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1 Introduction

This note discusses Bayes computations in Mplus. In version 8.3, a major effort
has been made to speed up the Bayesian computations. In some cases, the
computing time has been cut in half and even cut to a fifth of the time in Version
8.2. A key part of the success of this work is the use of a new approach of
parallelized computing. As background for this development, Section 2 discusses
how computational speed is influenced by the number of iteration chains, CPU
processors, and analyses run at the same time. Section 3 discusses the new
parallelized computing and gives a guide to how it can be most efficiently used on
different computers. Section 4 provides timing examples in realistic settings.

2 Chains, Processors, and Copies

Bayesian MCMC estimation is based on multiple chains of iterations computed
independently. The number of chains is controlled by the Chains option in Mplus.
The Mplus default is 2 chains and that choice is optimal in most situations. The
choice regarding the number of chains should be driven primarily by these two
factors:

1. minimize the number of MCMC iterations needed for convergence

2. minimize the probability of premature or false convergence

Models that are somewhat poorly identified and poorly mixing models can benefit
from increasing the number of independent chains in the computation to reduce
the probability of false convergence. Generally, however, 2 chains is enough
in most cases. Estimation using a single chain usually increases the number
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of iterations needed for convergence and it increases the probability of false of
premature convergence.

Because the MCMC chains are independent of each other, they can be run in
parallel on different processors, that is, on different CPU threads or CPU cores;
for a description of technical terms, see

https : //www.howtogeek.com/194756/cpu−basics−multiple−cpus−cores−
and− hyper − threading − explained/.
This reduces the amount of computational time. In Mplus, the number of
processors is controlled by the Processors option (referred to as Proc here).
Note, however, that the Mplus default is 1 processor. Thus by default Mplus
will not estimate the chains on different processors unless the Proc option is
used. Proc = 2 has been the recommended setting. Note also that most
PCs available on the market today are equipped with multiple processors. For
example, most Intel i7 processors have 4 cores and 8 threads. This means that 4
(almost) independent processors are available for use and that number could be
as high as 8 in certain computations. The i9-9900K has 8 cores and 16 threads.
Therefore, utilizing the Proc option, we can easily reduce the computational
time. For example, given that a CPU has two cores (processors) or more, and
the model estimation is based on the Mplus default of 2 chains, specifying the
Proc=2 option would reduce the computational time by almost a half, simply
because the two chains will be executed in parallel, i.e., at the same time rather
than sequentially. Note, however, that this assumes that no other work is being
performed on the same computer.

Most CPUs have multiple cores (and threads) but these cores are not
completely independent of each other. The cores usually share many other
components within the computer such as BUS speed, CPU cache, memory, etc.
To illustrate this, we conduct the following experiment. Using the User’s Guide
example 9.32, we record the computational time for 2000 MCMC iterations (per
chain) and we vary the number of chains in the estimation and the number of
processors in the estimation. We also vary the number of copies of the example
run at the same time to illustrate running several analyses at the same time.
The experiment is conducted on a Windows machine with CPU i7-4710HQ which
features 4 cores and 8 threads. The results are presented in Table 1.

We can see that increasing the number of processors from 1 to 2 (when
copy=1 and chains=2) indeed reduced the time substantially from 35 seconds
to 19 seconds. This is not quite a 50% reduction for two reasons. Running the
two chains in parallel has two sources of overhead. The first one is within Mplus
where the chains wait for each other and compare the results every 100 iterations
to determine convergence. The second overhead is within the CPU itself because
of the fact that the two cores are not completely independent of each other. In
this example, both overheads are fairly small and the reduction in computational
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Table 1: Computation time in seconds for User’s Guide example 9.32

Copies Chains Processors Time

1 2 1 35

1 1 1 18

1 2 2 19

1 3 3 24

1 4 4 30

2 2 2 29

2 1 1 18

4 1 1 27

time due to the parallel computing is 46%, instead of 50% (which would be the
case if there was no overhead in the parallel computing).

Next, notice that the time increases dramatically when comparing the cases
where Chains=Processors (and copy=1) as the number of chains increases. In
this comparison, the time increases from 18 seconds to 30 seconds. This points
out that the overhead of parallel computing jumps dramatically beyond the case
of 2 chains. This jump in the overhead is mostly due to the CPU and the lack
of independence between the cores, i.e., the cores interfere with each other and
are unable to effectively utilize the parallel algorithms of Mplus. This particular
CPU appears to be able to sustain 2 independent parallel computations with no
interference but anything higher than that yields fairly substantial dependence,
i.e., the effective number of cores for this CPU is 2.

Fortunately, newer CPUs have less interferences between the cores (i.e. i9 or
newer i7 CPUs) due to increases in Cache, BUS speed, memory speed etc. These
have a higher number of effective cores (although that number is still lower than
what the CPU is advertised with). The level of interference between the cores is
CPU specific and it should be tested and analyzed (with a similar experiment) to
determine the best possible setup for Mplus analyses.

Table 1 shows the interference between the cores in a different way as well.
If we compare the case of (Proc=1, Chain=1) run as one copy, two copies and
four copies, we see that running two copies yields the same computational time
as running a single copy, but running 4 copies at the same time yields 27 second,
i.e., a 9 seconds increase. This is again due to the fact that the CPU can handle 2
processors fairly well but with 4 processors the interference between the processors
prevents us from getting a good timing result.

3



3 New parallel algorithms in Mplus 8.3: Proces-

sors > Chains. Nested parallelism.

Prior to Mplus version 8.3, the Bayesian computation in Mplus could be
parallelized in only one way. Different chains could be computed by different
processors. This means that Mplus was unable to utilize more processors than
the number of chains, i.e., using the Mplus default of 2 chains, it was not possible
to utilize more than 2 processors to estimate a model. In Mplus 8.3, we have
implemented new Bayes algorithms for all models, except cross-classified models,
which allow us to use more than one processor for each chain. We refer to
this within-chain parallelization as nested parallelism. There are two stages of
parallelism nested within each other. First, the algorithm is made parallel as the
two MCMC chains are computed in parallel. Second, the computation within
each chain is further parallelized so that more than one processor can be utilized
for the computations of that chain.

The new parallel within-chain computation works approximately as follows.
Suppose that 2 processors are available for computing one MCMC chain. The
MCMC computations are by nature very sequential / non-parallel. The algorithm
updates one quantity given all other. If, however, two parameters/latent
variables/random effects are conditionally independent (given everything else),
they can be updated simultaneously on different processors. Thus a new MCMC
parallelization algorithm can be implemented where such conditionally indepen-
dent quantities are identified and distributed across the available processors.
Quantities that can not be paired with other quantities under this conditional
independence setting are not updated in parallel. Only one processor can be
used to update such quantities while the other processors will be waiting for this
updating step to occur.

Due to the complexity of the algorithm, the overhead of the nested parallel
computation will be substantially larger than the case of the standard parallel
computation where Processors=Chains, available in Mplus 8.2 and earlier versions.
The second important fact here is that because the stream of the random number
generator is different, the final results of the model estimation will be slightly
different when nested parallelism is used (note that this is not new given that
slightly different results are to be expected with Bayes when different number of
iterations are used). Let’s illustrate this point with an example. Suppose that a
model is estimated with 2 independent chains on two separate processors. Each
processor is assigned a random number generation stream, i.e., each chain will be
estimated with one random generation stream. When the same model is estimated
on 4 processors, each with its own random number generation stream, each chain
will be using 2 random number streams and therefore will not produce the same
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Table 2: Computation time in seconds for User’s Guide example 9.37

CPU1 CPU2 CPU3 CPU4
i7-4710HQ i7-3770 i7-8700k i9-9900k

4 cores 4 cores 6 cores 8 cores
8 threads 8 threads 12 threads 16 threads

Mplus Processors 2014 2012 2017 2018

8.2 2 114 107 72 69

8.3 2 57 58 38 36

8.3 4 54 35 24 22

8.3 6 57 44 25 21

8.3 8 50 36 27 29

8.3 10 64 50 27 33

result as the 2 processor estimation. Of course, if the MCMC chains are run
sufficiently long, then the outcomes should be nearly identical.

Note that the improvements of the nested parallelism algorithm come in
addition to other Bayes speed improvements in Mplus 8.3 due to faster algorithms
not related to parallel computing at all.

We illustrate the new nested parallel algorithm with User’s Guide example
9.37, estimated with 2 chains and 3000 MCMC iterations in each chain, where we
vary the number of processors and the CPUs. The number of processors should
be a multiple of the number of chains. In this illustration we use 2, 4, 6, 8, and
10 processor estimations. We use 4 different CPUs for the illustration and their
specifications and release year are given in Table 2. For comparison purposes, we
also include the results of Mplus 8.2 with 2 processors. Note that a number of
processors higher than 2 does not affect the computational time in Mplus 8.2 and
nested parallelism is not available prior to Mplus 8.3.

The timing results presented in Table 2 can be used to draw several conclusions.
Using just 2 processors, Mplus 8.3 is almost twice as fast as Mplus 8.2. This timing
improvement, however, is model specific. The biggest timing improvements in
Mplus 8.3, unrelated to the nested parallelism, are for cross-classified models (see
the Figure 1 Example 11 which is UG ex9.39b) and for three-level models (see the
Figure 1 Example 8 which is UG mcex9.21). Many other models, however, will
be noticeably faster in Mplus 8.3.

Note also that the choice of 10 processors did not result in the fastest
computation. CPU1 and CPU2 have 4 cores with 8 threads, i.e., there are not
10 processors on these machines. CPU3 has 6 cores and 12 threads. CPU4 has 8
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cores and 16 threads. Essentially CPU3 and CPU4 also do not have 10 processors.
This is because threads interfere much more with each other than cores. Using
the incorrect number of processors made the computation substantially slower on
all the CPUs than with a more optimal choice of the number of processors. The
more processors that are used in the computation, the bigger the overhead from
the Mplus-MCMC algorithm as well as the overhead from the system parallel
computing capability.

These results also show how system dependent the timing results are.
Increasing the number of processors from 2 to 4 reduced the computational time
by 5% on CPU1, by 40% on CPU2, by 37% on CPU3, and by 39% on CPU4. The
optimal number of processors for CPU1 is 8 while for CPU2 and CPU3 it is 4 and
for CPU4 it is 6. The older CPU1 and CPU2 displayed no clear monotonic or
functional relationship between the number of processors and the computational
time, while the newer CPU3 and CPU4 displayed a hyperbolic behavior with
the most optimal number of processors being in the middle (the bottom tip of
the hyperbola). Thus, the newer processors’ behavior is more in line with our
understanding of parallel computing. Adding more processors to the computation
would generally improve the speed until we add too many processors, at which
point the overhead is so great that the timings will start to increase. If X is
the number of processors used in the computation, P is the computational time
that can be made parallel, S is the computational time that cannot be made
parallel, and O is the overhead for every processor, we would expect the total
computational time to be the following hyperbolic function

P

X
+ S + X ·O. (1)

Thus, even if we have an infinite supply of processors, the optimal number of
processor which minimizes the above function, i.e. X =

√
P/O, will be a finite

number.
Note that the optimal choice for the number of processors also depends on

the actual example, i.e., the timing comparison results in Table 2 will be different
for a different example. More complex models and models with larger data sets
are more likely to benefit from a larger number of processors. Better hardware
is much more likely to have more benefit for big computations with large data
and large number of variables. Even within the same example, the optimal choice
of the number of processors may depend on the output requests and the plot
requests specified in the input file. Such requests change the overhead of the
parallel computing as steps that are not parallel could be weighted more with
output and plot requests.

Note also that the examples we used here for illustration had a fixed number
of iterations. If the number of iterations is not set to a fixed number but

6



is determined by the convergence of the model, then changing the number of
processors would change randomly the number of iterations to convergence, which
would affect the final computational time.

Because of these complexities it is difficult to universally recommend the
number of processors to use. A safe choice appears to be 4 processors with 2
chain computations. This is obtained by simply saying Proc = 4 because 2
chains is the default. Older CPUs, however, may not work well even with that.
Perhaps the most reliable method for selecting the number of processors to use in
the Bayes estimation on a specific computer is to perform a limited experiment
as the one we conducted here, using a small number of prefixed iterations.

Another issue that we have noticed is that older CPUs do not consistently
produce the same time estimates. Larger timing variations occur with older CPUs
than with newer CPUs. This is most likely related to the ability of the CPUs to
handle the complexity of the Mplus parallel algorithms. Newer CPUs are clearly
better suited to utilize these algorithms than older CPUs. Clearly CPU4 produced
the best results for this example, which is expected since this CPU is the latest in
the Intel product line, however, CPU3 is not far behind and the difference between
the two appears to be marginal. The differences with the newer CPUs and the
older CPUs, however, are substantial. We also see from the above results that the
effective number of cores for CPU4=i9-9900k is probably closer to 6 (not 8 which
is the actual number of cores), while for CPU3=i7-8700k the effective number of
cores is probably closer to 4. This means that CPU4 may have bigger advantages
over CPU3 for more computationally intensive examples.

4 Timing examples

This section discusses timings for 11 examples where the complexity of the models
and the number of iterations correspond to common real-data situations. Table
3 gives the timings for two different computers and using different number of
processors specified by the Proc option. The i7-7700 computer uses 4 cores while
the i9-9900 computer uses 8 cores. For both computers, comparisons can be
made to timings of Mplus Version 8.2 which uses Proc = 2. The examples are
divided into the analysis areas of single-level analysis, two-level analysis, three-
level analysis, and cross-classified analysis.

As a separate speed-up effort from the nested parallelism discussed in Section
3, the Bayes timing improvements in version 8.3 are also due to code changes
that make several key algorithms more efficient. The effects of more efficient
algorithms can be studied by comparing timings of version 8.3 runs using Proc
= 2 with those of version 8.2 runs using Proc = 2. For examples using cross-
classified analysis, this is the only source of speed improvements. The effects of
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the nested parallelism can be studied by comparing Proc > 2 runs with Proc =
2 runs.

The characteristics of the 11 examples are as follows. The number of iterations
was chosen to provide a clear indication of convergence and set so that all runs
for a given example use the same number of iterations. The examples are run one
at a time with no other activities on the computer.

• Ex1 is a single-level factor analysis with ordinal factor indicators, N=13833,
3000 iterations.

• Ex2 is the UG mcex9.29 two-level factor analysis with covariates and a
random factor residual variance modified to 810 clusters, N=8000, 10000
iterations.

• Ex3 is the UG ex 9.37 two-level time series (DSEM) example with 4 random
effects including a trend and a random variance, N=200, T=100, 10000
iterations.

• Ex4 is a two-level time series (RDSEM) example with 9 random effects
including 2 random variances, N=230, T=100, 2000 iterations.

• Ex5 is a two-part time series (RDSEM) example with trend and a binary
level-2 outcome, N=230, T=100, 2500 iterations.

• Ex6 is a two-part time series (RDSEM), N=230, T=100, 2000 iterations.

• Ex7 is the UG ex mcex9.21 three-level mediation model with 10 replications,
50 level 3 clusters, 30 level 2 clusters, N=7500, 1000 iterations.

• Ex8 is the UG ex mcex9.26 cross-classified IRT model with 50 random items,
10000 subjects, 1000 iterations.

• Ex9 is the UG ex 9.27 cross-classified factor model with a trend, random
loadings and intercepts and 75 subjects, T=100, 3000 iterations.

• Ex10 is the UG ex9.38b cross-classified regression model with random
slope, random residual variance, and random AR(1), N=200, T=100, 2000
iterations.

• Ex11 is the UG ex9.39b cross-classified regression model with random slope,
random residual variance, random AR(1), and a linear trend, N=200,
T=100, 7800 iterations.
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The top section of Table 3 shows results for the older and slower i7 computer
and the bottom section shows results for the newer and faster i9 computer. In
each section, the first column shows the timings for version 8.2 which can benefit
from only Proc=2. The other columns show results for version 8.3. Also shown
for each computer is the percentage time used by version 8.3 with different number
of processors relative to the time used by version 8.2 with Proc = 2. The results
will first be discussed for Proc values not exceeding the number of cores for the
two computers, that is, 2 and 4 for the i7 computer and 2, 4, 6, and 8 for the i9
computer.

Example 1 shows that for the i7, the Proc=4 run takes only 61% of the time
it takes in version 8.2. The i9 Proc=4, 6, and 8 runs show the increasing benefits
from the nested parallelization, reducing the time to 60, 55, and 50%, respectively
of the version 8.2 Proc=2 run.

The Example 2 runs for the i9 show that Proc=6 and 8 can not be universally
recommended in that for this example, Proc=4 gives the largest reduction in time.
As discussed in Section 3, in an example like this where each iteration is rather
fast, the overhead for the nested parallelization will be relatively bigger. The
same feature is seen for Proc=8 in the relatively fast Example 3. In contrast, the
slower examples in this two-level time series section have timing improvements for
both Proc=6 and 8, even cutting the time to 20% for Example 5 with Proc=8.

For the cross-classified examples 8 - 11, no timings are given for Proc >
2 because no nested parallelization has been made. The effects of using more
efficient algorithms are seen in the Proc=2 columns. For example, Example 11
shows a reduction in time to 25% for both the i7 and i9 computer.

When Proc exceeds the number of cores of the two computers, the results are
more unpredictable. There are examples where the use of more processors results
in better timings. With the i7 computer, Example 1 is faster for Proc=6 and 8
than for 4. With Proc=8, the time relative to Proc=2 is 46%. For Example 6
with Proc=8, 44% is obtained. For Example 7 with Proc=8, 36% is obtained.
Example 5, however, sees an increase in time when using Proc=6, in this case
mainly due to using considerably more iterations. With the i9 computer, several
examples get worse timings with Proc greater than the number of cores, that is,
10 and 12. An exception is Example 1 which is faster using Proc= 10 and 12.

In summary, most of the benefit from i9 over i7 is due to being able to use more
processors more efficiently. For 2 and 4 processors, the percentage improvement
in the i9 over the i7 is not that large. For both the i7 and the i9, Proc=4 gives
a substantial time improvement over Proc=2. Several, more time-consuming
examples, benefit substantially from being able to effectively use Proc=6 and 8
with the i9. For less time-consuming examples, Proc=4 is a safer choice.
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