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Muth6n (1984) formulated a general model and estimation procedure for structural equation 
modeling with a mixture of dichotomous, ordered categorical, and continuous measures of 
latent variables. A general three-stage procedure was developed to obtain estimates, standard 
errors, and a chi-square measure of fit for a given structural model. While the last step uses 
generalized least-squares estimation to fit a structural model, the first two steps involve the 
computation of the statistics used in this model fitting. A key component in the procedure was 
the development of a GLS weight matrix corresponding to the asymptotic covariance matrix of 
the sample statistics computed in the first two stages. This paper extends the description of the 
asymptotics involved and shows how the Muth6n formulas can be derived. The emphasis is 
placed on showing the asymptotic normality of the estimates obtained in the first and second 
stage and the validity of the weight matrix used in the GLS estimation of the third stage. 
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1. Introduction 

Drawing on work  in Muth6n (1978, 1979, 1983) and Muth6n and Christoffersson 
(1981), Muth6n (1984) formulated a general model and estimation procedure for struc- 
tural equation modeling with a mixture of dichotomous,  ordered categorical, and con- 
tinuous measures of  latent variables. The model and its estimation also included mul- 
tiple-group analysis with mean, intercept, and threshold structures. This approach was 
implemented in the computer  program LISCOMP (Muth6n, 1987). L ISCOMP also 
included extensions for nonnormal continuous and censored variables subsequently 
published as Muth6n (1989a, 1989b, 1990). For  an overview with applications, see 
Muth6n (1989c). An important contribution of Muth6n (1984) was the development of 
a general three-stage procedure to obtain estimates, standard errors, and a chi-square 
measure of fit for a given structural model. While the last step uses generalized least- 
squares estimation to fit a structural model, the first two steps involve the computation 
of the statistics used in this model fitting. A key component  in the procedure was the 
development of a weight matrix corresponding to the asymptotic covariance matrix of 
the statistics computed in the first two stages. 

Since the publication of  Muth6n (1984), several authors have written papers using 
closely related modeling and estimation procedures:  the conceptual and computational 
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developments by Arminger and his students and colleagues, Kiisters (1987, 1990), 
Arminger and Ki~sters (1988, I989), Schepers (1991), Schepers, Arminger, and Kt~sters 
(1992), Sobel and Arminger (1992); the alternative two-stage and weight matrix estima- 
tors for special cases by J6reskog (1985, 1991), Jrreskog and S~rbom (1988, 1989), 
Bermann (1993); and the variations on the general theme by Lee and colleagues, Lee 
(1985), Lee and Poon (1986, 1987), Lee, Poon, and Bentler (1989, 1990a, 1990b, 1992), 
Poon and Lee (1987, 1988, 1992). The claims made in Muthrn (1984) about the asymp- 
totic behavior of the estimator have been questioned by Lee (February 4, 1988, per- 
sonal communication) and by Lee, Poon, and Bentler (September 20, 1991, personal 
communication), see also Lee, Poon, and Bentler (1992, p. 91, p. 102). The technical 
aspects of the estimation procedure were only briefly described in Muth~n (1984). The 
aim of the present paper is to extend this description so that it is clear that the claims 
were correct and can be proven. The emphasis will be placed on showing the asymp- 
totic normality of the statistics vector and the asymptotic validity of the Muthrn (1984) 
form of the weight matrix. In order to give concreteness to the formulas, they will be 
explicated in terms of  a specific model that is easy to understand, but still shows the 
general issues. For simplicity, the notation will be kept in line with that of Muth~n 
(1984), referred to as M hereafter. 

2. The General Model 

For background material to M's approach, the interested reader is referred not 
only to the 1984 article but also to the overview given in Muthrn (1983) and references 
therein. Briefly stated, the general model of M specifies the measurement structure for 
a p-dimensional latent response variable vector y*, 

y* = v + At/ + e, (1) 

where v is a p-dimensional parameter vector of intercepts, A is a p × m matrix of 
loading parameters, ~ is an m-dimensional vector of latent variables, and e is a 
p-dimensional vector of measurement errors. A set of linear structural relations are 
specified for the m-dimensional latent variable vector ~ regressed on a q-dimensional 
observed variable vector x, 

7/= a + B r / +  I x +  ~, (2) 

where a is an m-dimensional vector of intercept parameters, B is an rn x m matrix of 
regression slope parameters, F is an m x q matrix of regression slopes, and ~ is an 
m-dimensional vector of residuals. With conventional assumptions 

E(y*lx)  = *rl + IIzx (3) 

V(y*lx)  = fL (4) 

where 

Irl = v + A ( I -  B)-~a  (5) 

H2 = A(I - B)-1F (6) 

~q = A ( I  - B ) - 1 W ( I  - B ' ) - t A '  + O .  (7)  

This presentation of the model used in M and in LISCOMP ignores the generality of 
using multiple groups, including mean, intercept and threshold structures, and using the 
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scaling matrix A, representing the standard deviations of the y*'s;  for an exhaustive 
presentation, see M and Muth6n (1987). 

The y* variables of (1) are assumed to be normally distributed conditional on the 
x's  and can be measured as dichotomous, ordered categorical or continuous variables. 
In work published after M, censored variables were also added to this framework (see 
Muth6n, 1987; 1989a, 1989b; and references therein). 

3. An Example: A Structural Probit Model 

Here, we will consider the case of binary measurements of  y* for a specific struc- 
tural model. Consider the structural model for the single latent variable r/regressed on 
the q-dimensional x variable 

n = ~ 'x + ~, (8) 

with the measurement specification for the p latent response variables y*, 

y * = A T / + e ,  (9) 

where A is a p-dimensional vector of loadings. Here, each y* variable is measured by 
a binary indicator Yi, introducing the threshold parameter ri, 

1, if y*>- ~'i 

Yi=  O, o t h e r w i s e .  (10) 

In this example, we may standardize to v -- 0 and a = 0 so that in (5) through (7), ~r t 
vanishes, 

H2 = AT' (11) 

12 = Xq/X' + O. (12) 

Here, ~ is the variance of the residual ~ and @ is a covariance matrix for the measure- 
ment errors of  e, assumed to be diagonal. Since y* is a latent response variable, the 
variances on the diagonal of 12 are standardized to unity and ® does therefore not 
introduce any parameters into the structural model. The structural parameters are: r (a 
p-dimensional vector of thresholds), A (a p-dimensional vector), ~b, and y (a q-dimen- 
sional vector). 

Given the normality assumption, this formulation gives the structural probit re- 
gression model introduced by Muthrn (1979), so that for respondent r 's observation on 
the i-th y variable and on x, the univariate conditional probability of Yri = 1 is 

Prob (Yri = llxr) = q~(Y*i; [I'I2xr]i, [12]ii) dy*ri, (13) 
i 

where ~b is a univariate normal density and, in line with probit regression, the residual 
variance [12] ii is standardized to unity. This may be rewritten as 

Prob (Yri = 1]xr) = ~ l{ -~ ' i  + [I'[2Xr]i}, (14) 

where dP 1 is the standardized univariate normal distribution function. Similarly, we may 
consider the bivariate conditional probability for variables Yi and yj 

Prob (Yri = 1, Yrj = llXr) = ~2{(--Zi + [H2xr]i), ( - r j  + [H2xr]j),  [12]U}, (15) 
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where ~2 is the standardized bivariate normal distribution function and [O]i j  is a 
residual correlation. 

This example may be used to define the quantities involved in the estimation of  the 
model. With ~- denoting the p-dimensional vector of threshold parameters, define the 
p-dimensional population vector 

0-1 = ~', (16) 

the ( p q  × 1)-dimensional vector 

0"  2 = vec {H2}, (17) 

and the p ( p  - 1)/2-dimensional vector 

0-3 = v e c *  {~}, (18) 

where vec* selects the lower-triangular elements of fL We define 0- = (0-i, o-~, 0-i)'. Let 
s l ,  s2, s3 be vectors of sample statistics corresponding to estimates of these 0-'s and 
let s = (s'l, s ~, s ~)' be the estimate 6- of 0-. 

4. First and Second Stage Estimation in M: Asymptotic Distribution 
of  the Sample Statistics 

Section 3.2 of M discussed the asymptotic covariance matrix of  the estimate & of 
tr obtained from the first and second stages of estimation; that is, the quantities used as 
the sample statistics in the third stage. This provided the weight matrix for M's gen- 
eralized least-squares (GLS) estimation of structural parameters in the third and final 
estimation step, The discussion in M will be expanded in this section, clarifying the 
asymptotics underlying the results. Although the probit example will be continued 
throughout, giving concreteness to the developments, the results are generally appli- 
cable to the dichotomous, ordered categorical, censored, and unlimited continuous y 
variables considered in the LISCOMP framework. 

For M's GLS estimator to be correct, the key points are that the asymptotic 
distribution of  & is multivariate normal with mean 0- and that the weight matrix of  M is 
a consistent estimate of  the asymptotic covariance matrix of &. Kfisters (1987, 1990) has 
given an elaborate proof of the consistency and asymptotic normality of b and gives an 
asymptotic covariance matrix closely related to M's. Here, a somewhat different and 
simpler approach will be taken to show consistency and asymptotic normality and to 
arrive at the covariance matrix in M. 

In M's first stage estimation, the elements of 0-1 (thresholds or intercepts) and 0-2 
(regression coefficients) are estimated as s l and s2 respectively via separate maximum- 
likelihood estimation of each of  the p univariate ordered multinomial probit regressions 
of the y ' s  on x. For each variable Y i ,  i = 1, 2 ,  . . .  , p ,  the corresponding ML estimates 
$ l,i and s2, i  of 0-1,i and o-2,i, respectively, are obtained. The estimates s 1 ,i and $2. i are 
assembled into vectors s 1 and s2 respectively. The values Yir'S a r e  taken to be inde- 
pendent for a given sequence of the values Xr 'S ,  hence the conditional (log) likelihood 
function ei = e i ( c q , i ,  0-2,ilXl . . . .  , x n) of the multinomial ordinal probit regression 
with response variable Yi decomposes as the sum ei = y rn=l e[  of the individual 
univariate conditional likelihood functions. See for example Maddala (1983) where the 
expressions of the above likelihoods, and first and second derivatives, are given. 
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For example, in binary probit regression we get 

e~ =- Yir log Prob (Yir = llxr) + (1 - y~r) log Prob (Yir = 0lxr), (19) 

where the probabilities are obtained by integrating univariate normal density functions. 
In M's second estage estimation, the dements of o- 3 (correlations or covariances) 

are estimated as s3 via separate pseudo maximum likelihood estimation of bivariate 
ordered multinomial probit regressions. Specifically, for each combination of variables 
Yi,  Yj, i ~ j ,  the conditional likelihood function eij : ~'ij(0.l,i, 0.2,i, Orl,j, 0.2,j ,  
o'3,ijlx I , . . . ,  x n) is maximized with the values of 0.1,i, 0.2,i, 0.l.j and 0.2,j held fixed 
at the values s l,i, s2,i, s I,j and s2, j , respectively, obtained in the first stage estimation. 
The sequence of values of (Yir, Y jr) are taken to be independent for a given sequence 
of the values of Xr'S, and thus eij = Y.rn=l ei~, where ei~ are the individual conditional 
likelihood functions. 

In the example of the binary probit regression, we have that 

~r , . .  
t / ~  YirYjr log Prob ((Yir = 1 Yjr = 1)[Xr) + (20) 

y/,(1 - Yjr) log P r o b  ((Yir = 1, Yjr = 0) lXr)  + 

(1 - Yir)Yjr l og  Prob ((Yir = O, Yjr = 1)lXr) + 

(1 - yir)(1 - Yjr) log Prob ((Yir = O, Yjr = 0)lxr), 

where the probabilities are computed integrating the corresponding bivariate normal 
density functions as in (15). Maximization of eij = e i j (s l , i ,  s2,i, s l , j ,  s2,j ,  tr3,ij) with 
respect to o'3,ij yields the pseudo maximum likelihood estimator s3,ij of 0.3,ij. The 
s3,ij's will be assembled into the vector of estimates s3. 

Now, as in (14) of M, we define the vector of first derivatives corresponding to first 
and second stage estimation 

n 

g = ~ gr, 

r=l 

where 

gr= (. ~__~_ Cge; ae; ae; ae~ 
\ a O . l ,  1 , o30 .2 ,1  , ( 9 0 . 1 ,  2 , 0 0 . 2 , 2  , . o . , o30 .1 ,  p 

ae~l Oepp-1 

00"3,31 00.3,pp-I / 

(21) 

0e; 0e;, 
' a0.2,p ' a0.3,21 , 

(22) 

= 0.' )' = (try,  ~r~)' with Note that g g(0.) where 0. ~ (o-~, 0.~, 3 • We partition 0. as 0. 
0.. = (0.1, o-~)'. Let & --- (S'l, s~, s~)' and consider & = (&~r, 5-~)', where & .  ~- (s'l, 
s~)' and dr 3 -~ s 3. 

Under usual regularity assumptions it can be proved that the vector of first and 
second stage estimates & is a consistent estimate of 0., that is, plim & = ~r, where 
denotes the "true value" of 0. and "pl im" stands for probability limit (convergence in 
probability). Furthermore, by the way the first and second stage estimates are obtained, 
it is verified that 

g(&) = 0. (23) 

The consistency of & is proven in the Appendix under a set of general conditions 
to be satisfied in the estimation setting specified in M and described above. The con- 
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ditions listed may not be the set of most stringent assumptions under which the results 
of M hold, but they are a sufficient set of conditions that allows the description of  the 
most fundamental points without cluttering the exposition with specific technical details 
and without incurring substantial loss of generality. The conditions are certainly veri- 
fied in the case ofiid sampling of  the xr's, but should also hold in a more general setting 
as for example in the case of non-stochastic Xr'S including dummy or classification 
variables. The consistency proof has been confined to an appendix in order to not 
distract the reader from the major object  of the paper which is to show asymptotic 
normality and the expression of the covariance matrix of estimates. 

Let us now concentrate on the asymptotic normality and the expression of the 
covariance matrix of parameter estimates. The following regularity assumptions are 
made. The assumptions are discussed following the presentation of the desired result. 

A1. 

A2. 

The function g = g(tr) is continuously differentiable in an open, convex 
neighborhood of the true parameter value ~- 

n-lOg(q) " g'(cr) e 

0tr - n - I  ~' 0tr r=l 
_lE(0g(° ')  / A(tr)-= lim n \ 0tr ] 

= lim n-1 ~ E 
r=l 

(24) 

uniformly in tr in a neighborhood of the true parameter value ~, with A(tr) 
being continuous at ~'. In addition, the matrix A - A(5-) is nonsingular. 

A3. 

n d 
n-1/2g(5.) = n-1/2 ~ gr(#) .._> N(O, V), 

r = l  

(25) 

where 

n 

_ _  E r(~ r # ,, V - l i m n - _ ~  g ( )(g ( ) )  
r= 1 

(26) 

a finite matrix. 
A4. The terms ogr(5")/Otr, r = 1 . . . . .  n, are stochastically independent. 

Expanding g = g(-) around ~ by using the Mean Value Theorem gives 

(Og(tr*)t( # 
0 = g ( ~ ' ) = g ( # ) + \  0tr ] - ~)' (27) 

where tr* is some point between 5" and ~r. After rescaling by dividing by n -1/2, we 
obtain 

-10g(o.*)\ -1 1/2 
n l n ( & - ~ ' ) =  , n  ~ .1 n-  g(#). (28) 

/ 
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From Assumption A2 and the fact that plim tr* = 5-, it follows (apply, e.g., Theorem 
4.1.5 of Amemiya, 1985) 

plim =p l im k- ~ - } = A ,  (29) 

and then, using (25) and (28), we deduce the desired result of asymptotic normality of 
dr, 

nl/2(dr - 5-) ~ N(O, A - 1 V A ' - I ) .  

Some comments on the assumptions used to attain this asymptotic normality result 
are in order. The Assumption A1 is in fact a condition for the individual conditional 
likelihoods involved in the first and second stage estimation, for example, the functions 
e / and e r. of (19) and (20) in the probit regression example. The assumptions A2 and A3 zj 
typically result from applying to the sums Og(5-)/Oo" = Y_,n= 1 ogr(5-)Do " and g(5-) = 
y n=l gr(5-) some version of the law of large numbers and the central limit theorem, 
respectively. What is fundamental in order to apply such limit theorems is that the 
above functions are evaluated at a population value 5-, since that guarantees the inde- 
pendence of the terms of the sums under usual regularity conditions. Such indepen- 
dence will be attained for example when the conditioning variables Xr'S are fixed, or 
when they are random but the xr 's  are independent. A somewhat restrictive case is the 
one in which the xr ' s  are independent and identically distributed (iid). In that case the 
sums in (24) and (25) are sums of iid terms, and then the standard versions of the law 
of large numbers and the central limit theorems can be applied. Assumptions A2 and 
A3, however, can be claimed under weaker conditions than the iid sampling scheme. 
When the iid assumption is relaxed, however, some general condition on the behavior 
of the x~'s will need to be imposed. This is true, for example, in ordinary regression 
when the regressors are assumed to be random, where the limit of the second order 
moments of the x's  need to be finite. It is beyond the scope of the paper to explicate 
specific, less stringent, assumptions that guarantee the validity of M's result. 

Lee et al. (personal communication) raised the issue that standard limit theorems 
could not be applied when deriving the asymptotic normality, because the terms of the 
sums over all cases involved in g and Og/Oo" are not independent when evaluated at the 
first-stage estimates. To clarify this point we note again that the functions g and O#/a~r 
as they appear on the right hand side of (28) and (29) respectively, are evaluated at the 
population value 5-; hence, the corresponding sums will be a sum of independent terms 
under usual regularity assumptions, allowing the application of the limit theorems. 
Facing this issue of lack of independence when terms are evaluated at the first stage 
estimates, Amemiya (1978) was to our knowledge the first to develop a double Taylor 
series expansion to obtain a sum of independent terms, to which the standard version 
of the central limit theorem could be applied. In fact, considering the Taylor expansion 
in (27) restricted only to the components o fg  of the second stage estimation, we obtain 
a compact expression of the double Taylor expansion introduced by Amemiya (1978, p. 
17, Formulas (15)-(16)) in the context of a two-stage estimator for multivariate logit 
models. In his developments, Amemiya was interested only in the distribution of the 
parameters at the second stage of estimation, in our case the parameter 0"3, while we 
consider the asymptotic normality of the whole parameter estimate dr. 

The fact that the parameter or, = (o-~, o-~)' is substituted by an estimator obtained 
in the first stage, affects not only the argument of proof as noted above, but also affects 
the result of the asymptotic variance matrix of the estimator 53. The estimator dr3 will 
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not be an ML estimator and may therefore be less efficient than the true ML estimator. 
This is reflected by the fact that the asymptotic variance matrix of the two step esti- 
mator &3 is not V- l  but A-IVA' -1  Note also that there may also be a loss of 
efficiency due to the fact that limited information (marginal univariate and bivariate 
likelihoods) is used instead of full information. See also Parke (1986) and Gong and 
Samaniego (1981) where the asymptotic variance of an PML estimator like 83 is derived 
and compared with the variance of a true ML estimate. 

Now we need to establish the form of the matrix A. Partitioning the rows of A 
according to a partitioning of g into two subvectors, the first involving the derivatives 
of the univariate marginal conditional likelihoods, O~i[O0"~t,i, and the second involving 
the derivatives of bivariate marginal conditional likelihoods, O eij/O o3,ij, and partition- 
ing the columns of A according to the partitioning of tr -- (cr',, tr'3)', we obtain 

(A,1 0) 
A = \ A21 A 2 2  ' 

since the likelihood functions ei do not depend on tr 3 and thus the Oei/Otr3 's are zero. 
Using the standard regularity maximum likelihood result of 

EO 2 log L [O log L\ [0 log L \ ,  

Otr0tr' 

where L is a regular maximum likelihood function, we deduce that the structural non- 
zero elements of A will be expressed as 

I. Nonzero elements of A 11 

lim n-lE 
O2~,i 

O(Or *,i)sO(Or.k,i)t 

± / off \ 
= lim n -1 .~ - E1 _ ~ .  "](oer/0(o'. i)t" 

r=l \O(or~t,i)s] 

2. Nonzero elements of A21 

lim n -IE 
02Qj 

OOr 3,ijO( or ~x,i)t =l im n-'  - E ( ~ ) ( O ( ~ . . i ) t ' .  
r= l  ~ , 

3. Nonzero elements of A22 

lim n-lE 
O2eij 

Ocr 3,ijOtr 3,ij 

" { \ [  0e;  \ 
= lim n-' ~ - E I ~  ) / - ) ,  

r= l  00"3 'g  00"3'/J 

where the ( )s or ( )t denote the s-th or t-th component of the vector enclosed and 
where all the derivatives are evaluated at the population value &. 

Sample means will be used to obtain the appropriate estimates of expectation 
involved in the right-hand side of the above equalities; for example, n -  1 zn=l (aer /  
O(cr. i)s)(Oe[/O(~r, i)t) evaluated at the estimated value b will be used as estimate of 
lim n '-1 Xrn=l E(Oef/O(cr. i)s)(Oer/o(~r, i)t), and similarly for the other terms of A. 
The matrix V of (26) wili be estimated' as the mean of cross-products n-1 x n=l 
g r (b ) (g r (b ) ) ,  Then a consistent estimate of the variance matrix A-1VA'-1 will be 
formed by substituting the population matrices for consistent estimates. This approach 
to the large-sample approximation of the variance matrix of first and second stage 
estimates & is the one given in (19) and (20) of M. Assembling the above results leads 
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to the consistent estimator of the asymptotic covariance matrix given in (22) of M and 
shows that the conditions for correct GLS estimation by (23) in M are fulfilled. 

Note that the estimates of variance derived above exploit the assumption of correct 
likelihood specification required for the validity of the information matrix equality of 
(30). Alternatively, estimates of variance that do not exploit this equality could be 
considered. For example, the elements of A 1 t could be estimated as n - 1 y.~= 1 O 2 e r /  
O(0.,,i) s O(o' , , i ) t ,  which involves the second order derivatives of the e r ' s ,  evaluated at 
&. The terms inA 21 andA 22 could be estimated analogously involving the second order 
derivatives. Then, the corresponding consistent estimate o fA -1 V A '  -1 could be con- 
structed. Such alternative estimates of variance would provide standard errors asymp- 
totically robust against deviations from the normality assumption, an assumption re- 
quired for the validity of the information matrix equality of (30). It should be warned, 
however, that violation of the normality assumption could in fact introduce inconsis- 
tency of the parameter estimate & 

The above discussion concludes our treatment of the general case. The probit 
example of section 3 is, however, of interest to further clarify the variance matrix 
components discussed above. Consider 

A ~ . 
21 A22 

The corresponding second-order derivatives are given in (18) of M, except that M's 
matrix is not divided by n. Here, A 11 hasp blocks corresponding to each univariate log 
likelihood and the approximation is applied to each block separately (compare with (19) 
in M). The rows ofA21 andAE2 draw o n p ( p  - 1)/2 bivariate log likelihoods and the 
approximation is applied separately to each such likelihood (compare with (20) and (21) 
in M). Kfisters (1987, 1990) used the approximation for A 11 and A 22 but not for A 21- 
We will therefore focus on A 21 and use the structural probit example for clarification. 

Assume for simplicity that the structural probit model has three response variables 
Yi (i = 1, 2, 3, i .e . ,p  = 3) and a singlex variable (q = 1). Regressing on the single 
x variable, the element 0-1,i corresponds to the threshold foryi ,  O'2, i corresponds to the 
slope from the Yi regression, and 0.3,6 corresponds to the residual correlation from the 
Yi ,  Yj  regression. The rows of A21 correspond to the three bivariate log-likelihood 
functions ~2t, ~31, ~32 (see (20)), while the columns correspond to the threshold and 
slope for y a, the threshold and slope for Y2, and the threshold and slope for y3 ,  

02~21 O 2~21 O 2~21 O 2~21 

00"3,21 00rl,1 00"3,2100"2,1 00"3,21 00"1, 2 00"3,21 00"2,2 

A21 = lim n - l E  02~31 02~3t 0 0 

00"3,31 o30.1,1 00.3,31 00"2,1 02~'32 02.e32 

0 0 00-3,3200-1, 2 00"3,3200"2, 2 

0 0 

02~ 31 02e31 

• 30"3,3130"1,3 30.3,3100"2,3 (31) 

02~32 O 2~32 

00"3,3200-1,3 00"3,3200"2,3 

Consider as an example the bivariate log likelihood function ~21 in the first row of A 21- 
For this likelihood, the information matrix is 
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0 2£21 0 2£21 0 2£21 0 2£21 0 2£21 

00"1,100"1,1 00"1,100"2,1 00"1,100"1,2 00"1,100"2,2 00"1,100"3,21 
02£21 02£21 02£21 02£21 02£21 

00"2,100"1,1 00"2,100"2,1 00"2,100"1,2 00"2,100"2,2 00"2,100"3,21 
o2e21 02£21 02£21 02£21 02e21 

00"r,200.1,1 00.1,200.2,1 00"1,200"1,2 00"1,200"2,2 00"1,200"3,21 
0 2£21 0 2£21 0 2e21 0 2e21 0 2£21 

00"2,200"1,1 00"2,200"2,1 00"2,200"1,2 00"2,200"2,2 00"2,200"3,21 
0 2£21 0 2£21 0 2£21 0 2£21 0 2e21 

(32) 

00"3,2100"1,1 00"3,2100"2,1 00"3,2100"1,2 00"3,2100"2,2 00"3,2100"3,21 

which by regular maximum-likelihood theory can be written as 

0e~1/00.1,1 '0e~1/00.1,1 

0e~1/00.2,1 0e~1/00"2,1 
n 

Y, E oe';1/oa1,2 oe~d00"1,2 (33) 

r=l oe~J00.2,2 0v~1/00.2,2 
0£~1/00"3,21 0£~1/00.3,21 

The non-zero elements of the first row ofnA21 are found in the last row of (32), that is, 
in the last row of (33). As an example, the 1,1 element of nA21 is found in the 5,1 
element in (32), that is, by (32) and (33), 

E [ ~02£2' . )=-  " E( Oe~l I (0e~11 (34) 

r=l 

As large-sample approximations of the right-hand side we use the sums of products of 
the first-order derivatives evaluated at &. 

Having thus obtained consistent estimates A and I;" of the matrices A and V, the 
consistent estimate of the variance matrix of & is 

1~hA-lf'A'-1 = (n~) - l (n i~ ) (n~ , ) - l ;  (35) 

that is, the asymptotic variance matrix (22) of M. 

5. Discussion 

The strength of M's approach is its simplicity given its generality. Despite the 
multivariate nature of the problem, only univariate and bivariate likelihoods are con- 
sidered. Only a single parameter is estimated in each bivariate likelihood. Furthermore, 
only first-order derivatives of the univariate and bivariate likelihoods are required. 
These simplifications are important since it is clear from the above special case that the 
formulas are complex and become even more complex when covering all the different 
cases corresponding to combinations of the y variable types: dichotomous, ordered 
categorical, continuous, and censored. 

Muthrn (1983, 1984) distinguishes between Case A and Case B models, that is 
models that exclude or include x variables in the structural relations of (2). The special 
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structural probit example that was given above corresponds to Case B in that x vari- 
ables are available and conditioned on in the analysis in line with the tradition of 
simultaneous equation systems (see, e.g., L.-F. Lee, 1982). The estimates from the first 
two stages are regression-based. In contrast, Case A analysis does not involve such x 
variables. The conditional normality assumption then turns into a stronger, marginal 
normality assumption for the y* variables. The estimates from the first two stages are 
correlation- or variance-covariance-based. With ordered categorical y 's ,  for example, 
Case A leads to the analysis of polychoric correlations. 

M's estimation approach, the asymptotics of which has been discussed in the 
present paper, is general in that it covers both Case A and Case B models. Most articles 
on this topic have covered only Case A models and have not provided a general 
estimation approach that can be used for Case B models. In the articles on Case A 
models, the asymptotics have been derived in an alternative way. For example, with 
ordered categorical y's,  asymptotic normality can be deduced since the asymptotic 
distributions derive from bivariate data corresponding to sample proportions. This was 
utilized in Christoffersson (1975), Muthrn (1978), Christoffersson and Gunsj6 (1983), in 
Lee, Poon, and Bentler (1990b), and in Jrreskog and Srrbom (1988, 1989). This ap- 
proach, however, is not general enough for use with Case B models. In contrast to 
drawing on sample proportions (grouped data), the asymptotics of M's general estima- 
tion approach draws on likelihood theory and asymptotics using sums of individual 
observations. 

A cautionary note is warranted regarding the rate of convergence to the asymptotic 
distributions discussed above. Monte Carlo experience has shown that the GLS esti- 
mator gives good inference results when the models are small and the sample sizes are 
large, but can give very poor results for large models. Similar findings have been made 
for the ADF estimator with non-normal continuous variables (Muthrn & Kaplan, 1992) 
as well as for the Case A approach for binary variables drawing on sample proportions 
(Muthrn, 1993). The asymptotic results discussed above may, however, be useful also 
for large models using more robust inference techniques. More research is needed in 
this area, for example along the lines of Muthrn (1993) drawing on work of Satorra (see, 
e.g., Satorra, 1992). 

6. Appendix: Proof of Consistency of First and Second Stage Estimates 

In this Appendix we will prove consistency of M's estimates arising from first and 
second stage estimation. 

Consider the first and second stage of M's estimates described in sections above. 
For i = I, . . .  , p and i # j ,  i, j = 1, . . .  , p, consider e i = ei(19"ilX 1 . . . . .  Xn) and 

t ! t I ~'ij ~'ij(~'~ijlX1 Xn) , w h e r e  1~ i ~ o - . ,  i = (ITI,  i or2, i )  a n d  ~ij ~- (o'$r,i o" , . . .  , , , ~ , j ,  

o'3,ij)'. The parameter vectors / ~ n d  Oij have parameter spaces -=i and = respec- - i j  
tively. The first and second stage M's estimates are Oi = 6 , , i  =- (s'Li, s'2,i)' and &3,ij 
=- s3,ij, respectively. The subscripts " i "  and " i j "  will be suppressed when clear from 
the context. 

The following set of assumptions will be used to derive the consistency results. The 
set of assumptions considered do not strive for generality, rather we want to list typical 
conditions that can be checked in the estimation context of M and that are sufficient to 
guarantee the consistency results. All that is said for subscripts i and /j, should be 
understood to be said for i = 1 . . . . .  p and i, j = 1 . . . .  , p, i # j.  

=- (idem ~ij) is a compact subset of an Euclidean BI. The parameter spaces _ 
space, with the "true parameter" value Oi(Oij) contained in the interior of 
~---~i(~ij). 
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B2. The function ei(e o) is continuously differentiable with respect to  0 i E -=i('Oij 
E ~ / )  for all Yi. 's,  and is a measurable function of the Yi. 's  for all Oi E -=i(Oij 

B3. The stochastic function n-lC, i(n-1 eij) converge to a nonstochastic function 
ei(e U) in probability uniformly in 0 i E -=i(O O. E ~ij), as n ~ ~. 

B4. The functions ei and -(ij attains a unique global maximum at Oi and O/j, 
respectively. 

In the second stage of estimation the parameter vector O0 is partitioned as Oq = 
( O'1,ij, 02,ij)', with Ol,ij =- (o".,i,  tr'. ,j) '  and O2,ij =- or3, O, and the likelihood function 

^ 

will be maximized with respect to O2,/j, with Oi,U fixed at the first stage estimate 01,/j 
(&~r,i, &~r,j)'. The corresponding maximum will be O2,ij =- s3,ij. The following 

additional conditions are assumed (to simplify notation, we omit the subscripts " i j "  
from O and -= until needed): 

B5. The two sets of parameters 01 and 02 vary independently, that is, they vary 
in a product space, say -= - -=l x -=2. 

B6. The estimate 01 (of the first stage estimation) converge in probability to the 
population value Ol 

B7. The function ~ij(02) = eij(O1, 02) has O2 as a unique maximizer in ~--2. 

Note that assumptions BI through B4 are regular conditions ensuring the consis- 
tency of the extremum estimators (see, e.g., Theorem 4.1.1 or Theorem 4.1.2 of 
Amemiya, 1985). We will also see that under assumptions B1 through B7, the pseudo 
ML estimator 02 converges also in probability to O2. The estimator 02 is a specific case 
of the "quasi-generalized M-estimator" considered in Gourieroux and Monfort (1989). 

Before getting into the proof of the consistency of 02, we consider a technical 
Lemma. 

Lemma.  (See Gourieroux and Monfort, 1989, Lemme 24.31.) 

Consider the partition O = ( ~ ,  ~2) '  and assume (B1) through (B7) holds. Define 
~ij(02) ==- eij(Ol, 02) and ~ij(02) = eij(Ol,  02). Then n - l ~ 0 ( 0 2 )  converges to ~(O2) 
in probability uniformly in 02 E -=2. 

Proof. (See Gourieroux and Monfort, 1989.) Since 

ln - le i j (01 ,  0 2 ) -  ei j (Ol ,  ,92)1 

<-In-leij(6l, 02)-  Lj(,5,, 02)1 + l-(ij(Ot, 02) -  Lj(61, O2)1, 

we have 

supo 2]n- l~i j (~l ,  02) - ~ij(~t~l, O2)[ 

-< sup02 In- le i j (6~,  O2) - L j ( ~ I ,  02)1 + sup02 I L j ( ~ ,  02) - e~j(O~, O2)l. 

The first term of the last maximizing expression tends to zero in probability (when 
n --~ o0) due to the Assumption B3 of uniform convergence, while the second term also 
tends to zero due to the uniform continuity of the nonstochastic limit function -~ij (Note 
that this uniform continuity is implied by the smoothness Assumption B2 and the 
assumption that -= is compact.) []  
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From the result of the above lemma, we can now prove the consistency of O2. In 
fact, the proof follows the same reasoning as in Amemiya (1985, Proof of Theorem 
4.1.I) with ~ij taking the role of the function to be maximized. 

Given e > 0, consider the open ball N~ of R q centered at O2 of radius e (here q 
denotes the dimension of 02). Define 

where bTe is the complementary in R q of N~. Let A n be the event 

In-l~u(O2) - eij(O2)[ < T '  ¥ 02 E -=2. (36) 

Hence, in A n , it holds 

~ u ( , ~ z )  > n - ~ u ( O 2 )  - _ _  
e *  e *  

-> n - l ~ u ( S 2 )  - - -  
2 2 ' 

and 

e* 
n - l ~ u ( 0 2 )  > ~/j(02) 2 

Consequently, 

Thus, 

P(An) <- P(O2 E Ne) .  

Using the result of Lemma 1, P(An) ---> 1 when n ----> 0% hence P(~9 E N~) ---> 1 when 
n --~ oo. Since this holds for every e > 0, we have proved that O2 tends in probability 
t o ~ 2 .  

The consistency of Oi would follow from similar arguments, but in a simpler 
context, where ei and ei would replace ~ij and ~ij, respectively. We can also take this 
proof for granted, under the stated assumptions, since B1 through B4 imply the con- 
ditions for consistency of, for example, Theorem 4.1.1 or Theorem 4.1.2 of Amemiya 
(1985). 

Note that the consistency of the ~9 i and of the 02,ij, for i < j ,  /, j = 1, . . .  , p,  
imply the consistency of the whole vector & of first and second stage estimates of M. 
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