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Advances in Bayesian Model Fit Evaluation for Structural Equation Models
Tihomir Asparouhov and Bengt Muthén

Mplus

ABSTRACT
In this article, we discuss the Posterior Predictive P-value (PPP) method in the presence of missing data,
the Bayesian adaptation of the approximate fit indices RMSEA, CFI and TLI, as well as the Bayesian
adaptation of the Wald test for nested models. Simulation studies are presented. We also illustrate how
these new methods can be used to build BSEM models.

KEYWORDS
Bayesian fit indices; Bayesian
Wald test; BSEM; PPP with
missing data

Introduction

This paper makes three contributions to Bayesian model fit
evaluation for Structural Equation Models (SEM). First, we
discuss improvements to the Posterior Predictive P-value
(PPP) method in the presence of missing data. Second,
Bayesian versions of the approximate fit indices RMSEA,
CFI and TLI, constructed in Garnier-Villarreal and
Jorgensen (2020), are studied in both the complete and the
incomplete data cases. Third, the paper proposes a Bayesian
adaptation of the classic Wald test of multiple hypothesis.
These methods apply to standard SEM models estimated
within the Bayesian framework as well as the Bayesian
Structural Equation Models (BSEM) discussed in B. Muthén
and Asparouhov (2012), where small variance priors are used
to relax the SEM model to accommodate minor differences
between the model and the observed data. We show how the
Bayesian fit indices can be used instead of the PPP to build
approximately well fitting BSEM models. Simulation studies
are presented for illustration purposes. All of the above meth-
ods are implemented in Mplus 8.4.

PPP in the presence of missing data

The construction of the PPP value used in Mplus 8.3 and
earlier versions is described in Asparouhov and Muthén
(2010a). It follows standard posterior predictive checking
methodology, see Gelman et al. (2004), based on
a discrepancy function. The discrepancy function used in
Mplus is the likelihood ratio test (LRT) function comparing
the estimated model, the H0 model, and the unconstrained
mean and variance–covariance matrix model, typically
referred to as the H1 model.

D ¼ Dðm; S; μ;ΣÞ
¼ n

2
ðlogðjΣj=jSjÞ þ TrðΣ�1ðSþ ðμ�mÞðμ�mÞÞ � pÞ (1)

where S is the sample variance–covariance, m is the sample
mean, Σ is the model implied variance–covariance, μ is the

model implied mean, n is the sample size, and p is the number
of variables in the model. Thus, the discrepancy function is
the standard test of fit used with the ML estimation. In the
posterior predictive checking, the discrepancy function is
evaluated at the entirety of the posterior distribution of the
model parameters, i.e., the discrepancy function is evaluated
for every iteration in the MCMC estimation. Using the ith
iteration H0 model parameter estimates, we compute the
model implied mean and variance/covariance μi and Σi. We
then compute the observed data discrepancy function as
Dobs

i ¼ Dðm; S; μi;ΣiÞ. Using the ith iteration H0 model, we
generate a replicated data set of the same size as the original
data set and compute the sample mean and variance of the
replicated data mi and Si. The replicated data discrepancy
function is computed as Drep

i ¼ Dðmi; Si; μi;ΣiÞ. Finally, the
PPP value is computed as follows:

PPP ¼ PðDobs <DrepÞ � 1
L

XL
i¼1

δi (2)

where L is the number of iterations in the MCMC estimation,
and δi ¼ 1 if Dobs

i <Drep
i and 0 otherwise.

When there are no missing data, the H1 model does not
require an actual estimation. The sample mean and the sam-
ple variance covariances are the ML estimates for the H1
model parameters. These sample statistics are used for the
construction of the discrepancy function. The discrepancy
function, as defined and used in Mplus, does not use the
posterior distribution of the H1 model parameter estimates.
Instead, it uses the actual H1 ML estimates. This is done for
both the observed data as well as the replicated data.

In the presence of missing data, the H1 model ML esti-
mates are not readily available. In Mplus 8.3 and earlier
versions, the missing data are imputed during the MCMC
estimation and the discrepancy function uses these imputed
values as if they are the actual observed values. Thus, the
discrepancy function is defined as the test of fit for the
observed and imputed data combined. This simplification is
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quite useful in terms of the speed of the computation.
Unfortunately, it has the caveat that it weakens the informa-
tion in the observed data. The imputed data are generated
from the estimated model during the MCMC estimation and
thus are an affirmation that the model is correct. Unlike the
observed data, for which we do not know if there is a good fit
for the model, the imputed data are a perfect fit for the model
as they are generated from that model. As a result, the evi-
dence of possible misfit between the observed data and the
model is weakened by this method. Combining the observed
data and the perfectly fitting imputed data weakens the power
to detect misspecifications.

In Mplus 8.4, a new method for posterior predictive check-
ing is implemented to remedy this situation. First, the dis-
crepancy function is defined as the test of fit function for the
observed data only, i.e., at each iteration in the MCMC esti-
mation, we compute the LRT function for the observed data
only, using the current H0 model estimates as well as the H1
model estimates based on the observed data only. In addition,
the replicated data are generated from the current H0 model;
however, the replicated data are not a complete data set but an
incomplete data set just like the observed data. For every
missing observation in the observed data, we put a missing
value in the replicated data in the exact same place so that the
observed data and the replicated data have the same missing
data patterns. This PPP construction would be successful if
the replicated data, including the missing data generating
mechanism, are comparable to the real data. Note that the
missing data mechanism for the real data is unknown and
therefore we must examine whether the above specified miss-
ing data generation mechanism would produce such compar-
able replicated data. We discuss this further below. Lastly, the
discrepancy function for the replicated data is computed the
exact same way as it is computed for the observed data. That
is, the discrepancy function uses the LRT function for the H0
model using the current H0 model parameter estimates as
well as the H1 model estimates obtained from the incomplete
replicated data.

We can easily compute the H1 model parameter estimates
for the observed data; however, these estimates are not easily
available for the replicated data which changes at every itera-
tion. To compute the discrepancy function for the replicated
data, the EM algorithm must be performed for every repli-
cated data set, which would become computationally very
heavy. In fact, the software package blavaan, Merkle and
Rosseel (2018), implements the EM algorithm at every itera-
tion and as the authors point out, the PPP method becomes
impractical altogether in the presence of missing data. To
resolve this problem, instead of using the H1 ML estimates
in the discrepancy function we use an H1 model parameter
draw from the H1 model parameter posterior distribution. To
be able to do that, however, we would still need to estimate
the posterior distribution of the H1 model for every replicated
data set which would still be computationally heavy. To
resolve that problem, we use the following simplification.
For every instance where the H1 model parameter estimates
are needed, we perform a 10-iteration MCMC estimation of
the H1 model and use the 10-th iteration as our draw.
Running only 10 MCMC iterations for the H1 model is

imperfect as a full convergence is neither checked nor
enforced, however, the overall speed of the computation will
not be compromised this way. Note that we use the 10-
iteration approach not just for the replicated data but also
for the observed data so that the comparison between the two
is equitable.

There are two reasons why the 10-iteration approach
works well. First, unlike structural models, estimating the
H1 model is fast and simple. The MCMC autocorrelations
in the H1 model estimation is small. Correlations between the
H1 model parameters is also expected to be small. If the
amount of missing data is moderate, the variation in the H1
parameter draws will be small as well, see Additional points
below. In many respects, the estimation of the H1 model
amounts to estimating multiple bivariate normal distribu-
tions, i.e., increasing the number of variables does not
increase the complexity of the model substantially.
The second reason is as follows. In principle, we do not
need to use in the definition of the discrepancy function the
H1 model parameter distribution. We can use a different
distribution. The discrepancy function can be defined in
whatever way we want. Using the H1 model parameter dis-
tribution is useful because it directly addresses the model fit as
compared to the fit provided by the H1 model; however, the
discrepancy function can be defined differently. For example,
if we have a way to approximate the H1 model parameter
distribution, we can define the discrepancy function using
that approximate distribution. The 10-iteration MCMC pro-
cedure provides exactly that, an approximation to the H1
model parameter distribution. Here is where the equitable
approach becomes important. The way we compute the dis-
crepancy function for the observed data must be exactly the
same way we compute it for the replicated data. This is
needed to preserve the validity of the posterior predictive
checking. This second argument shows that even if the 10-
iteration approach provides a mediocre approximation to the
H1 model parameter distribution, the posterior predictive
checking is still valid. One final issue to consider regarding
the validity of the procedure is the starting values for the 10-
iteration MCMC procedure. To obtain a comparable distribu-
tion for the H1 model parameters, we must use the same
starting values for both the observed and the replicated data.
These starting values are as follows. For the missing values, we
use the current imputed missing values, i.e., those that are
imputed from the H0 model in the current MCMC iteration.
These are used to complement both the observed and the
replicate data. The starting values for the means and the
variance covariance parameters are the sample mean and
variance covariance, computed when the missing values are
added to the data set (observed or replicated).

We generate the replicated data sets so that they have the
same amount of missing data as the real data set because we
want the replicated data to be comparable to the real data,
under the null hypothesis that the H0 model is correct.
Ideally, we would want the missing data in the replicated
data set to have been obtained from the same missing data
mechanism that generated the missing data for the observed
data set. The missing data mechanism, however, is unknown
and it is not estimated. Generating missing data completely at
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random in the replicated data could potentially lead to inap-
propriate PPP results for the simple reason that the replicated
data are too different from the observed data due to
a mismatch in the missing data mechanism. It turns out,
however, that this is not the case. We use the estimated
model to generate a complete replicated data set and then
replace the generated values by missing values when the real
data have a missing value. This missing data mechanism is not
MCAR (missing completely at random) since the covariates in
the replicated data are held equal to the covariates in the real
data (only dependent variables are regenerated) and such
covariates might have had influence on the probability of
being missing in the real data (and therefore in the replicated
data). Regardless, however, the missing data mechanism used
to generate missing values for the replicated data is certainly
MAR (missing at random). MAR is the model estimating
assumption also for the real data set. Thus, both the real
data and the replicated data have missing values which are
MAR. It is well known that the likelihood of the observed data
is independent of the missing data mechanism when the
missing data are MAR, see Little and Rubin (1987–2002).
This implies that the discrepancy function which is likelihood
based is independent of the missing data mechanism. Thus,
even though the missing data mechanism for the replicated
and the real data sets is not identical, the discrepancy func-
tions between these data sets are still comparable. Under the
null hypothesis of correct H0 model, the discrepancy function
of the replicated data and the real data should be similar.

Mplus computes the discrepancy function every 10thMCMC
iteration instead of every iteration to reduce the computational
burden. This is not a thinning setting in the Bayesian estimation
but rather a reflection of the needed precision. While precision
in the model parameters is generally considered essential, the
precision in the PPP value is only essential when it is near
a cutoff value. For example, if the PPP value is near 0.5, comput-
ing the discrepancy function in every iteration, instead of in
every 10th iteration, will undoubtedly improve the PPP estimate
but will have no effect on the actual conclusion regarding the
model fit. Similarly, if the PPP value is near 0.01, computing the
discrepancy function in every iteration is unlikely to results in
a different outcome regardingmodel fit. It is the binary choice of
the conclusion that allows for this computational time saving to
take place. If the PPP value is near the cutoff value and the
outcome of the conclusion is uncertain/marginal, then clearly
a large number of iterations must be used to ensure sufficient
precision in the PPP value and the computational saving will be
lost in this case.

In the presence of missing data, every time the discrepancy
function is computed, i.e., every 10th iteration, we also com-
pute 10-iteration MCMC estimation for the H1 model. This
averages out and thus the number of iterations used in the H1
model estimation is about the same as the number of itera-
tions used in the H0 model estimation. To summarize, the
new method of computing the PPP with missing data essen-
tially amounts to estimating three models instead of one: the
original H0 model using the observed data, the H1 model for
the observed data, as well as the H1 model for the replicated
data. In most situations, however, the increase in the compu-
tational time will be negligible.

To formalize the new PPP computation in the presence
with missing data, we define the discrepancy function D as
follows:

DðY; μ1;Σ1; μ0;Σ0Þ ¼ LðYjμ1;Σ1Þ � LðYjμ0;Σ0Þ (3)

where Y represents the data and LðYjμj;ΣjÞ represents the
log-likelihood of Y based on the multivariate normal distribu-
tion with mean μj and variance/covariance Σj. Let Yobs denote

the observed data and let Yrep
i denote the replicated data

generated during the ith MCMC iteration. The discrepancy
function for the observed data is computed as

Dobs
i ¼ DðYobs; μ1iðYobsÞ;Σ1iðYobsÞ; μ0i;Σ0iÞ; (4)

where μ1iðYobsÞ and Σ1iðYobsÞ represent a random draw of the
H1 model parameters estimates for Yobs, and μ0i and Σ0i are
the H0 model implied mean and variance/covariance obtained
from the ith iteration of the H0 model estimation. Similarly,
the discrepancy function for the replicated data is com-
puted as

Drep
i ¼ DðYrep

i ; μ1iðYrep
i Þ;Σ1iðYrep

i Þ; μ0i;Σ0iÞ; (5)

where μ1iðYobsÞ and Σ1iðYobsÞ represent a random draw of the
H1 model parameters estimates for Yrep

i . The PPP is then
computed as in (2).

Next, we illustrate the advantages of the new method using
simulation studies.

Improving power

In this section, we compare the power of the new PPP method
to the power of the PPP method implemented in Mplus 8.3.
We generate data using a CFA model with two factors each
measured by three indicators. The loadings for the first factor
are all set to 1 while for the second factor they are set to 1, 0.8
and 0.8. The means of the indicators are set to 0 and the
residual variances are set to 1. The factor variances are set to 1
and the covariance between the two factors is set to 0.7.
Missing data are generated completely at random at
a constant rate for each indicator. The data are analyzed
using a two-factor CFA model (the true model) as well as
a one-factor CFA model. Mplus default non-informative
priors, see L.K. Muthén and Muthén (1998–2017), are used
for all of the estimations in this note. Such priors facilitate the
best comparison between the ML and the Bayesian estimators
that we will consider later on.

Table 1 contains the results for various sample sizes and
missing data rates based on 100 replications. The average PPP
values, obtained with Mplus 8.3 and Mplus 8.4, are given as
well as the rejection rates based on these PPP values. A model
is rejected when the PPP value is below 0.05. We can clearly
see that the new PPP method is much more powerful. It
rejects the incorrect one-factor model more often while pre-
serving the type I error rate, i.e., the false rejections when the
model is the correct two-factor model. Typical tests of fit will
reach the nominal 5% rejection rate when the model is cor-
rect. Table 1 results show, however, that the PPP type I error
is below the 5% rejection rate even for large sample size
situations. This discrepancy occurs not just for the incomplete
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data case but also in the complete data case, see Asparouhov
and Muthén (2010b). This discrepancy is due to the fact that
the PPP value is not uniformly distributed as the P-value in
the classical likelihood ratio tests, see Hjort et al. (2006).

Missing at random

In this section we illustrate the quality of the new PPP method
when the missing data are missing at random (i.e. not com-
pletely at random). Here we use the simple regression model:

Y1 ¼ αþ βY2 þ ε (6)

where we set α ¼ 0, β ¼ 0:3, VarðεÞ ¼ VarðY2Þ ¼ 1. For this
simulation, we generate 100 data sets of size 500. We generate
missing values according to the following model:

PðY1 is missingÞ ¼ ExpðY2Þ=ð1þ ExpðY2ÞÞ: (7)

This is a very informative missing data mechanism. Full like-
lihood estimation such as ML and Bayes would however yield
unbiased estimates for the model parameters because the
missing data mechanism depends only on observed values
and in this example Y2 has no missing values. Note here
that the overall means in the population for both Y1 and Y2

are 0. When the Y1 value is not missing; however, the mean of
Y1 is no longer 0, it is −0.12 while the mean of Y2 is −0.4.
When the Y1 value is missing, the mean of Y2 is 0.4.

In this simulation example, we treat the Y2 variable as
a dependent variable (i.e. not an actual covariate). While
computing the PPP, replicated data are generated for both
Y1 and Y2 according to the estimated model. In the model
estimation, the missing data mechanism (7) is not known. The
missing data generation for the replicated data (as described
earlier) will amount to MCAR because there are no covariates
in this model. Thus, in contrast to the analyzed data, in the
replicated data the mean of Y1 and Y2 will be 0 regardless of
whether or not Y1 is missing. Nevertheless, this simulation
study shows that these kinds of replicated data are sufficient
to evaluate the model fit using the new PPP method.

First, we estimate the baseline model where the parameter
β is fixed to zero. Using Mplus 8.4 we obtain an average PPP
value of.01 and in 89% of the replications, the baseline model
is rejected. Because the information regarding the baseline
model is contained solely in the full pattern observations
when both Y1 and Y2 are observed, we should expect this
rejection rate to match the result when only the fully observed
patterns are analyzed (using the standard PPP method based
on all observed data). Indeed, generating samples of size of

250 (given that approximately 50% of the Y1 values were
missing), we obtain an average PPP value of .01 and
a rejection rate of 95%. This result confirms that approxi-
mately the correct rejection rate has been obtained in the
missing data simulation. If we conduct the same experiment
on the full regression model where β is estimated, the PPP
value is .49 and no replications were rejected in the missing
data case. In the no missing data case with a sample size of
250, we obtain an average PPP value of .50 and 0 rejection
rate which again confirms that the missing data computation
works correctly. The fact that the average PPP value is near
50% when the model is correct is very important. This can
only occur if the replicated data are of the same quality as the
observed data in terms of the discrepancy function. Thus, we
confirm here that the missing data mechanism had no impact
on the PPP value. Even though a different missing data
mechanism was used for the replicated data, we obtain
a discrepancy function that matches that of the observed
data, i.e., it is equally likely to be higher or lower than that
of the observed data.

The improvement in power described earlier can be found
in this example as well. Estimating the baseline model with
missing data with Mplus 8.3 yields an average PPP value of
.14 with a rejection rate of 28% which is substantially lower
than the corresponding value of 89% obtained using
Mplus 8.4.

Additional points

Smooth transition between the missing data case and the
complete data case
The missing data PPP provides a smooth transition between
the missing and the non-missing case. Consider the situation
when a single value is missing. It would be undesirable if the
new method yields substantially different results from the
complete data case. The likelihood of the observed data will
change very little when a single observation is missing. In fact,
the only difference between the missing data case and the
complete data case would be the likelihood of the observation
that is missing. The H1 model parameter estimates, however,
will vary in the missing data case while in the complete case
they will remain constant. This would be particularly the case
when the overall sample size is moderate or small because of
the wider posterior distribution. The H1 model estimates in
the incomplete case would be selected from the entire poster-
ior distribution while in the complete case, the parameters will
be fixed at their ML estimates. This additional variability in
the incomplete case could potentially compromise the power
of the PPP as the range of the discrepancy function values will
be wider, even when just a single observation is missing. To
eliminate this possibility, we implement a small modification
of the methodology. In every step when the H1 model has to
be estimated, we perform the 10-iteration MCMC estimation.
At the end of that estimation, instead of taking the last H1
parameter estimates we simply use the sample mean and
variance based on the current imputed values. The variability
in these sample means and variances will be much smaller
than that of the H1 model parameter estimates as it will be

Table 1. Comparing Power: Average PPP (Rejection Rate).

Number of factors Sample size Missing rate V8.3 V8.4

1 300 0.25 .16(.23) .07(.67)
1 300 0.50 .40(.00) .23(.16)
1 1000 0.25 .01(.97) .00(1.0)
1 1000 0.50 .28(.00) .03(.81)
2 300 0.25 .50(.00) .51(.01)
2 300 0.50 .49(.00) .49(.00)
2 1000 0.25 .48(.00) .50(.00)
2 1000 0.50 .50(.00) .51(.00)
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primarily driven by the actual observed (non-missing) values.
The smaller the number of missing value in the data, the
smaller that variability will be. This way the impact on having
a small number of missing observations will be negligible. In
fact, if there are no missing observations in the data but we
run the estimation as if there are missing values (by including
the Mplus option missing = all(999); for example), the dis-
crepancy function will be defined the exact same way as if we
run the estimation as in the complete data case. Note, how-
ever, that the speed in the computation will still be lower if the
analysis is run through the missing data algorithm. In addi-
tion, due to changes in the order of the random number
generation, the PPP values will not be identical, even through
the algorithms are identical. This difference is not in the
quality of the PPP values, however, and the results should
be similar.

This simple modification in the H1 model estimation is
also useful when there are covariates in the model. Covariates,
unlike the dependent variables, are never allowed to have
missing values as no formal model is specified for the imputa-
tion of such missing values. Other dependent variables in the
model may not have any missing values as well. For all such
variables, the ML H1 model estimates are easy to obtain and
due to this modification will be used in the definition of the
discrepancy function.

The effect of varying H1 model estimates
A simple experiment can be constructed to evaluate the
effect of the varying H1 model estimates. We use the regres-
sion model given in (6), where the data are generated using
the non-zero regression coefficient but the estimated model
has the coefficient fixed to zero. Missing data are generated
completely at random for both variables at the rate of 50%.
We use a sample size of 400 and obtain a rejection rate of
63% over 500 replications. The information regarding the
regression coefficient is contained entirely in the observa-
tions where both variables are observed, which on average is
about 133 (given that one-third of the observations will have
the first variable missing, one-third will have the second
variable missing, and one-third will have no missing,
Mplus excludes all observations that have both missing).
We can therefore expect to get a similar rejection rate if we
run the same simulation with sample size of 133 and no
missing data. The result that we obtain from this simulation
is a rejection rate of 66%. Notably, here the missing data
rejection rate is comparable to the corresponding rate of the
non-missing case, which implies that if any loss of power
exist it is very small. Some difference in the rejection rates is
also likely due to the fact that in the missing data case, the
number of observations with full patterns varies while in the
non-missing case it does not. Note also that this is a very
simple and limited simulation study that provides a rough
glimpse into the effect of varying H1 model estimates. More
complicated examples may indeed manifest some more
noticeable loss of power.

Note also that the results obtained with the missing at
random data discussed earlier lead to the same conclusion.
In the incomplete data case, we obtained a rejection rate of
89% while the corresponding complete data case resulted in

95% rejection rate. The difference is sufficiently small to
assume that the loss of power due to the variability in the
H1 parameter estimates is small.

Negative values in the discrepancy function
The discrepancy function may yield negative values in the
missing data situation which do not occur in the complete
case. This occurs because the H1 model parameter estimates
used for the definition of the discrepancy function are not the
ML estimates. Therefore, there is no guarantee (like in
the complete data case) that the H0 and the H1 models at
the current parameters values (obtained at a particular itera-
tion of the MCMC estimation) are nested. This in principle is
not a problem, and in general, the discrepancy function is not
required to be positive. What is important is that the repli-
cated data are treated the same way as the observed data in
terms of the computation of the discrepancy function. This is
why we defined the discrepancy function to use the H1 model
parameter estimates the same way for both the real and the
replicated data. We do not use a single H1 model estimation
for the observed data (even though we could since the
observed data does not change across iterations). Instead, we
always use a 10-iteration MCMC estimation. In some parti-
culary difficult missing data situations with very informative
missing data mechanisms, it is possible that 10 iterations are
not enough for good model estimation. Nevertheless, because
of the symmetry between the observed and replicated data we
would expect good PPP performance even if the H1 model
estimates have not converged. In our limited simulation stu-
dies, the 10-iteration MCMC estimation appeared to be suffi-
cient for the purpose of obtaining a good quality PPP value.

Manipulating the PPP
In some respect, the problem with the PPP version imple-
mented in Mplus 8.3 goes beyond the loss of power. The
method is technically speaking exposed to being manipulated.
Consider a hypothetical example where a data set is analyzed
using a model H0 and rejected by the PPP. If we attach now
a large amount of missing data to the original data, that
missing data will be imputed from the incorrect model. This
imputed data will fit the incorrect model and therefore will
weaken the evidence that the model does not fit. The more
missing data we insert in the original data set the more the
total data (imputed and observed) will appear to fit the model.
As we keep on adding more and more missing data, even-
tually we can expect that the model will not be rejected by the
PPP. This can potentially be done for any model of any degree
of misfit. The new PPP method is safeguarded against this
situation because it does not use the imputed data for model
evaluation.

Mplus generally removes all observations that contain only
missing values. Therefore, the manipulative approach
described above would not be as easy to implement. If we
simply attach observations with all missing values, Mplus will
directly remove these observations from the analysis and the
manipulation approach will fail. Mplus, however, will not
remove an observation if just one variable is not missing.
Thus, to implement the manipulation strategy, we would
need to add a new variable, completely unrelated to the
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original model, which has no missing values at all. When this
new variable is added, we can expand the original data with
many missing observations which Mplus will not delete due to
the new variable.

PPP power as compared to the power of the ML chi-square
Asparouhov and Muthén (2010b) point out that in the com-
plete case situation the ML chi-square is more powerful than
the PPP method. This discrepancy carries over in the incom-
plete case to a similar extent. If we run the regression example
(6) discussed earlier using the ML estimation, in the complete
case (N = 133), we obtain a rejection rate of 93% while in the
incomplete case (N = 400) we obtain a rejection rate of 90%.
These values are much higher than the rejection rates of the
PPP: 66% and 63%, respectively.

The lower power of the PPP value can also be interpreted
as an approximate fit index, see Section 6.2 in Asparouhov
and Muthén (2010b). For example, PPP values between 0.05
and 0.20 could be considered approximately fitting rather
than completely fitting or completely rejected models. This
approximately fitting interpretation, however, has the caveat
that it does not carry over for large sample sizes. In large
sample sizes, the PPP behaves the same way as the ML chi-
square, i.e., they are asymptotically equivalent. If we double
the sample size in the simulation study, the PPP rejection
rates for the complete and the incomplete case are 97%
which nearly matches the 100% rejection rates obtained with
the ML chi-square.

Improving PPP power by adjusting the cutoff value
At the heart of the lower power of the PPP, in the complete
and the incomplete case, is the fact that the PPP value is not
uniformly distributed between 0 and 1, as is the P-value in the
classical likelihood ratio tests, see Hjort et al. (2006). The PPP
rejection rates are obtained using the cutoff value of 0.05, i.e.,
we reject the model if the PPP value is smaller than 0.05. If the
PPP value, however, is not uniformly distributed, the 0.05
value does not represent the fifth percentile of the distribu-
tion. Typically, a larger value represents the fifth percentile of
the PPP distribution. As a result of that, the PPP-value will
have lower rejection rate when the hypothesis is true, which
results in lower type I error, as well as when the hypothesis is
not true, which results in higher type II error and lower
power. If we know the distribution of the PPP value, however,
we can obtain the fifth percentile of the distribution and use
that value as the cutoff value. With this new cutoff value, we
surely will obtain a type I error of 5% as well as lower type II
error and improved power.

One complication in this approach is that we do not know
the distribution of the PPP value. Furthermore, that distribu-
tion is not the same for all models. A simple way to see how
much difference there is between the PPP value distribution
and the uniform distribution is to look at the standard devia-
tion of the PPP distribution. This standard deviation is com-
puted in every Mplus Monte Carlo output. The uniform
distribution on the 0–1 interval has a standard deviation of
0.29. The further away the standard deviation of the PPP
values is from this value, the bigger the discrepancy between

the uniform distribution and the PPP value distribution and
the bigger the need for the cutoff adjustment.

Consider again the two-factor CFA model discussed ear-
lier. We generate and analyze the data with the correct two-
factor CFA model, using 25% missing data and sample size of
300, and we obtain the PPP standard deviation of 0.15. To
estimate this quantity well, we use 3000 MCMC iterations,
resulting in PPP computation based on the comparison of the
original data and 300 replicated data sets. Next, we consider
the regression model (6–7). The PPP standard deviation is
0.03, which clearly indicates that this PPP distribution is
much further away from being uniform than is the distribu-
tion of the PPP value of the two-factor CFA. Notably, how-
ever, these PPP distributions appear to be largely independent
of the sample size, missing data and the type of missing data.
The two-factor CFA with a sample size of 1000 and 25%
missing data yields a PPP standard deviation of 0.15.
Without any missing data, we obtain a PPP standard devia-
tion of 0.16 for both sample size of 300 and 1000. The
regression model without the MAR missing data also yields
a PPP standard deviation of 0.03. The fact that the sample size
does not affect the PPP distribution has a simple explanation.
The sample size essentially takes the role of a multiplicative
factor in the discrepancy function and therefore it does not
affect the comparison between the replicated and the observed
data. A similar argument applies to the missing data effect.

The mean of the PPP distribution is typically near 0.5,
given that the null hypothesis is correct. Note, however, that
the standard deviation of the PPP is not a sufficient descriptor
for the entire distribution. The shape of that distribution
varies from one model to another. In the regression example,
the skewness of the PPP distribution is 0.05 and the kurtosis is
−.13, i.e., in this case, the distribution is fairly close to
a normal distribution, see Figure 1. In the two-factor CFA
example, the skewness is −0.54 and the kurtosis is −0.27, i.e.,
the distribution is not close to a normal distribution but it has
a heavy left tail, see Figure 2. For the uniform distribution, the
skewness is 0 and the kurtosis is −1.2. Estimating the fifth
percentile of the PPP distribution would need to be done by
simply estimating the entire distribution.

Next, we illustrate how the adjusted cutoff value should be
computed. Consider again the two-factor CFA model. The
data is generated by a two-factor CFA model but is analyzed
by a single factor model. In this illustration, we use a sample
size of 150 and no missing data. When we test the model fit of
the single factor model using the PPP with the standard cutoff
value of 0.05, we obtain a rejection rate of 62%. Using ML and
the classic P-value, we obtain a rejection rate of 91%. Clearly,
the classic P-value outperforms the PPP value here. Next, we
conduct a simulation study to obtain the distribution of the
PPP. In a practical setting when a single model is estimated,
the parameters for the simulation study should be chosen to
be the same as the final results of the null model parameter
estimates. In our simulation study, because we have multiple
null model estimates, we use the average parameter estimates.
Thus, we use the CFA one-factor model average parameter
estimates to construct a new simulation study where the data
is generated and analyzed with a one-factor CFA model. We
obtain the PPP distribution for that model and the fifth
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percentile of that distribution is estimated to be 0.182. In this
estimation, we used 1000 replications and 3000 MCMC itera-
tions for each replication. Using the new cutoff value of 0.182
we can now recompute the rejection rate for the PPP in the
original simulation study and we obtain a rejection rate of
0.87. This nearly matches the ML rejection rate of 0.91. We
conclude that the PPP power can be recovered simply by
adjusting the cutoff value.

Note that in the above illustration, two simulation studies
were described. The first one is where the data is generated as
a two-factor CFA but is analyzed as a one-factor CFA. We use
this simulation study to determine the rejection rate and the
power of the testing procedure. The second simulation study
is where the data is generated and analyzed with the null one-
factor CFA. The purpose of that simulation study is to deter-
mine the distribution of the PPP value and in particular the
fifth percentile, which will then be used as a cutoff value for
the first simulation study. In practical settings where only
a single data set is analyzed, only the second simulation
study would be needed to determine the fifth percentile of
the PPP distribution. Because the PPP distribution and its

fifth percentile depend on the model, the second simulation
is indeed required for the cutoff value adjustment. Universal
cutoff value adjustment that applies to all models can not be
recommended. The cutoff adjustment method can be useful
when the PPP value is between 0.05 and 0.25. For larger or
smaller values, the cutoff adjustment method is unlikely to
change the conclusion regarding the fit of the model.

Note, however, that the lower power of the PPP may not
necessarily be viewed as a problem, see Hoijtink et al. (2019).
The lower power is always associated with a lower type
I error, which in some situations can be viewed as an advan-
tage of the Bayesian methodology.

PPP power as compared to the power of Wald type testing
PPP is useful when an entire structural model has to be
evaluated. The test should not be used as a way to test nested
models when we can test a hypothesis directly with the para-
meter estimates and their credibility intervals. For individual
parameters, using directly the credibility interval should be
preferred. If multiple parameters need to be tested and a Wald
type test (see below for the Bayesian adaptation of the Wald

Figure 1. PPP distribution for the regression model.

Figure 2. PPP distribution for the two-factor CFA model.
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test) can be formulated, it should be used instead of PPP. This
is because the asymptotics work much better for the standard
errors of the parameters than for PPP. In fact, in most cases
(when there are no informative priors), the Bayesian para-
meters estimates and their standard errors match the ML
results quite well. This means that the power of the Bayesian
inference based on the standard errors will be identical to that
of the ML method (and the ML chi-square). Consider again
the simple regression model. The PPP test of the baseline
model is equivalent to testing the significance of the β coeffi-
cient. Using a credibility interval directly yields 90% rejection
of the baseline model in the complete and the incomplete case
with the Bayesian estimation. Similarly, using the ML estima-
tion we get 91% rejection rate for the complete case and the
incomplete case. These also match the corresponding 93% and
90% rejection rates of the ML chi-square. In all of these cases,
we get better power than the power of PPP using the 0.05
cutoff value which is 66% and 63% for the complete and
incomplete case, respectively.

New PPP method and its connection to the comparative fit
indices CFI/TLI
Using the new PPP method is particularly important for the
purpose of constructing comparative fit indices. Both CFI and
TLI are based on evaluating the fit of the baseline model,
which typically is a very poorly fitting model. In the baseline
model estimation, the imputed data will be dramatically dif-
ferent from the observed data because the imputed data will
have no correlations between the variables. Using a PPP
method that combines the imputed data and the observed
data, as the method implemented in Mplus 8.3 does, is
bound to badly distort the PPP value, much more so for the
baseline model than it would for other structural models that
are not as poorly fitting. Using the new PPP method we can
construct comparative fit indices that closely match their ML
analogues. We use simulation studies below to illustrate this
point.

Availability
Currently, the new PPP method is available only with con-
tinuous items, single-level models (i.e. not for multilevel
models), and is available for multiple group models. The
above logic, however, indicates that the method would apply
also for the case of missing categorical data as well as for
multilevel models. Future releases of Mplus would upgrade
the PPP in those situations as well.

Approximate fit indices

In this section, we discuss how the approximate fit indices
RMSEA, CFI and TLI used for the evaluation of SEM models
are adopted to the Mplus Bayesian framework. Approximate
fit indices are intended to circumvent a deficiency of rigorous
testing procedures such as the chi-square test of fit which can
reject a model even when the model misspecifications are
minor, i.e., substantively insignificant. Structural models
often involve a large number of variables and not all correla-
tions between the variables can be fully accounted for with

a simplified SEM model with a limited number of factors. If
the sample size is sufficiently large, a small difference between
the correlations observed in the data and the correlations
implied by the model can become statistically significant and
can be a reason to reject the model. Augmenting the model by
additional parameters such as residual correlations is one
possibility to deal with model rejections. If the model is
large, however, the process of adding parameters can become
tedious and can compromise the power of the model-based
inference. Adding more parameters to the model makes the
model less parsimonious and may increase the standard error
of its parameters. This in turn will likely compromise the
inference based on the model. In practical settings, it is
often desirable to retain a substantively driven model as
long as it fits the data approximately. Fit indices such as
RMSEA, CFI and TLI are typically used to evaluate the
approximate fit of a model. Hu and Bentler (1999) suggest
the following fit index cut off values for reasonably well fitting
models: RMSEA< 0:06, TLI> 0:95, CFI > 0:95. Browne and
Cudeck (1993) suggest an RMSEA cut off value of 0.05.

Hoofs et al. (2018) and Garnier-Villarreal and Jorgensen
(2020) propose different methods for adapting fit indices to
the Bayesian framework. The differences between these meth-
ods are fairly small in general, but the Garnier-Villarreal and
Jorgensen (2020) method appears to produce results closer to
the ML results and thus we have adopted this approach in
Mplus. To compute the RMSEA index, at each MCMC itera-
tion we compute

RMSEAi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0;

Dobs
i � p�

ðp� � pDÞN
� �s ffiffiffiffi

G
p

: (8)

Here i is the ith iteration in the MCMC estimation. Dobs
i is the

discrepancy function computed for the observed data at the
ith MCMC iteration. G is the number of groups in the model.
p� is the number of parameters in the H1 model. If p denotes
the number of dependent variables in the model and q
denotes the number of covariates in the model then
p� ¼ Gðpðpþ 3Þ=2þ pqÞ. pD is the estimated number of
parameters for the H0 model which is typically produced in
the Mplus output. pD is generally close to the number of
parameters in the H0 model when there are no informative
priors given for the model parameters. By default, Mplus
computes the discrepancy function every 10th iteration, for
every chain in the model. As with the PPP estimation, Mplus
uses only the second half of all iterations for inference. Thus,
if a model uses 1000 interactions to converge, using a 2 chain
estimation, then RMSEA is computed in a total of 2(500/
10) = 100 iterations. The quantities RMSEAi are used to
obtain the posterior distribution of the RMSEA, which is
then used to obtain the median, reported as the point esti-
mate, as well as the credibility interval for the RMSEA.

The computation of the CFI and TLI is similar. For CFI,
we compute

CFIi ¼ 1� Dobs
i � p�

Dobs
B;i � p�

; (9)
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where Dobs
B;i is the baseline model discrepancy function for the

observed data computed at the ith iteration of the baseline
model MCMC estimation. CFIi are then used to form the
posterior distribution for the CFI and from there we obtain
the point estimate and the credibility interval for the index.
Similarly, for TLI we compute

TLIi ¼
ðDobs

B;i � pDBÞ=ðp� � pDBÞ � ðDobs
i � pDÞ=ðp� � pDÞ

ðDobs
B;i � pDBÞ=ðp� � pDBÞ � 1

;

(10)

where pDB ¼ 2pG, i.e., we do not use the estimated number of
parameters for the baseline model but the actual number of
parameters. The baseline model is estimated with uninforma-
tive priors and thus the difference between the estimated and
the actual number of parameters is expected to be small. Both
TLIi and CFIi are truncated to the interval (0,1). The above
definitions are derived from the ML definitions where the chi-
square is replaced by Dobs

i � pD and the degrees of freedom
for the model is replaced by p� � pD.

The approximate fit indices are intended to be used when
the sample size is large, for example, when the sample size is
more than 100 or even 200. When the sample size is small, if
the PPP rejects the model, the differences between the data
and the model must be quite large and the approximate fit
should not be claimed regardless of what the fit indices are. If
the PPP does not reject the model, then we can be confident
that the model fits not only approximately well but also in the
usual exact sense.

The Bayesian framework has an advantage over the ML
framework as it provides credibility interval for all fit indices.
The credibility interval can be used to determine when the
sample size is too small to establish approximate fit. If the
sample size is small, the credibility intervals will be large and
most likely will contain the suggested cutoff values. When the
credibility interval contains the cutoff value we can not be
sure if the index is smaller or bigger than the cutoff value, i.e.,
the fit index is inconclusive. For CFI and TLI, if the 90%
credibility interval is above 0.95 we can claim that the model
is approximately well fitting with certainty of 95% or more. If
the credibility interval is below 0.95 we can claim with 95%
certainty that the model is not fitting the data even approxi-
mately. Similar logic applies to the RMSEA. Using the entire
RMSEA credibility interval, we reach one of the three possible
conclusions: the fit index is inconclusive (the credibility inter-
val contains 0.06), the fit index suggests that the model fits
approximately well (the credibility interval is below 0.06), the
fit index suggests that the model does not fit the data even
approximately (the credibility interval is above 0.06).

Comparative fit indices are constructed by comparing the
“distances” between the three models: the estimated model,
the H1 model and the baseline model. If the baseline model is
close to the H1 model, i.e., both models fit the data approxi-
mately well then there is roughly speaking not enough room
for the estimates model to differentiate itself from the baseline
model. Kenny (2015) recommends that RMSEA is computed
for the baseline model and if that value is less than 0.158 (i.e.

the baseline model provides a fairly good fitting model
although not approximately well fitting model), the compara-
tive fit indices CFI and TLI should not be used. RMSEA for
the baseline model of less than 0.158 can be interpreted as an
indicator that the distance between the baseline and the H1
model is too small (either due to small sample or due to very
small correlations between the variables or both).

In the ML estimation, when the H0 is the same as the H1
model, the CFI and TLI indices will both be 1. Similarly, if the
H0 model is the same as the baseline model the two fit indices
will be 0 in most cases. This will not be the case, however, for
the Bayesian estimator due to the fact that there is random
variation in the discrepancy function. Even if the H0 model is
the same as the baseline model, Dobs

B;i will not be the same as
the Dobs

i because in the i-th MCMC iteration the estimates for
the baseline and the H0 models will not be identical. The two
models are estimated by two different MCMC sequences even
though they are the same model in this instance.

In the next sections, we illustrate the performance of the
Bayes fit indices with several simulation studies.

Simulation example

In this section, we use the example depicted in Figure 1 in
Garnier-Villarreal and Jorgensen (2020). The model consists of
15 variables, Y1, …, Y15 measuring 3 factors f1, …, f3. The first
factor is measured by the first five variables, the second is
measured by the next five and the third is measured by the last
five variables. The intercepts for all variables are set to 0, the
factor loadings of the measurement model are set as follows
λ11 ¼ λ21 ¼ 0:7, λ31 ¼ 0:75, λ41 ¼ λ51 ¼ 0:8, λ62 ¼ λ72 ¼ 0:7,
λ82 ¼ 0:75, λ92 ¼ λ10;2 ¼ 0:8, λ11;3 ¼ λ12;3 ¼ 0:7, λ13;3 ¼ 0:75,
λ14;3 ¼ λ15;3 ¼ 0:8. There are two cross-loadings in the model
λ42 ¼ λ13 ¼ 0:5. The factor variances are set to 1 while the factor
covariances are set to ψ12 ¼ 0:5, ψ13 ¼ 0:3, ψ23 ¼ 0:4. The
residual variances of the indicators are set as follows
θ1 ¼ θ2 ¼ θ6 ¼ θ7 ¼ θ11 ¼ θ12 ¼ :51, θ3 ¼ θ8 ¼ θ13 ¼ :4375,
θ4 ¼ θ5 ¼ θ9 ¼ θ10 ¼ θ14 ¼ θ15 ¼ :36. We generate the data
according to the above model and we estimate the model with
three levels of misspecification. Level L0 does not have any
misspecifications. Level L1 estimates the model without the λ42
cross-loading. Level L2 misspecification consists of omitting
both cross-loadings. We also include MCAR missing data in
this simulation study and we vary the amount of missing data.

The average results for the Bayes and the ML estimators for
the three different fit indices for various sample sizes and
missing data levels are reported in Table 2. Each row in this
table represents the average result over 100 replications. Both
estimators produce nearly identical results when there are no
missing data. We can also see that the fit index stabilizes as
the sample size increases. This essentially makes the fit indices
independent of the sample size and a valuable alternative to
the chi-square test of fit and the PPP value. In the presence of
missing data when the sample size is small, some differences
between the fit indices are visible. The smaller the data and
the bigger the amount of missing data, the bigger the differ-
ence. The Bayes fit indices tend to be more lenient which
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roughly corresponds to the lower power of the PPP as com-
pared to the chi-square test of fit. As the sample size increases,
however, even with large amount of missing data, the ML and
the Bayes fit indices appear to converge to the same value.

Note again, however, that when the sample size is small,
the fit indices are irrelevant. Consider the L2 model with
sample size 300 and 50% missing data. With the Bayes esti-
mator, 51% of the replications were rejected using PPP while
all fit indices indicate approximately well fitting model in all
100 replications. If we compute the RMSEA for the baseline
model, we get an average value of 0.148, i.e., less than the
cutoff value of 0.158 recommended by Kenny (2015). The
sample size in this case is too small to properly evaluate the
approximate fit. Using PPP alone would be the preferred
choice. For comparison, with sample size 300 and 25% miss-
ing data, the RMSEA for the baseline model is .214 on aver-
age. Note here that using credibility intervals on the fit indices
is not helpful. The credibility interval for all three indices in
this case are all of 0 length. The issue of not having enough
distance between the baseline, the H0, and the H1 models can
be detected only by computing the RMSEA of the baseline
model. Note also that the ML fit indices CFI and TLI yield
strange results as well in this situation. These values are .159
and .157 and they are very different from the values obtained
for the same model with larger sample sizes.

We can also see in Table 2 how the chi-square and the PPP
testing fail to recognize that the L1 and L2 models are approxi-
mately well fitting models. As the sample size increases, the
tests reject the models without being able to provide a nuanced
conclusion regarding the level of misfit.

Using the credibility intervals for the fit indices

For our next illustration, we use the example depicted in
Figure 4 in Garnier-Villarreal and Jorgensen (2020). The
model has six observed variables and three factors and is
given by the following equations:

y1 ¼ μ1 þ η1 þ ε1 (11)

y2 ¼ μ2 þ λ2η1 þ ε2 (12)

y3 ¼ μ3 þ η2 þ ε3 (13)

y4 ¼ μ4 þ λ4η2 þ ε4 (14)

Table 2. Comparing Fit Indices: Average Values for Bayes/ML.

Sample size Missing Misspecification RMSEA CFI TLI PPP/P-value rejections

100 0% L0 .031/.029 .982/.985 .979/.981 .07/.18
300 0% L0 .012/.011 .997/.997 .996/.996 .02/.08
1000 0% L0 .005/.005 .999/.999 .999/.999 .02/.04
5000 0% L0 .002/.002 1.00/1.00 1.00/1.00 .01/.05
100 0% L1 .058/.056 .957/.960 .948/.951 .37/.65
300 0% L1 .050/.051 .971/.970 .964/.963 .92/.98
1000 0% L1 .051/.050 .970/.971 .964/.965 1.0/1.0
5000 0% L1 .051/.051 .970/.971 .964/.964 1.0/1.0
100 0% L2 .078/.075 .927/.931 .913/.917 .74/.90
300 0% L2 .071/.071 .942/.941 .930/.929 1.0/1.0
1000 0% L2 .071/.070 .941/.943 .929/.931 1.0/1.0
5000 0% L2 .071/.070 .942/.943 .930/.930 1.0/1.0
300 10% L0 .000/.012 1.00/.996 1.00/.996 .02/.10
1000 10% L0 .000/.005 1.00/.999 1.00/.999 .02/.10
5000 10% L0 .000/.002 1.00/1.00 1.00/1.00 .00/.02
300 10% L1 .034/.047 .982/.970 .978/.964 .90/.96
1000 10% L1 .044/.046 .974/.972 .969/.966 1.0/1.0
5000 10% L1 .046/.047 .972/.971 .966/.965 1.0/1.0
300 10% L2 .058/.066 .953/.941 .944/.928 1.0/1.0
1000 10% L2 .064/.065 .945/.943 .934/.931 1.0/1.0
5000 10% L2 .065/.066 .943/.942 .931/.930 1.0/1.0
300 25% L0 .000/.015 1.00/.994 1.00/.993 .00/.07
1000 25% L0 .000/.005 1.00/.999 1.00/.999 .01/.05
5000 25% L0 .000/.002 1.00/1.00 1.00/1.00 .01/.04
300 25% L1 .004/.041 .998/.969 .998/.962 .60/.83
1000 25% L1 .031/.039 .983/.973 .980/.967 1.0/1.0
5000 25% L1 .038/.040 .975/.972 .969/.966 1.0/1.0
300 25% L2 .033/.059 .977/.939 .973/.926 .97/1.0
1000 25% L2 .051/.057 .953/.944 .943/.932 1.0/1.0
5000 25% L2 .056/.057 .946/.943 .935/.931 1.0/1.0
300 50% L0 .000/.015 1.00/.168 1.00/.167 .00/.86
1000 50% L0 .000/.006 1.00/.998 1.00/.997 .00/.07
5000 50% L0 .000/.002 1.00/1.00 1.00/.999 .01/.08
300 50% L1 .000/.041 1.00/.164 1.00/.163 .05/.93
1000 50% L1 .000/.039 1.00/.976 1.00/.971 .86/.98
5000 50% L1 .023/.028 .983/.975 .979/.970 1.0/1.0
300 50% L2 .000/.059 1.00/.159 1.00/.157 .51/.98
1000 50% L2 .022/.040 .982/.947 .978/.936 1.0/1.0
5000 50% L2 .037/.041 .954/.946 .945/.935 1.0/1.0
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y5 ¼ μ5 þ η3 þ ε5 (15)

y6 ¼ μ6 þ λ6η3 þ ε6 (16)

η1 ¼ β12η2 þ β13η3 þ �1 (17)

η2 ¼ β23η3 þ �2 (18)

The parameters used for the data generation are as follows:
μi ¼ 0, λi ¼ 0:5, β12 ¼ :6, β13 ¼ �:435, β23 ¼ �:6. The resi-
dual variances for the six observed variables are set to 4.5, 3,
4.75, 2.5, 3, 2.5. The residual variances for the factors are set to
4, 5, 7. Two residual correlations are used for the data genera-
tion θ13 ¼ Covðy1; y3Þ ¼ 1:16 and θ24 ¼ Covðy2; y4Þ ¼ 1:1.

We consider the L2 model misspecification where the
residual correlations θ13 and θ24 are not included in the
model and where the direct effect parameter β13 is not
included as well. Table 3 shows the comparison between the
Bayes and the ML fit indices. For the RMSEA column in this
simulation, we also include a comparison between the
RMSEA method proposed in Hoofs et al. (2018) and the
RMSEA method proposed in Garnier-Villarreal and
Jorgensen (2020) as well as the ML-RMSEA. The results
show that the Garnier-Villarreal and Jorgensen (2020) method
is slightly closer to the ML values but the difference between
these two Bayes RMSEA methods disappears asymptotically.
The CFI/TLI fit indices are very close between the Garnier-
Villarreal and Jorgensen (2020) and the ML estimators.
Table 4 shows the rejection rates for the fit indices using the
cut off values 0.05 for RMSEA, 0.95 for CFI, and 0.95 for TLI.
Table 4 results are based on the Garnier-Villarreal and
Jorgensen (2020) method.

In the first row of Table 4 we see the somewhat unusual
situation where the model is rejected by the approximate fit
indices but is not rejected by the PPP value and the chi-square
P-value. When the sample size is 100, the rejection rates for
RMSEA/CFI/TLI are higher than the PPP/P-value rejection
rates. Such results are contradictory because if a model fits the
data exactly it should also fit approximately. Generally, we
expect the rejection rates of fit indices to be lower than that of
the PPP/P-value. This problem disappears quickly as we

increase the sample size. For sample size of 300, almost all
rejection rates climb to near 100% with the exception of the
CFI which is 85%. Regardless, the reversal of the rejection
rates disappears as the sample size increases to 300 or more.
The RMSEA for the baseline model with a sample size of 100
is .353. Clearly, this issue is not the same issue as the small
sample size problem discussed in the previous section, i.e., the
problem is not related to the H1, H0 and the baseline model
being too close to each other.

One possible way to deal with this rejection rate reversal is
to use the credibility intervals of the fit indices instead of their
point estimates. For example, when using the CFI criterion we
would reject the model if the entire 90% credibility interval
falls below the .95 cutoff value. Table 5 contains the rejection
rates using the 90% credibility intervals. The rejection rate
reversal is now eliminated for CFI, and almost completely
eliminated for TLI. For the RMSEA, the rejection rate is still
higher than that of the PPP but to a smaller extent. Using 0.06
as the cutoff value for the RMSEA improves the situation as
well. The rejection rate in that case drops down to 63%. If in
addition, we use the 95% credibility interval in the determina-
tion of the approximate fit we obtain a rejection rate of 56%
which is close to the PPP rejection rate. Regardless of which
approach is used, the PPP should take precedence in this
situation. If an approximate fit does not hold while exact fit
appears to hold, we can rely more on the exact fit test.
Approximate fit is a concept best suited for larger sample
sizes. If a reversal in outcome occurs, the natural explanation
is that the sample size is not sufficient to pursue the approx-
imate fit concept. Note also that the rejection rates between
Tables 4 and 5 did not change substantially for sample size of
300 and 1000. We conclude that the fit indices credibility
intervals approach is mostly useful for the small sample size
situations. In an Mplus simulation study, the credibility inter-
vals can be obtained by specifying the results option in the
Monte Carlo command.

Wald test in the Bayesian framework

Consider the situation when two nested models M1 and M2
are estimated and we want to test the hypothesis that the
more restricted model, say M1, provides as good of a fit to
the data as the less restricted model M2. Suppose that the M1
model is obtained from the M2 model by introducing para-
meter constraints on the M2 model parameters. With the
maximum likelihood estimation, this can be done using the
LRT test or the Wald test; however, neither of these two tests
are available in the Bayesian framework. The available options
in the Bayesian framework are the DIC criterion, the BIC
criterion and the PPP value. The BIC criterion can also be
used to compute the Bayes factor:

Table 3. Comparing Fit Indices: Average Values for Bayes/ML.

Sample size RMSEA CFI TLI

100 .077/.126/.139 .918/.924 .861/.838
300 .125/.137/.143 .921/.922 .849/.834
1000 .140/.143/.147 .921/.922 .841/.832

The RMSEA column contains: Bayes RMSEA Hoofs/Bayes RMSEA Garnier-Villarreal
/ML RMSEA.

Table 4. Rejection Rates Based on Point Estimates of Fit Indices: Bayes/ML.

Sample size RMSEA CFI TLI PPP/P-value

100 .97/.98 .79/.69 .90/.91 .40/.80
300 1.0/1.0 .85/.88 .99/1.0 .99/1.0
1000 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

Table 5. Rejection Rates Based on 90% Credibility Intervals of Fit Indices: Bayes.

Sample size RMSEA CFI TLI PPP

100 .68 .30 .54 .40
300 .99 .71 .95 .99
1000 1.0 1.0 1.0 1.0

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 11



BF12 ¼ ExpððBIC2 � BIC1Þ=2Þ; (19)

See Wagenmakers (2007). Neither of these methods are uni-
versally applicable. The DIC and BIC in many situations have
too much variability to provide a reliable answer. In two-level
models, for example, all random effects are treated as para-
meters in Mplus. Precise evaluation of DIC and BIC will
require a very large number of MCMC iterations. In addition,
DIC and BIC can not be computed for models with catego-
rical variables. The Bayes factor can be computed without
relying on BIC, see Hoijtink et al. (2019), but these methods
are not as simple as Equation 19. The main limitation of the
PPP method is that it does not test the hypothesis of M1 v.s.
M2 directly. Instead, it tests the hypothesis of M1 v.s. the
unrestricted model and M2 v.s. the unrestricted model. In
practical settings, both M1 and M2 might be rejected, or
both might not be rejected leaving us without a conclusion
on the hypothesis M1 v.s. M2. It is possible to modify the PPP
method so that the discrepancy function is the LRT of M1 v.s.
M2. This approach would have to mimic the algorithm
described earlier where both models are estimated. In this
section, however, we describe a Wald test-based alternative
that is simpler to implement than the PPP, is faster to com-
pute, applies to all modeling situations, and is more powerful.

If the M1 model is obtained from the M2 model by intro-
ducing just a single constraint in the parameters, it is possible
to directly test the M1 model by estimating the M2 model and
testing the validity of the parameter constraint using the M2
parameter estimates. This is typically done in Mplus by intro-
ducing a new parameter equal to the parameter constraint in
the Model Constraint command. The parameter constraint is
computed in every MCMC iteration. The validity of the para-
meter constraint is then evaluated through the credibility
interval of the constraint. If, however, the M1 model is
obtained from the M2 model by introducing multiple para-
meter constraints, such a process becomes difficult. Each
constraint must be evaluated separately and multiple testing
issues must be addressed. In the ML framework, the Wald test
resolves these issues seamlessly. Because the ML estimator is
asymptotically equivalent to the Bayes estimator, we can for-
mulate an equivalent Bayesian version of the Wald test. Here
we describe this test and evaluate its performance through
simulation studies.

Suppose that the M1 model is obtainedr from the M2
model by introducing the following L constraints:

0 ¼ W1ðθ2Þ (20)

� � �
0 ¼ WLðθ2Þ (21)

where θ2 represents the M2 model parameters. To test the
validity of the above constraints we estimate the M2 model.
Let θ2;i represent the i� th draw from the θ2 posterior dis-
tribution. These typically are obtained from the second half
draws of the MCMC estimation of M2. We then compute the
vectors Wi ¼ ðW1ðθ2;iÞ; :::;WLðθ2;iÞÞ. Let W represent the
sample mean of Wi and let S represent the sample variance–
covariance matrix. Under the null hypothesis that the model
constraint Equation 20–Equation 21 are correct,

T ¼ WS�1W
T

(22)

will asymptotically have a chi-square distribution with L
degrees of freedom just as this is so in the ML framework.
We can then use T as our test statistic and produce a P-value
similar to how this is done in the ML framework. The Mplus
implementation of this testing procedure is exactly the same
as in the ML framework, i.e., we use the Model Test command
to define the model constraints that need to be tested.

We illustrate the performance of the Bayes Wald test with
the following two-level CFA model. The model has 4 observed
variables Yi, i ¼ 1; :::; 4 measuring one factor on the within
level and one factor on the between level and is given by the
following equations:

Yi ¼ Yw;i þ Yb;i (23)

Yw;i ¼ λw;iηw þ εw;i (24)

Yb;i ¼ μi þ λb;iηb þ εb;i: (25)

All loading parameters are set to 1, the within level residual
variances are set to 1 on the within level and to 0.3 on the between
level, all means are set to 0, the factor variance is set to 1 on the
within level and to 0.4 on the between level. In this example, the
model M2 is the same as the generating model. The model M1 is
the model where the loadings on the within level are held equal to
the loadings on the between level. This model is of interest
because it implies that the between level factor can be interpreted
as the random intercept of the total factor represented by the sum
of the within and the between factor. If the loadings are not held
equal, such an interpretation is problematic. Since the first load-
ing is held fixed to 1 for identification purposes, the model
constraint equations that need to be tested are as follows:

λw;2 ¼ λb;2 (26)

λw;3 ¼ λb;3 (27)

λw;4 ¼ λb;4: (28)

We generate 100 data sets with C clusters each of size 20,
where C ¼ 100 or C ¼ 200. We analyze the data with the ML
and the Bayes estimators using model M2 and we compute
the Wald test for the above hypothesis. The results of this
simulation study are presented in Table 6. We see that the
type I errors are comparable for the two estimators. The
model rejection rates are near the nominal level of 0.05.

Next, we consider a simulation study to evaluate the power
of the Wald test for the ML and the Bayes estimators. To do
that, we generate the data using unequal between and within
loadings. We set λb;3 ¼ λb;4 ¼ 1:2 while the rest of the load-
ings are set at 1. The results of this simulation study are
presented in Table 7. We can see that the power of the
Wald test is comparable for the two estimators.
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It is interesting to point out here that neither the PPP nor
the DIC methods are able to provide an alternative. Consider
the case when the loadings are equal. While the DIC is smaller
for model M1 on average, when the DICs are compared
within each replication, the DIC picks the correct M1 model
only 56% of the time. This is due to the large variability of the
DIC. Because of the large number of estimated parameters,
which includes all random effects, it takes a very long MCMC
sequence to reduce the variability and obtain more accurate
DIC estimates. The PPP method is also unable to provide
efficient testing. The PPP has 0% rejection rates in both cases:
when the loadings are equal or when they are unequal. This is
due to the lower power associated with the PPP method.

Building approximately well fitting BSEM models

In this section, we illustrate how the approximate fit indices
can be used to obtain approximately well fitting BSEM
models. These kinds of models are discussed in detail in
B. Muthén and Asparouhov (2012) as well as Asparouhov
et al. (2015). The core of this modeling strategy is that when
a model does not fit well, we can add a multitude of addi-
tional parameters to the model. To preserve the original
structural model we assign tiny priors to all the additional
parameters, for example, Nð0; 0:00001Þ. If some of the addi-
tional parameters are needed to improve the model fit dur-
ing the estimation, they will be able to escape the tiny prior
and indeed help with the model fit. The rest of the para-
meters that do not improve the model fit will remain near
zero. We can then separate the parameters that escape the
tiny priors and potentially add those to the original model
or simply retain the BSEM model with the tiny priors.

The PPP plays a vital role in the BSEM modeling. It is used
to evaluate the fit of the original model as well as the fit of the
BSEM model based on the tiny priors. The PPP is used to
determine the size of the tiny priors as well. To build approxi-
mately well fitting BSEM models, as an alternative to the
perfectly fitting BSEM models, we simply replace the PPP
role in this process with the approximate fit indices. The
final outcome of this modeling strategy is that we can obtain
a BSEM model that more closely resembles the substantively
drawn model. This would be particularly useful when the
sample size is large and many small deviations between the
data and the model become significant. In such situations,
using the PPP as a criterion may result in bigger priors and
many more added parameters, both of which are undesirable.

We illustrate this process with the following simulated exam-
ple. Consider a two-factor analysis model where each factor is
measured by 7 indicators for a total of 14 dependent variables.
The first seven variables measure the first factor while the last
seven variables measure the second factor. We set all intercept
parameters to 0, all loading parameters to 1, all residual var-
iances to 1, all factor variances to 1 and the factor covariance to
0. In addition, we introduce four cross-loadings λ12 ¼ λ22 ¼
λ81 ¼ λ91 ¼ 0:3 and four residual covariances between the indi-
cators θ4;5 ¼ θ6;7 ¼ θ11;12 ¼ θ13;14 ¼ 0:15. Using this model we
generate a data set of size N ¼ 5000.

The first step in the estimation is to evaluate the model
excluding any cross-loadings or residual covariances. The out-
come of that estimation is as follows: PPP ¼ 0,
RMSEA ¼ 0:063, CFI ¼ 0:948, and TLI ¼ 0:938. Clearly, the
model fits fairly well but not well enough to claim exact fit or an
approximate fit. Next, we add to the model all cross-loadings,
a total of 14, with a tiny prior Nð0; vÞ. Without the tiny priors,
such a model will be of course unidentified. When the tiny
priors are introduced, however, all cross-loadings can be esti-
mated. Table 8 contains the fit measure results for several values
of v. We can see that the fit of the model improves as we
increase v but the improvements are minimal after v ¼ 0:001.
We therefore select this as our approximately well fitting BSEM
model. We pick the best fitting model with the smallest v.
Choosing the smallest v is important as that will minimize the
size of the cross-loadings. All three approximate fit indices
suggest that this is a well fitting model, while the PPP still rejects
the model primarily because the large sample size and the fact
that some of the covariances are not fitted well enough.

We can choose to retain the above BSEM model as our
model of approximate fit or we can go further to analyze the
cross-loadings and retain only those that are needed. This way
we convert the BSEM model to a standard SEM model that is
not based on tiny priors but uses non-informative priors. The
sizes of the estimated cross-loadings in the BSEM model in
order of magnitude are as follows: 19, .18, .18, .16, .10, … . We
can include these large cross-loadings to the original SEM
model in order of magnitude (or statistical significance) one
at a time. First, we estimate the model with the largest cross-
loading, then with the largest two, etc. Table 9 reports the fit
of the model as we include the top L cross-loadings. The
model fit improves as we add up to four loadings and it
does not improve when we add the fifth. This clearly indicates
that four cross-loadings is the right choice, confirming the
model that generated the data. Note also that the SEM model
with four cross-loadings matched the fit of the BSEM model
with all of the cross-loadings. We conclude that we have
extracted all of the possible fit improvement with just those
four cross-loadings.

Table 6. Type I Error for Wald Test: Rejection Rates.

C Bayes ML

100 .10 .11
200 .05 .04

Table 7. Power Analysis for Wald Test: Rejection Rates.

C Bayes ML

100 .22 .22
200 .44 .48

Table 8. Fit of BSEM Model Based on Different Tiny Priors.

v PPP RMSEA CFI TLI

0.00001 .000 .060 .951 .944
0.0001 .000 .050 .968 .961
0.001 .000 .036 .986 .980
0.01 .000 .034 .987 .982
0.1 .000 .034 .987 .982
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In this process, we obtained approximately well fitting
BSEM and SEM models without having to pursue acceptable
PPP value. We ignored the small residual correlations in the
data, which are the reason for the PPP rejections. We retained
the main structure of the CFA model and improved the model
fit with the addition of the small cross-loadings. In conclu-
sion, this illustration shows how the approximate fit indices
can be used to extend the BSEM methodology to the frame-
work of approximate fit.

Discussion

In this note, we demonstrate the advantages of the new model
fit methods implemented in Mplus 8.4. Approximate fit
indices provide a valuable tool in the Bayesian framework.
Some challenges remain, however. Using approximate fit
indices in small sample size situations is not recommended.
The exact fit methods should be preferred instead. The pro-
blem is that it is unclear at what level of sample size the switch
between these two methodologies should occur. It is unclear
how that level of sample size depends on the complexity of the
model. We described two distinct situations where approxi-
mate fit indices fail for small sample sizes. The first one is
when the distance between the baseline and the H1 model is
too small. The second situation is when we have rejection rate
reversals. Clearly, further research is needed on this topic. Our
simulations show that these problems are not related only to
the Bayes estimator but also to the ML estimator. Maydeu-
Olivares et al. (2018) focus their research on the confidence
limits of the fit indices. In our simulations, such an approach
resolved the rejection rate reversal problem to some extent.
Mplus 8.4 simulation studies now include summary results
also for the CFI and TLI indices for all estimators, as well as
their credibility limits obtained with the Bayes estimator. This
new feature could possibly facilitate further research or could
enlighten real data applications.
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