common Methods for Non-Intensive Longitudinal Data:
(2) Growth Modeling

y1 y2 y3 y4 y5
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Why Is Regular Growth Modeling Not Sufficient For ILD?

There are 2 problems:

1 Correlation between time points not fully explained by growth
factors alone due to closely spaced measurements -
autocorrelation needs to be added

2 Time series are too long due to slow computations
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Solving Problem 1. Add Residual (Auto) Correlation:
Growth Modeling In Single-Level, Wide Format Version

y as 5 columns in the data

y1 y2 y3 y4 y5

i

s

w

Within (level-1)
Variation across time

Between (level-2)
Variation across subject

Mplus User’s Guide ex6.17 - but cumbersome with large T.
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Solving Problem 2. Switch From Single-Level to Two-Level,
Long Format Version: y as 1 column in the data

time

w

i

s

s

y

i

Within (level-1)
Variation across time

Between (level-2)
Variation across subject

i = yb

Mplus User’s Guide ex9.16
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Growth Modeling In Two-Level, Long Format

time

w

i

s

s

y

i

Within (level-1)
Variation across time

Between (level-2)
Variation across subject

i = yb

VARIABLE: CLUSTER = subject;
WITHIN = time;
BETWEEN = w;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
MODEL: %WITHIN%

s | y ON time;
%BETWEEN%
y s ON w; ! y is the same as i
y WITH s;

But where is the autocorrelation? And how can it be made random?
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Solution: Two-Level Time Series Analysis With A Trend
Allowing Autocorrelation and Many Time points

time

w

i

s

s

y

i

Within

Between

time

y t

tt-1

t-1

Autoregression for the residuals instead?
Hamaker (2005). Conditions for the equivalence of the autoregressive latent
trajectory model and a latent growth curve model with autoregressive
disturbances. Sociological Methods & Research.
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Prelude 2: Bayesian Analysis - A Thumbnail Sketch

Bayesian advantages over ML

Convergence of Bayes iterations

Trace and autocorrelation plots

Speed of Bayes in Mplus

Bayes references
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Bayesian Analysis: Advantages over ML

Six key advantages of Bayesian analysis over frequentist analysis using
maximum likelihood estimation:

1 More can be learned about parameter estimates and model fit
2 Small-sample performance is better and large-sample theory is

not needed
3 Parameter priors can better reflect results of previous studies
4 Analyses are in some cases less computationally demanding, for

example, when maximum-likelihood requires high-dimensional
numerical integration

5 In cases where maximum-likelihood computations are too
computationally demanding, Bayes with non-informative priors
can be viewed as a computing algorithm that would give
essentially the same results as maximum-likelihood if
maximum-likelihood estimation were computationally feasible

6 New types of models can be analyzed where the
maximum-likelihood approach is impossible
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Why Are Bayesian Computations Possible
Where ML Computations Are Not?

The general modeling features of DSEM make ML almost impossible,
creating the need for Bayesian estimation.

An intuitive description of the computational difference between ML and
Bayes (with non-informative priors):

ML works with the joint distribution of all variables whereas Bayes
works with a series of conditional distributions

The joint distribution can be difficult to describe whereas the
conditional distributions can be easier

Bayes is sometimes the only feasible alternative when the joint
distribution is hard to formulate
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Figure : Prior, likelihood, and posterior for a parameter

Prior

Posterior

Likelihood

Priors:
Non-informative priors (diffuse priors): Large variance (default in
Mplus)

A large variance reflects large uncertainty in the parameter value.
As the prior variance increases, the Bayesian estimate gets closer
to the maximum-likelihood estimate

Weakly informative priors: Used for technical assistance
Informative priors:

Informative priors reflect prior beliefs in likely parameter values
These beliefs may come from substantive theory combined with
previous studies of similar populations
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Bayes’ Advantage Over ML: Informative Priors

Frequentists often object to Bayes using informative priors

But they already do use such priors in many cases in unrealistic ways
(e.g. factor loadings fixed exactly at zero)

Bayes can let informative priors reflect prior studies

Bayes can let informative priors identify models that are unidentified
by ML which is useful for model modification (BSEM)

The credibility interval for the posterior distribution is narrower with
informative priors
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Bayes Posterior Distribution Similar to ML Bootstrap
Distribution: Credibility versus Confidence Intervals
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Convergence: Trace Plot for Two MCMC Chains. PSR
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Potential scale reduction
criterion (Gelman &
Rubin, 1992):

PSR =

√
W +B

W
, (1)

where W represents the within-chain variation of a parameter and B
represents the between-chain variation of a parameter. A PSR value
close to 1 means that the between-chain variation is small relative to
the within-chain variation and is considered evidence of convergence.
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Convergence of the Bayes
Markov Chain Monte Carlo (MCMC) Algorithm

Figure : Premature stoppage of Bayes MCMC iterations using the Potential
Scale Reduction (PSR) criterion
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TECH8 Screen Printing of Bayes MCMC Iterations
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Trace and Autocorrelation Plots Indicating Poor Mixing
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Speed Of Bayes In Mplus

Wang & Preacher (2014). Moderated mediation analysis using Bayesian
methods. Structural Equation Modeling.

Comparison of ML (with bootstrap) and Bayes: Similar statistical
performance

Comparison of Bayes using BUGS versus Mplus: Mplus is 15 times
faster

Reason for Bayes being faster in Mplus:

Mplus uses Fortran (fastest computational environment)
Mplus uses parallel computing so each chain is computed
separately
Mplus uses the largest updating blocks possible - complicated to
program but gives the best mixing quality
Mplus uses sufficient statistics when possible

Mplus Bayes considerably easier to use
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Nevertheless - It’s Going To Be Slower Than Usual:
Timings For The Runs In This Talk

Using smoking data with N = 230, T ≈ 150

N=1 analysis of subject 227: 0 seconds

First two-level analysis: 2:37

Two-level regression analysis: 3:06

Cross-classified analysis: 19:36

Two-level trend analysis: 4:01

Cross-classified trend analysis: 33:11

Bengts PC as of June 2012: Dell XPS 8500, i7-3770 with 8 processors, CPU
of 3.40 GHz, 12 GB RAM, 64-bit.
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Bayes References

Gelman et al. (2014). Bayesian Data Analysis, 3rd edition

Lynch (2010). Introduction to Applied Bayesian Statistics and
Estimation for Social Scientists

Bayes technical reports on the Mplus website: See
www.statmodel.com under Papers, Bayesian Analysis

Muthén (2010). Bayesian analysis in Mplus: A brief introduction.
Technical Report. www.statmodel.com

Chapter 9 of Muthén, Muthén & Asparouhov (2016). Regression and
Mediation Analysis using Mplus
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N = 1 Time Series Analysis

Shiffman smoking cessation data

N = 230, T ≈ 150: Random prompts from Personal Digital Assistant
(hand held PC) approx. 5 times per day for a month

Variables: Smoking urge (1-11 scale), negative affect (unhappy,
irritable, miserable, tense, discontent, frustrated-angry, sad), gender,
age, quit/relapse

Replicated time series analysis of N = 1 is possible using the R package
MplusAutomation by Hallquist (Schultzberg; Uppsala University Statistics
Department).
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N = 1 Time Series Analysis Of Subjects 227 And 5

Smoking urge plotted against time for subject 227 (didn’t quit)
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Smoking urge plotted against time for subject 5 (did quit)
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N = 1 Time Series Analysis Of Subjects 227 And 5

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

urge ON
urge&1 0.112 0.068 0.060 -0.027 0.240
negaff 1.196 0.178 0.000 0.810 1.542 *

Intercepts
urge 4.882 0.494 0.000 3.899 5.865 *

Residual Variances
urge 5.719 0.635 0.000 4.646 7.070 *

Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

urge ON
urge&1 0.822 0.050 0.000 0.723 0.918 *
negaff -0.257 0.408 0.272 -1.087 0.516

Intercepts
urge 0.517 0.377 0.074 -0.247 1.230

Residual Variances
urge 2.007 0.272 0.000 1.566 2.617 *
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Time Interval (TINTERVAL option)

Used to create a new time variable and insert missing data records
when data are misaligned with respect to time:

due to missed measurement occasions that are not assigned a
missing value flag
due to random measurement occasions

For more details, technical discussion and simulations, see Asparouhov,
Hamaker, Muthén (2017) in preparation.
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N = 1 Time Series Analysis Using Tinterval= timeqd(0.08)

Subject 5 (did quit): Tinterval results in missing data records inserted to
resolve different time distances between measurements
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Posterior One-Tailed 95% C.I.
Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance

Subject 5 without Tinterval
urge ON
urge&1 0.822 0.050 0.000 0.723 0.918 *
negaff -0.257 0.408 0.272 -1.087 0.516

Subject 5 with Tinterval
urge ON
urge&1 0.844 0.037 0.000 0.772 0.917 *
negaff -0.158 0.382 0.328 -0.930 0.577
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Mplus Input For Subject 5 Time Series Regression

TITLE: Shiffman smoking urge data N = 1 model for subject 5 (quit=1)
DATA: FILE = combined relapsers quitters 03-17-17.csv;
VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd

gender age quit;
! quit = 1 for quitters, 0 for relapsers
USEVARIABLES = urge negaff;
LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);
USEOBSERVATIONS = subject EQ 5;
IDVARIABLE = recnum;

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);

MODEL: urge ON urge&1 negaff;
negaff;

OUTPUT: TECH1 TECH8 STANDARDIZED TECH4 RESIDUAL;
PLOT: TYPE = PLOT3;
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Two-Level Time Series Analysis

Analysis of all N = 230 smoking data subjects, allowing for parameter
variation across subjects
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Univariate Analysis of Smoking Urge Data:
Two-Level Time Series Model

urge urge

Within

Between

female

age

urge

logv

phi

logv

phi

t-1 t

quit
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Mplus Input for Two-Level Time Series Model

VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd
gender age quit;
!quit = 1 for quitters, 0 for relapsers
USEVARIABLES = urge quit age female;
CLUSTER = subject;
BETWEEN = female age quit;
CATEGORICAL = quit;
LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);
IDVARIABLE = recnum;

DEFINE: female = gender - 1;
age = (age-44.3)/10.1;

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);
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Input Continued

MODEL: %WITHIN%
phi | urge ON urge&1;
logv | urge;
%BETWEEN%
urge phi logv ON female age;
urge phi logv WITH urge phi logv;
quit ON urge phi logv female age;

OUTPUT: TECH1 TECH8 FSCOMPARISON STANDARDIZED
TECH4 RESIDUAL;

PLOT: TYPE = PLOT3;
FACTORS = ALL;
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Results for Univariate Analysis of Smoking Urge Data:
Two-Level Time Series Model - Between Part

female

age

urge

logv

phi quit
+

_

+

_

_

Random effects regressed on female:

females have lower autocorrelation (the other way around for NA)
females have higher residual variance

Quit (binary) regressed on random effects:

higher urge gives lower quit probability
higher autocorrelation gives higher quit probability
higher residual variance gives lower quit probability

Bengt Muthén DSEM at PSMG: Part 2 40/ 90



Results for Univariate Analysis of Smoking Urge Data:
Two-Level Time Series Model - Between Part

female

age

urge

logv

phi quit
+

_

+

_

_

Indirect effects need counterfactual definition due to the binary quit
variable (counterfactually-defined causal effects on the between level)

For references, see the Mplus Mediation web page
http://www.statmodel.com/Mediation.shtml
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How Big Does N and T Need to Be?
Quality of Estimation and Power to Detect Effects

Simulation study (Schultzberg; Uppsala University Statistics
Department): presentation at Mplus User’s Meeting and at IMPS

Different needs for different relations - random effects as
predictors hardest
For certain models satisfactory results can be obtained also for
short time series such as T = 10 (or even 5)

Bayes versus ML for short time series? Paul Allison on dynamic
panel data modeling using ML; better than econometric AB
estimation
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Technical Interlude On How To Draw Model Diagrams
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Regression Analysis of Smoking Urge Data:
Two-Level Time Series Model
Adding Negative Affect (na)

na na

Within

t-1 t

urge urgephi

logv

t-1 t

syx
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Mplus Input for Two-Level Regression Analysis

VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd
gender age quit;
!quit = 1 for quitters, 0 for relapsers
USEVARIABLES = urge negaff age female;
CLUSTER = subject;
BETWEEN = female age;
WITHIN = negaff;
LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);

DEFINE: female = gender - 1;
age = (age-44.3)/10.1;
CENTER negaff(GROUPMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);
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Mplus Input for Two-Level Regression Analysis, Cont’d

MODEL: %WITHIN%
phi | urge ON urge&1;
logv | urge;
syx | urge ON negaff;
negaff;
%BETWEEN%
urge phi logv syx ON female age;
urge phi logv syx WITH urge phi logv syx;

OUTPUT: TECH1 TECH8 FSCOMPARISON STANDARDIZED
TECH4 RESIDUAL;

PLOT: TYPE = PLOT3;
FACTORS = ALL;
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Technical Interlude
On Where The Autocorrelation Should Be Applied

na na

Within

t-1 t

urge urgephi

logv

t-1 t

syx

na na

Within

t-1 t

urge urget-1 t

syx

residphi

Bengt Muthén DSEM at PSMG: Part 2 47/ 90



Mplus Input for AR(1) for the Residuals

VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd
gender age quit;
!quit = 1 for quitters, 0 for relapsers
USEVARIABLES = urge negaff age female;
CLUSTER = subject;
BETWEEN = female age;
WITHIN = negaff;
! LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);

DEFINE: female = gender - 1;
age = (age-44.3)/10.1;
CENTER negaff(GROUPMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (10000);
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Mplus Input Continued

MODEL: %WITHIN%
! define the residual as a factor:
resid BY urge (&1);
phi | resid ON resid&1;
urge@0.1;
logv | resid;
syx | urge ON negaff;
negaff;
%BETWEEN%
urge phi logv syx ON female age;
urge phi logv syx WITH urge phi logv syx;

OUTPUT: TECH1 TECH8 FSCOMPARISON STANDARDIZED TECH4
RESIDUAL;

PLOT: TYPE = PLOT3;
FACTORS = ALL;
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Cross-Classified Time Series Analysis

Cross-classified analysis uses two between-level cluster variables:
subject crossed with time (one observation for a given subject at a
given time point). N > 1

The cross-classified model is a generalization of the two-level model
and provides more flexibility in that random effects can vary across
not only subject but also time. The Bayes MCMC algorithm is more
complex and considerably slower.

Consider the two-level model with a random intercept/mean:

yit = α +αi +β yw,it−1 + residual. (2)

The corresponding cross-classified model is:

yit = α +αi +αt +β yw,it−1 + residual. (3)

Bengt Muthén DSEM at PSMG: Part 2 50/ 90



Regression Analysis of Smoking Urge Data:
Cross-Classified Time Series Model

Adding Variation Across Time

urge urge

Within

female

age

urge

t-1 t

nat-1 na t

Between Subject

syx

Between Time

syx

syx

urge

quit
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Mplus Input for Cross-Classified Regression Analysis

VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd
gender age quit;
!quit = 1 for quitters, 0 for relapsers
USEVARIABLES = urge quit negaff age female;
CLUSTER = subject timeqd;
BETWEEN = (subject) female age quit;
CATEGORICAL = quit;
WITHIN = negaff;
LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);

DEFINE: female = gender - 1;
age = (age-44.3)/10.1;
CENTER negaff(GROUPMEAN SUBJECT);

ANALYSIS: TYPE = CROSS RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);
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Mplus Input for Cross-Classified Regression Analysis, Cont’d

MODEL: %WITHIN%
urge ON urge&1;
syx | urge ON negaff;
negaff;
%BETWEEN subject%
urge syx ON female age;
urge WITH syx;
quit ON urge syx female age;
%BETWEEN timeqd%
urge WITH syx;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT3;

FACTORS = ALL;

Run time: 19:36. Using fixed syx slope takes only 2 minutes.
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Regression Analysis of Smoking Urge Data:
Cross-Classified Time Series Model

Urge Factor Score Plotted Against Time for All Subjects
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Regression Analysis of Smoking Urge Data:
Cross-Classified Time Series Model

Urge on Na Slope (syx) Factor Score Plotted Against Time
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Cross-Classified Analysis:
a Quick Way to Spot a Trend in a Variable

Does negative affect show a trend? Run time is only 1:22 for fixed AR(1):

MODEL: %WITHIN%
negaff ON negaff&1;
%BETWEEN subject%
negaff;
%BETWEEN timeqd%
negaff;

Mean negaff factor score plotted against time:
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Modeling the Trend: Recall How Growth Modeling
Can Be Transformed From Wide To Long

y1 y2 y3 y4 y5

i

s

w

Within (level-1)
Variation across time

Between (level-2)
Variation across individual
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Growth Modeling: Two-Level, Long Format Version

Within (level-1)
Variation across time

Between (level-2)
Variation across individual

time

y

w

i

i

s

s
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Two-Level Time Series Analysis of Smoking Urge data
Adding a Trend for Urge.

- Growth Analysis with a Time-Varying Covariate

urge urge

Within

t-1 t

nat-1 timet-1 na t timet

ssyx

Interpretation of s not the usual one; direct effect at each time
An alternative formulation places the autoregression on the
residuals (Hamaker, 2005; SM&R), resulting in the usual s
interpretation
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Mplus Input For Two-Level Trend Analysis

VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd
gender age quit;
USEVARIABLES = urge quit negaff age female time;
CLUSTER = subject;
BETWEEN = female age quit;
CATEGORICAL = quit;
WITHIN = time negaff;
LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);

DEFINE: female = gender - 1;
age = (age-44.3)/10.1;
time = (timeqd/10-10.49)/6.14;
CENTER negaff(GROUPMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);
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Mplus Input For Two-Level Trend Analysis, Cont’d

MODEL: %WITHIN%
phi | urge ON urge&1;
syx | urge ON negaff;
logv | urge;
s | urge ON time;
negaff; time;
%BETWEEN%
urge syx s phi logv ON female age;
urge syx s phi logv WITH urge syx s phi logv;
quit ON urge syx s phi logv female age;

OUTPUT: TECH1 TECH8 FSCOMPARISON STANDARDIZED TECH4
RESIDUAL;

PLOT: TYPE = PLOT3;
FACTORS = ALL;

Run time: 4:19
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Results for Two-Level Regression Analysis
of Smoking Urge Data: Adding a Trend for Urge.
- Growth Analysis with a Time-Varying Covariate

female

age

urge

logv

phi
quit

+

_

+
_

_

s

syx

Between

_
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Cross-Classified Regression Analysis of Smoking Urge Data:
Adding a Trend for Urge and the Regression Slope

Cross-Classified Growth Analysis
With a Time-Varying Covariate

Between Subject

syxtimet

Between Time

female

age

urge

s

syx
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Mplus Input for Cross-Classified Regression Analysis
with a Trend

VARIABLE: NAMES = subject t day urge craving negaff arousal timeqd
gender age quit;
! quit = 1 for quitters, 0 for relapsers
USEVARIABLES = urge quit negaff age female time timet;
CLUSTER = subject timeqd;
BETWEEN = (subject) female age quit (timeqd) timet;
CATEGORICAL = quit;
WITHIN = negaff time;
LAGGED = urge(1);
MISSING = ALL(999);
TINTERVAL = timeqd(0.08);

DEFINE: female = gender - 1;
age = (age-44.3)/10.1;
time = (timeqd/10-10.49)/6.14;
timet = time;

ANALYSIS: TYPE = CROSS RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (1000);
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Input Continued

MODEL: %WITHIN%
urge ON urge&1;
syx | urge ON negaff;
s | urge ON time;
negaff;
time;
%BETWEEN subject%
urge syx s ON female age;
urge syx s WITH urge syx s;
quit ON urge syx s female age;
%BETWEEN timeqd%
syx ON timet;
urge WITH syx;
s@0;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT3;

FACTORS = ALL;
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Time-Varying Effect Modeling (TVEM)
Compared To Cross-Classified DSEM

For individual i at the jth observation,

yij = β0(tij)+β1(tij) xij + εij,

where β0(tij) and β1(tij) are continuous functions of time using
P-spline-based methods and varying the number of knots (Hastie &
Tibshirani, 1990).

Based on the varying coefficient model of Hastie & Tibshirani (1993)
in Journal of the Royal Statistical Society, Series B.
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TVEM Example: Smoking Cessation Study

Shiyko et al. (2012). Using the time-varying effect model
(TVEM) to examine dynamic associations between negative
affect and self confidence on smoking urges. Prevention Science,
13, 288-299

Recall our two-level time series findings for these data:

female

age

urge

logv

phi
quit

+

_

+
_

_

s

syx

Between

_
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Shiyko et al. (2012) TVEM Results
for the Smoking Urge Intercept
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Shiyko et al. (2012) TVEM Results for the Slopes:
Negative Affect and Confidence as Smoking Urge Predictors
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Advantages of DSEM over TVEM

TVEM: Time-varying effect model
Regression analysis with time-varying coefficients using splines

DSEM:
Richer set of models: Multivariate, latent variables,
auto-regression, variance modeling
Predictors and distal outcomes of subject- and time-varying
parameters (e.g. female→ phi/logv→ quit)
Functional form informed by the data: Estimated by random
effect scores as shown below for smoking urge
Growth trend easily added
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Time Series Analysis with Latent Variables:
Latent Variables on the Within Level

So far we have focused on latent variables on the between level
in the form of random effects

Although on Within we have used the latent variable within-level
decomposition of the outcome, centering by ybi:

ywit = yit− ybi

Now we introduce within-level factors:
Factors defined by single indicators with measurement error
Residual factors in ARMA(1,1)
Factors defined by multiple indicators
Two-level and Cross-classified analysis

Categorical latent variables (version 8.1, although an SEM
article is already online; Asparouhov, Hamaker, Muthén, 2017):

Transition modeling (Hidden Markov, regime switching,
time-series LTA) with latent class variables
Growth mixture modeling
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Single-Indicator Measurement Error Model
versus ARMA(1,1): Measurement Error Model

yt-1 yt

ft-1 ft

y s

Within

Between

TITLE: this is an example of a two-level
time series analysis with a first-
order autoregressive AR(1) factor
analysis model for a single
continuous indicator and
measurement error

DATA: FILE = ex9.33.dat;
VARIABLE: NAMES = y subject;

CLUSTER = subject;
ANALYSIS: TYPE = TWOLEVEL RANDOM;

ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (5000);

MODEL: %WITHIN%
f BY y@1(&1);
s | f ON f&1;
%BETWEEN%
y WITH s;

OUTPUT: TECH1 TECH8;
PLOT: TYPE = PLOT3;
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ARMA(1,1)

yt-1 yt

et-1 et

y s

Within

Between

MODEL: %WITHIN%
s | y ON y&1;
e BY y@1 (&1);
y@.01;
y ON e&1;

AR stands for autoregressive and MA stands for moving average (Shumway &
Stoffer, 2011)
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Thoughts on Measurement Error versus ARMA(1,1)

Granger and Morris (1976) and Schuurman et al. (2015) show that for N = 1
time series analysis, ARMA (1, 1) is an alternative representation of the data
used in the measurement error model; formulas show translation of parameters

In the Mplus implementation the measurement error formulation
converges more smoothly than ARMA(1,1)
The N = 1 versions of these models require a large T, say T > 100
Preliminary simulations indicate that the N > 1 versions have
good performance at T = 50, reasonable performance at T = 25,
and maybe acceptable performance at T = 14: Suitable for daily
diary designs

AR models assume exponential decays in autocorrelation - the measurement
error model allows a slower, more realistic decay (Asparouhov, 2017)

A preliminary observation: it appears to be difficult to add random variance to
the factor in the measurement error model

Research questions: How does performance compare to having multiple
indicators (e.g. 10 NA items)? Is random variance easier there?
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Two-Level Factor Analysis: UG ex9.34

 

DAFS (direct autoregressive factor score) versus WNFS (white noise factor
score) modeling

N = 1 factor analysis: Engle & Watson (1981) in JASA, Molenaar (1985) in
Psychometrika
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Cross-Classified Factor Analysis: UG ex9.40

ft-1 ft

Within

Between 
subject

y1

Between 
time

t

fsubj

y1 y2 y3

ftime

y2 y3t t

y1 y2 y3

Bengt Muthén DSEM at PSMG: Part 2 76/ 90



Two Consequences of Two-Level and Cross-Classified
Factor Analysis: (1) Allowing Measurement
Non-Invariance Across Subjects and Time

For a certain item measured for individual i at time t, two-level factor analysis (see,
e.g., Muthén, 1994) considers

yit = ν +λb fbi + εbi +λw fwit + εwit. (4)

This can be re-expressed as

Level 1 : yit = νi +λw fwit + εwit, (5)

Level 2 : νi = ν +λb fbi + εbi, (6)

which is a random intercept model, that is, there is measurement non-invariance
across subjects wrt the intercepts (Muthén & Asparouhov, 2017). Measurement
non-invariance of intercepts across time and due to random loadings can also be
studied using cross-classified analysis (Asparouhov & Muthén, 2015; Fox, 2010).
For random loadings varying across subjects, see the V8 User’s Guide ex9.40 part2.

IRT often considers the special case of measurement invariance with equal loadings
across levels, λb = λw, and zero between-level residuals which can be expressed as

Level 1 : yit = ν +λ fit + εwit, (7)

Level 2 : fit = fbi + fwit. (8)
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Two Consequences of Two-Level and Cross-Classified
Factor Analysis: (2) Subject-Specific Reliability

The two-level and cross-classified factor analysis models imply

Measurement intercept and loadings possibly varying across
subject and time
Factor variances and residual variances varying across subject
and time

This implies that reliabilities of test scores (based on a set of items) vary across
subject and time

Hu, Nesselroade et al. (2016). Test reliability at the individual
level. Structural Equation Modeling.

But why not instead look at the precision with which the factor scores can be
estimated?

Mplus Version 8 Monte Carlo simulations give correlations
between true scores and estimated scores
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A Second Example
A Closer Look at Negative Affect: Item Factor Analysis

Data from the older cohort of the Notre Dame Study of Health &
Well-being (Bergeman): N = 270, T=56 (daily measures on
consecutive days)

Wang, Hamaker, Bergeman (2012). Investigating inter-individual
differences in short-term intra-individual variability. Psychological
Methods

Predictors and distal outcomes of negative affect development over the
56 days

10 NA items (5-cat scale): afraid, ashamed, guilty, hostile, scared,
upset, irritable, jittery, nervous, distressed (average score used in
article)

Question format: Today I felt... (1 = Not at all, ..., 5 = Extremely)
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Negative Affect Distributions of NA in Bergeman Data

Average score (55% at floor value of 1 - Not at all for all 10 items):
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Ordered Categorical Item Modeling:
Proportional Odds Model (Graded Response Model)

y*

y

Despite non-normal y, we can have normality of:
The latent response variable y*
Any factors in the model
The between-level random effects
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Mplus Input for Cross-Classified Factor Analysis
with One Factor for 10 Ordinal NA Items

TITLE: Bergeman twolevel
DATA: FILE = bergeman.csv;
VARIABLE: NAMES = subject gender age hosp1 chrhlth1 Somhlth1 slfhlth1

psqi neo day afraid1 unhappy1 annoyd1 ashmd1 guilty1 an-
gry1 sad1 hostile1 scared1 upset1 irrtbl1 deprsd1 jttry1 drowsy1
slugish1 worrid1 nervs1 lonely1 fatiged1 distrsd1 nPANAS1;
USEVARIABLES = afraid1 scared1 nervs1 jttry1 guilty1
ashmd1 irrtbl1 hostile1 upset1 distrsd1;
CATEGORICAL = afraid1-distrsd1;
CLUSTER = subject day;
MISSING = all(999);
TINTERVAL = day(1);

ANALYSIS: TYPE = CROSSCLASSIFIED RANDOM;
ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (5000);
THIN = 10;
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Mplus Input for Cross-Classified Factor Analysis Continued

MODEL: %WITHIN%
na w BY afraid1-distrsd1* (&1 1-10);
na w ON na w&1;
%BETWEEN SUBJECT%
na subj BY afraid1-distrsd1* (1-10);
na subj@1;
%BETWEEN DAY%
na time BY afraid1-distrsd1* (1-10);

OUTPUT: TECH1 TECH8 STDY STDYX TECH4 RESIDUAL
FSCOMPARISON;

PLOT: TYPE = PLOT3;
FACTORS = ALL;

Run time: 54 minutes (dichotomized: 34 minutes)
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Results of Cross-Classified Factor Analysis
with One Factor for 10 Ordinal NA Items

SD(na w) = 0.81
SD(na subject) = 1.00
SD(na time) = 0.11

The factor score plot for the na time factor (on the between day level)
shows a drop of 40% of the total factor SD over the 56 days:
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Posterior Distributions for the Factor Scores
on Within, Between Subject, and Between Time
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Further Topics to be Covered in Our Workshops

How to use plots

Why centering using latent variable decomposition into Within and
Between avoids biases

Why DIC has issues of non-comparability across certain models

How standardization with random slopes and variances is done

How to handle subjects

with no change over time (no within-subject variation); AR(1)=0
with AR(1) ≈ 1
with spikes (a few high values surrounded by mostly low, flat
values) - two-part modeling, mixture modeling?
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Upcoming Workshops and Talks on DSEM

April 14: 1-day workshop at Utrecht University by Ellen Hamaker

April 20: American Statistical Association Mental Health section
webinar by us 3

June 5-9: 5-day workshop at ICPSR (Univ of Michigan) by Bolger &
Laurenceau

June 29-30: Workshop on power at Penn State by Bolger & Laurenceau

July 13: 1-day short course at Utrecht University by us 3

July 14: 1-day Mplus Users’ Meeting at Utrecht University

July 17: 1-day pre-conference workshop at the International Meeting
of the Psychometric Society in Zurich by us 3

August 17-18: 2-day short course at Johns Hopkins University
(preceded by a 1-day course on the RMA book) by us 3
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Non-Time Series News in Mplus Version 8

two-level modeling with random variances (UG ex 9.28, 9.29)

two-level random autocorrelation modeling for short longitudinal data

standardization for two-level models with random slopes and random
variances

random slopes for covariates with missing data

new within/between scatter plots and histograms for two-level models,
including sample and model-estimated cluster-specific means and
variances

new Posterior Predictive P-values for BSEM (Hoijtink & van de
Schoot, 2017)

output in HTML format
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