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In this note we describe the methodology used in Mplus to analyze im-
puted data with the Bayesian estimator. The estimation comprises of esti-
mating each imputed data set separately and then combining the posterior
parameter distributions into a total posterior parameter distribution. If p
represents the model parameters, X represents the observed data, X∗ rep-
resents the missing data, and X∗

i represents the imputed data in the i−th
imputed data set,

[p|X, priors] =

∫
[p|X,X∗

i , priors] d[X∗
i |X]

and therefore

[p|X, priors] ≈ 1

M

M∑
i=1

[p|X,X∗
i , priors]

where M is the number of imputed data sets. The last equation implies that
combining the posterior distributions for the imputed data with equal weight
produces the correct final posterior distribution. This final posterior is then
used to obtain credibility intervals, point estimates as well as standard errors.

To ensure that the posterior distribution [p|X,X∗
i , priors] is equally weighted,

it is necessary to estimate each imputed data set with the same number of
iterations. As usual in Mplus, the second half of the MCMC chains is used to
construct [p|X,X∗

i , priors]. If the number of iterations is the same for each
imputed data set, the final posterior distribution will be an equally weighted
mixture of all posterior distributions. In Mplus this is implemented as fol-
lows. The number of iterations is specified as a fixed number of iterations,
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using the FBITER option in the ANALYSIS command. Mplus analysis for
non-imputed data with this option is generally treated as a converged esti-
mation. The PSR convergence criterion is not checked and it is assumed that
the number of iterations FBITER is chosen to be sufficiently large so that
convergence is achieved. FBITER can also be used to obtain an approximate
posterior distribution of the parameters even if complete convergence is not
achieved. This is not the case for Mplus imputed data estimation. For im-
puted data, Mplus must be provided with the number of iterations FBITER,
however, the PSR convergence criterion (controlled via the BCONV option)
is evaluated. If convergence is not satisfied at the end of the estimation pro-
cess, the posterior distribution for that imputed data set is not included. It is
therefore important to check the number of completed estimations, either in
the summary of the estimation or in the TECH9 output where convergence
problems are reported. If the estimation for some of the imputed data sets
is not complete, the FBITER option must be increased until all replications
have converged. Finding the needed number of iterations FBITER, which en-
sures that all replications converge, may require running several preliminary
runs. One reasonable strategy is to first run one imputed data set without
FBITER to determine the number of iterations needed for convergence. In a
second step, double the number of these iterations, and analyze all imputed
data sets with this FBITER number.

It should be noted here that using the Bayesian estimator to analyze
imputed data sets should be limited to a few specific situations only. It
should not be used routinely to deal with missing data as in most situations
analyzing the incomplete data (with the Bayesian estimator) is simpler and
equally efficient. Here we describe some situations where it is reasonable to
use this approach.

• In some situations, it may be desirable to impute the missing data from
a model that is different from the estimated model. The imputation
model may be set to a simpler model if the desired model is difficult
to estimate in the presence of missing data. The imputation model
can also be set to a more complex model. For example, it is reason-
able to impute the data from an unrestricted model and then analyze
the imputed data with a structural model. Such an approach could
be useful when the structural model is potentially misspecified. The
approach would prevent potential problems arising from the fact that
the internally imputed data is generated from potentially an incorrect
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model.

• In certain situations, it may be necessary to first impute the data due
to limitations in the available estimators. For example, covariates in
Mplus are not allowed to have missing values. The covariates would
have to be converted to dependent endogenous variables to prevent
listwise deletion. In some situations, this approach might not be desir-
able. The missing data can be imputed in one step and analyzed in a
separate step where the covariates are treated as exogenous variables.

• In certain situations, it may be necessary to conduct the estimation
in two steps. The first step would involve generating plausible values
for random effects or latent variables. In the second step a non-linear
transformation is applied to those plausible values to construct new pre-
dictors or dependent variables. Plausible values are essentially imputed
missing values and must be analyzed as such. The second step in the
estimation would require analyzing the imputed and transformed data
as described in this note. One such example is a multilevel modeling
of cycles by sine-cosine where the subject specific random coefficients
for the sine and cosine functions are transformed into amplitude and
phase for subsequent analysis.

• In some situations, the data set is already imputed and the incom-
plete/unimputed data is not immediately available, although compar-
ing just two imputed data sets can be used to reveal which values are
imputed and which are not, when the data is continuous. When the
data is not continuous, all imputed data sets would have to be com-
pared.

The posterior predictive p-value is not computed in Mplus with imputed
data as the methodological challenges appear to be currently unresolved. The
Wald test, however, can be used via the MODEL TEST command.

When the ML estimator is used with imputed data, the asymptotic vari-
ance for the parameter estimates is computed as follows

V =
1

M

M∑
m=1

Vm +
M + 1

M(M − 1)

M∑
m=1

(pm − p̄.)2

where pm is the parameter estimate for the m-th imputed data set, p̄. is
the average estimate, and Vm is its asymptotic variance of pm. When the
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Bayes estimator is used with imputed data, the variance of the posterior
distribution is computed as follows

V =
1

M

M∑
m=1

Vm +
1

M

M∑
m=1

(pm − p̄.)2

where pm is the sample mean of the posterior distribution for the m-th im-
puted data set, Vm is the sample variance of the posterior distribution for
the m-th imputed data set, and p̄. is the sample mean of the combined/total
posterior distribution. In this case, the variance is also the sample variance of
the total/combined posterior distribution. The two summation terms in the
above formulas represent the decomposition of the variance as within (vari-
ation within imputed data set) and between (variation between the imputed
data sets). The two formulas are equivalent under the following asymptotic
conditions.

• The sample size is sufficiently large, which ensures that the posterior
distribution is asymptotically normal/symmetric. In this case the ML
mode estimate would be the same as the median estimate used with
the Bayes estimator, i.e., pm and Vm are asymptotically the same for
the two estimators

• The number of iterations in the MCMC estimation is sufficiently large
so that the sample mean and variance pm and Vm are asymptotically
the same as the true mean and variance of the posterior distribution

• The number of imputed data sets M is sufficiently large so the term
(M + 1)/(M − 1) converges to 1

The last requirement can be quantified as follows. Using 50 imputed data
sets, the standard errors obtained with the Bayes estimator would be within
2% of the standard error obtained with the ML estimator. Using 100 imputed
data sets, the standard errors obtained with the Bayes estimator would be
within 1% of the standard error obtained with the ML estimator. For smaller
M , the Bayes estimator standard errors would be smaller than those obtained
with the ML estimator. At least M = 50 imputed data sets should be used
with the Bayes estimator. However, the standard error estimates would be
very close even with a smaller M . If the amount of missing data information
(ICC) is large and M is very small, such as M = 5, a more noticeable
difference between the two estimators can occur.
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Table 1: Comparing the ML and Bayes Estimator results on multiply im-
puted data: Estimate(SE)

Estimator M µ1 v1 ρ
Bayes 5 -0.06(.066) 1.05(.088) 0.55(.068)
ML 5 -0.06(.073) 1.04(.092) 0.54(.073)

Bayes 10 -0.05(.060) 1.02(.085) 0.55(.068)
ML 10 -0.06(.063) 1.01(.086) 0.53(.068)

Bayes 20 -0.03(.068) 1.04(.103) 0.55(.071)
ML 20 -0.03(.069) 1.04(.104) 0.55(.071)

Bayes 50 -0.03(.068) 1.02(.099) 0.54(.071)
ML 50 -0.02(.070) 1.02(.098) 0.53(.070)

Bayes 100 -0.03(.066) 1.02(.097) 0.54(.071)
ML 100 -0.03(.067) 1.01(.096) 0.53(.070)

Bayes Incomplete -0.02(.063) 1.02(.092) 0.54(.068)
ML Incomplete -0.03(.063) 1.00(.092) 0.53(.068)

Next we illustrate the performance of the Bayes estimator with a simu-
lated example. We generate two variables Y1 and Y2 with a standard normal
distribution and correlation of 0.5. Missing data is generated for Y1 as follows

P (Y1 is missing) =
1

1 + Exp(Y2)
.

This missing data mechanism is MAR (not MCAR) and yields approximately
50% missing data for Y1. A single data set is generated with 500 observations.
The data set is used to obtain M imputed data sets using the unrestricted
bivariate model. The data are then analyzed as incomplete and as imputed
with both the ML and the Bayes estimator. The results for the 3 parameters
affected by the missing data treatment: µ1 = E(Y1), v1 = V ar(Y1) and
ρ = Cov(Y1, Y2) are reported in Table 1. The results indicate that the ML
and the Bayes estimators perform similarly and that the incomplete data
estimation results are similar to the imputed data estimation results. The
results also indicate that some improvement in the precision of the estimates
and the standard errors is obtained by increasing M to 100 but the gains are
rather small.
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Figure 1: Mplus options for generating and analyzing imputed data

Analyzing imputed data with the Bayesian estimator is implemented in
Mplus version 8.6, and it is not available in earlier versions. On page 576
of Mplus User’s Guide Version 8, a diagram presents the possible options in
generating and analyzing imputed data. An updated version of this diagram
is presented in Figure 1 which reflects the fact that imputed data can now
be analyzed also with the Bayes estimator.
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