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1 Introduction

In this note we describe the residual dynamic structural equation model (RD-
SEM) where the times of observations are continuous variables. The RDSEM
model described in Asparouhov, Hamaker and Muthén (2018) assumes that
variables are observed along a discrete time frame. The method also includes
an algorithm for approximating continuous times of observations with a dis-
crete time frame. This algorithm requires a time interval specification and is
referred to in the Mplus language as TINTERVAL. The timeline is divided
into sequential time periods of the same length. For example, if the time
interval is a 2-hour period, the timeline in hours is divided in periods (0,2],
(2,4], (4,6], etc. Each observation is then assigned to the time period the
observation occurred. Time intervals without any observations are then as-
signed missing values. The smaller the time interval is the more accurate the
approximation is. However, the smaller the time interval is the more missing
data is inserted into the original data file, which has some drawbacks. First
the data set balloons as missing data is inserted between the observed values
to account for the distance between the observations. Large data sets are
much more computationally demanding. All of the missing data is imputed
in the Bayesian MCMC estimation. Second, the inserted missing data es-
sentially acts as unknown values/parameters in the estimation. The more
such values are present in the MCMC estimation the slower the convergence
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will be. In many cases, the convergence is so slow that it is impractical to
estimate within a finite number of MCMC iterations. It is therefore often
the case that a larger time periods must be selected to obtain convergence,
but the larger periods of course provide a much cruder approximation to the
continuous times of observations. Another drawback of the TINTERVAL
procedure is the situation where multiple observations are taken within the
same time interval. In such cases, observations are moved to empty periods
which also reduces the precision of the approximation.

Using an autoregressive model that can accommodate the precise times
of observation would therefore have two benefits. First, the analysis data
set will not be expanded by inserting missing data. Second the times of ob-
servations would not be approximated. There are some additional benefits.
A univariate model AR(1) model for Y1, Y2, Y3, ... with autoregressive coeffi-
cient of ρ generally implies that the model for Y2, Y4, Y6, ... is also an AR(1)
with an autoregressive coefficient of ρ2. This observation implies that when
TINTERVAL is doubled we would expect the autoregressive coefficient to be
squared or at least not be statistically significant different from that square.
In many data sets with continuous times of observations, however, this does
not happen. The explanation for this practical contradiction is that the
TINTERVAL approximation is too crude. When this happens, we typically
conclude that doubling TINTERVAL leads to poor approximation and thus
it is preferable to use the model with the smaller TINTERVAL. Generally,
we lower TINTERVAL until the contradiction disappears. That however
may lead to large amounts of missing data and various computational is-
sues. Models based on continuous times avoid such issues and doubling the
distance between observations always implies squaring of the autocorrelation.

Another benefit of using continuous times models is the fact that the
model can be used to determine the autocorrelation as a function of the dis-
tance between the observations ∆t = ti−ti−1. In the bivariate or multivariate
case this function can be used to determine when the cross-lag impact is the
greatest. Cross-lag effects in bivariate and multivariate models are zero when
∆t ≈ 0 because observations that are taken approximately at the same time
are perfect predictors of each other and thus there is no room for cross-lag
prediction. These are also 0 at ∆t ≈ ∞. Thus, the cross-lag effect are maxi-
mized (by absolute value) somewhere in the middle. This functional variation
of the cross-lag effect in terms of time is referred to as unfolding and dissi-
pation of the effects, Hecht and Zitzmann (2021). Finding the precise ∆t
where the cross-lag effect is maximized has a substantive importance. For
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example, it can be used to determine practical questions such as: how many
days with poor physical activity it takes before mental health deteriorates.
One possibility is that statistical significance (although rare) can only be
detected at around the time of peaking. Knowledge of the peaking interval
can be useful also in designing ecological momentary assessment (EMA) and
experience sampling (ESM) studies.

It should be noted here that in most situations, TINTERVAL works flaw-
lessly. The discretization of the time simplifies the model and the estimation,
which allows us to easily increase model complexity. The primary concern
regarding TINTERVAL is how fine the discritization should be and this is
precisely where continuous time modeling can be helpful, i.e., in determining
the proper value for the TINTERVAL approximation.

In this paper we describe the model implemented in Mplus 8.11. This
model generally follows the development in Driver et al. (2017) but not
precisely. One of the main differences is that the model we describe here is
CT-RDSEM (continuous time RDSEM) and not CT-DSEM. The difference
between such frameworks is that in RDSEM the autoregressive structure is
contained entirely in the residuals and all regression effects are limited to
contemporaneous effects. The RDSEM and DSEM models, however, are
equivalent in some important cases such as the VAR model, and thus certain
DSEM models can be estimated within the CT-RDSEM framework as well.

2 Continuous time autoregressive structure

The general CT-RDSEM model will be discussed in the next section. That
model follows the framework of the DSEM and RDSEMmodels, i.e., variables
are split as within-between and the within part has a dynamic component. In
this section we focus on the technical issues that arise from the continuous
times of observations and how to define autoregressive structure based on
such continuous times. This is precisely where the difference between the
CT-RDSEM model and the RDSEM model is. Because the CT-RDSEM
framework places the autoregressive structure of the time series entirely in
the residuals, this section presents some key aspects of the residual modeling
before turning to the full model in the next section. This involves the drift
matrix which is a central concept of continuous time analysis. We will use ε
as the name of the variables because that is how the autoregressive structure
fits in the general model. However, the models described here can also be

3



understood and used with Y as the variable, i.e., the models we describe here
apply to observed variables as well. If a CT-RDSEM model does not include
structural relations, then Y = ε and the model described here applies for the
actual observed variables.

We begin by describing a single (one individual) time-series autoregres-
sive univariate model based on continuous times of observations. Later, this
model will be generalized to a multivariate model, a two-level model consist-
ing of many time-series autoregressive models for a population of individuals,
and then to a structural model which includes variety of path analysis rela-
tions.

Suppose that ε1, ε2, ..., εT is a time series of zero mean variables observed
at times t1, t2,...,tT . The AR(1) model is defined by

Cov(εi, εj) = σ2Exp(ρ|ti − tj|) (1)

This model has two parameters. The first parameter is σ2, which represents
time invariant variance of εi. The second parameter ρ is referred to as the
drift parameter and is interpreted simply as the log of the correlation between
two residuals that are 1 unit apart. This parameter is always negative.

The above model can equivalently be rewritten as a structural model

ε1 = ξ1 ∼ N(0, σ2) (2)

and for j > 1
εj = rjεj−1 + ξj (3)

rj = Exp(ρ|tj − tj−1|) (4)

V ar(ξj) = (1− r2j )σ
2. (5)

The key things to understand in this model is that V ar(ξj) is not a model
parameter. The model parameters are again σ2 and ρ and these have the
same interpretation as in the model formulation (1), i.e., the variance of the
residual ξj is not a model parameter but the total variance of εj is. The vari-
ance of εj is time invariant but the variance of ξj is not. The autoregressive
coefficient rj is not time invariant as well. The variance V ar(ξj) converges
to 0 when ∆tj = tj − tj−1 converges to zero. In that case also rj converges to
1, and εj converges to εj−1 as the two are observed at nearly the same time.
When ∆tj converges to infinity, rj converges to 0 and V ar(ξj) converges to
V ar(εj) = σ2.
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Another important feature of the above model is the fact that there is
no initial condition. In RDSEM and DSEM frameworks at time point 1,
the model assumes an unobserved predictor coming from period 0, which is
treated as a missing predictor and is imputed in the MCMC estimation. In
the CT-RDSEM model, this is not necessary, and the model is formulated
more elegantly.

The above model easily generalizes also to vector form. Suppose that εj
is a vector of residuals. The structural model in this case is

ε1 = ξ1 ∼ N(0,Σ) (6)

and for j > 1
εj = Rjεj−1 + ξj (7)

Rj = Exp(D|tj − tj−1|) (8)

V ar(ξj) = Σ−RjΣR
T
j . (9)

In the above formulation the drift parameter ρ is replaced by a square ma-
trix D referred to as the drift matrix. In equation (8), the model relies on
exponentiation of a matrix. The formal definition of matrix exponentiation
is as follows

Exp(A) = I + A+
A2

2!
+

A3

3!
+ ...+

An

n!
+ .... (10)

Here I is the identity matrix. The above infinite time series always converges,
just like in the univariate case, but it is typically not suitable to use for
computational purposes. A more efficient computational method is given in
Sidje (1998).

As in the univariate case, the diagonal entries of D are typically negative
numbers. The autoregressive matrix R(t) = Exp(Dt) changes as a function
of time but it has the same asymptotic properties as in the univariate case.
As t converges to 0, R(t) converges to the identity matrix and as t converges
to infinity R(t) converges to the zero matrix. In Section 8 below, we provide
more information on the Drift matrix and its origin and interpretation.

3 The CT-RDSEM model

Let Yij be the vector of observed variables for individual i at time tij. As in
the RDSEM model the variables are decomposed as within and between

Yij = Ywij + Ybi. (11)
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Here Ybi is a latent variable that represents the time invariant portion of Yij

and can generally be interpreted as the random intercept of Yij. The variable
Ywij is the time specific deviation from Ybi.

Next, separate independent models are given for the within and between
components. Suppose that Xij is a vector of within level (time-specific)
covariates and Xi is a vector of between level (time-invariant) covariates.
The within level model is given by the contemporaneous relationships

Ywij = BwYwij + ΓwXij + εij. (12)

In this equation Bw is a regression matrix that allows us to include in the
model regressions among the endogenous variables and Γw are the regression
coefficients for exogenous variables. For each i, the model for the residual
process εi1, εi2, εi3, ... is given by equations (6-9), i.e., the process is AR(1)
time series taking into account the continuous times of observations tij. In
the Mplus framework ε is referred to as Y .̂

The within-level parameters are thus Bw, Γw, the drift matrix D, and Σ
the total variance covariance matrix for εij. Each of these parameters can
be population specific or can be individually specific. If a parameter in Bw,
Γw, and D is individually specific, a between level random effect si is created
which will be a variable modeled on the between level. If a parameter in Σ
is individually specific, a transformation is applied before it is modeled with
a between level random effect. For diagonal elements σpp of Σ, i.e., variance
parameters, log(σpp) is a between level random effect. Off diagonal elements
of Σ can made individually specific by applying the Fisher-z transformation
for the corresponding correlation, i.e., tanh−1(σp1p2/

√
σp1p1σp2p2) is modeled

as a between level random effect, see Asparouhov and Muthén (2023).
We can now describe the between level model. Let Vbi be the vector

containing Ybi and all individually specific random effects used in the within
level model instead of non-random parameters. The between level model is
then

Vbi = νb +BbVbi + ΓbXi + ζi (13)

ζi ∼ N(0,ΣB). (14)

The parameters in the between model are νb, Bb, Γb and ΣB.
The above model is quite flexible in terms of the variety of path anal-

ysis models that can be implemented. It includes latent centering in the
sense of Asparouhov and Muthén (2019), i.e. the predictors on the within
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level Ywij are centered Ywij = Yij − Ybi. If there are no within level covari-
ates in the model and Bw is zero, then Ywij = εij and the model becomes
equivalent to the vector autoregressive (VAR) model, where all autoregres-
sive and cross-lag parameters are adjusted to reflect the distance between the
observations and are modeled via the drift matrix D. The RDSEM model
in Mplus has two different contemporaneous regression possibilities on the
within level. One is between the full within level components and one is
between the residuals. In CT-DSEM only the full components can be used.
Contemporaneous relationship between the residuals is not available. Latent
factors and categorical dependent variables are currently not implemented in
the CT-RDSEM framework.

Missing data can be accommodated in the above framework for the de-
pendent variables. Missing values are imputed using all other observed data
and the model. Unlike RDSEM, CT-RDSEM likelihood is not affected by
observations where all dependent variables are missing, i.e., if on a particular
occasion no data is collected, the observation does not need to be included in
the analysis. This observation corresponds to the fact that missing data is in-
serted in RDSEM for periods without observations, while CT-RDSEM which
is based on continuous times does not have periods at all. The CT-RDSEM
model and the RDSEM model are technically equivalent for the case where
tij = j, i.e., if the observations are indeed obtained at regular/equal intervals
the two models should yield equivalent results. This however has two caveats.
The two models use different parameterizations. The autoregressive matrix
R in RDSEM and the drift matrix D in CT-RDSEM are of course connected
via the relationship R = EXP (D). In addition to that, the CT-RDSEM uses
V ar(εij) as model parameters while RDSEM uses V ar(ξij) and the reparam-
eterization between the two is V ar(ξij) = V ar(εij)−RV ar(εij)R

T .
Note also that the CT-RDSEM model parameters depend on the scale

of the time variables. If the time is multiplied by 2, the drift matrix must
be divided by 2 to preserve the model. In order to avoid numerical issues,
where the drift matrix is on a very large scale or a very small scale, it is
recommended that the time variable is scaled so that the average ∆tij is
approximately 1, or close to that. This means that the time variable should
be scaled so that on average the consecutive observations are 1 unit apart.
This is not important but would set the drift matrix on a reasonable scale
and would avoid D values that are too large or too small.

As described in the introduction, the RDSEM model with the TINTER-
VAL option provides an approximation to the CT-RDSEM model. If the
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TINTERVAL is set to δ, the interval length of one period is δ. Essentially,
we have rescaled the time so the time span of δ is 1 in RDSEM. To compare
the RDSEM to the CT-RDSEM model it can be useful to divide the time
values tij by δ. This way a time unit of one would mean the same in both
analyses.

The estimation of the CT-RDSEM model is based on Bayesian MCMC
methodology. For the most part, the model is estimated as in the RDSEM
model, see Asparouhov et al. (2018) and Asparouhov and Muthén (2023),
i.e., using conjugate priors and explicit conditional distributions. The only
parameter updating that must be clarified is the updating of D and Σ. Both
do not have explicit conditional distribution and we use MH with a random
walk jumping rule. The MH method is somewhat crude and often does not
provide fast convergence but is robust and simple to implement.

4 Matrix Exponentiation

In this section we provide some further information for matrix exponentia-
tion. The Drift matrix has a central role in continuous time modeling and
the transition from Drift to autoregressive parameters is based on matrix ex-
ponentiation. Thus, for CT-RDSEM modeling, it is essential to understand
matrix exponentiation to some extent. In certain cases matrix exponentia-
tion can be derived explicitly but in most cases it cannot. The two simplest
examples are given below

e

a 0
0 b


=

(
ea 0
0 eb

)
(15)

e

a c
0 b


=

(
ea c(ea − eb)/(a− b)
0 eb

)
(16)

The above formula requires a and b to be different. When a and b are the
same we get

e

a c
0 a


=

(
ea cea

0 ea

)
(17)

Formula (15) generalizes to diagonal matrices of any size. Formula (16)
generalizes to sparse matrices where the i−th column and row combined
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contain no more than 1 off diagonal value. A general formula for a 2x2 matrix
exponentiation is available in Bernstein and So (1993), but that formulation
is much less interpretable than the upper triangular form. A more general
method for matrix exponentiation explicit formula derivation is available in
Mouçouf and Said (2020), but that method probably is also not practical for
statistical model applications and interpretations.

The above explicit formulas point out that the diagonal entries in the
drift matrix are almost exclusively going to be negative numbers because the
autoregressive coefficients ea is less than 1 and thus a must be negative. The
general model requires that the residual variance covariance Σ − RjΣR

T
j is

always positive definite. If the drift matrix and the auto-regressive matrix are
diagonal, the autoregressive parameters must be less than 1 or the residual
variance covariance will have negative variance numbers. In that regard we
see here that CT-RDSEM is different from RDSEM and DSEM where the
autoregressive parameters distribution may exceed 1. In the CT-RDSEM
case this cannot happen at least for the diagonal case. Similarly, RDSEM
and DSEM can estimate autoregressive coefficients that are negative or at
least a part of the posterior distribution is negative. In CT-RDSEM that
cannot happen at least in the diagonal case.

The upper triangular form also shows that the cross-lag drift has the same
significance as the cross-lag autoregressive parameters since (ea−eb)/(a−b) is
always positive, and that significance is independent of the time between the
observations. The cross-lag drift and the cross-lag autoregressive parameter
have the same sign in the upper triangular 2x2 case. In that case we can also
determine when the cross-lag reaches its maximum. That is, if

D =

(
a c
0 b

)
(18)

the off diagonal entry of eDt is maximized at

t∗ =
log(−a)− log(−b)

(−a)− (−b)
. (19)

As discussed earlier, this quantity is often of substantive interest. If a and b
are close, t∗ is approximately the log derivative 1/(−a). Thus, t∗ can be a
small number if (−a) is large, i.e. the autoregressive coefficient is small, or it
can be a large number if (−a) is small, i.e., the autoregressive coefficient is
large. This intuitively can be translated as follows. The larger the autoregres-
sive coefficients are, the more delayed the maximization of the cross-lagged
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effect will be. It is interesting to note here that the cross-lag drift parameter
c has no impact on where the maximum cross-lag autoregressive coefficient
is. The upper diagonal 2x2 situation can also be used as an approximation
in many cases for the full 2x2 VAR model where often at least one of the
cross-lagged effects is not statistically significant (and can be fixed to 0).

Another useful fact for matrix exponentiation is the fact that

eA+B ̸= eAeB. (20)

Equality holds only for commutative matrices where AB = BA. This to
a large extent is the reason why a simple computation for matrix exponen-
tiation does not exist, i.e., a matrix cannot be simply decomposed as its
diagonal and the various off-diagonal entries.

Additional information for the Drift matrix and its connection to the
autoregressive matrix is given in Section 8.

5 Some general comments

The following section is intended to provide some practical advice for esti-
mating CT-RDSEM models in Mplus.

5.1 Large negative drift

If the autoregressive parameters are small the drift parameters become large
negative numbers. That can create a problem in terms of identification and
convergence. A drift of -100 is typically the same as a drift of -1000 in terms
of model and data fit. The parameters in the different MCMC chains can
converge to any number between -100 and -1000 and thus produce unrea-
sonable PSR and convergence problems. If the problematic drift parameter
is not random but a non-random parameter, this can typically be resolved
by providing a weakly informative priors to keep the drift parameter from
exploding, for example N(−1, 1) prior for the diagonals, but occasionally a
non-diagonal parameter need a weakly informative prior and in those cases
the correct value is N(0,1). The FBITER option can be used with say 2000
iterations and the traceplot curves can be inspected to locate convergence
problems such as large negative drifts. If a large random drift occurs in the
estimation, weakly informative priors will not help. In this case, the solution
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is to ignore the PSR convergence criterion altogether and instead use the tra-
ceplot curves and inspect one at a time after a long enough MCMC sequence
is estimated. Clearly some traceplots will be indicating non-convergence but
such can be ignored with the explicit understanding that these diverging
parameters are essentially yielding the same model. Clearly this requires
comprehending fully the intricacies of CT-RDSEM. Model simplifications,
such as replacing random drift with non-random drift or removing individual
clusters from the analysis can also be used as a solution in this case.

5.2 Larger models

Because the Metropolis-Hastings (MH) algorithm is used in this estimation
currently, larger models are likely to be prone to very slow convergence.
Currently all drift parameters are updated in one MH step together in a
multivariate fashion. The same applies to the residual variance covariance
parameters. It is possible to update one parameter at a time but that is
much more computationally expensive, and it has not been found useful.
When the model is large, random walk MH steps are likely to end up being
small yielding slow convergence. The solution in this case is to gradually
build a model and only retain drift parameters minimally when they come
significant. Univariate models should be the start.

5.3 Drift parameter trace plots

In the current Mplus algorithm the weak/slow mixing occurs primarily for
the drift parameters. Although the residual variance covariance parameters
are also estimated via the Metropolis-Hastings algorithm they appear to
be mixing much better. All other model parameters, such as intercepts,
regression parameters or between level parameters will have explicit posterior
distribution and are thus expected to mix flawlessly. This points out that
Drift parameters trace plots should be monitored in addition to the standard
PSR convergence criterion.

5.4 Random drift with non-random variance

Simple regression models are robust to heteroskedasticity, meaning that pa-
rameter estimates remain unbiased even when the residual variance is not
cluster invariant. To a fairly large extent this carries over to DSEM and
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RDSEM models, although not completely, see Jongerling et al. (2015). The
CT-RDSEM model, however, is quite different. Consider for example CT-
RDSEM model where observations are equally spaced, do not vary across
time or individual and the autoregressive coefficient is subject specific but
invariant across time since the observations are equally spaced. In that case
the model becomes

Yit = αi + riYi,t−1 + εit. (21)

If we now assume that the variance of Yit is not subject specific, i.e., it is a
parameter v then

V ar(εit) = (1− r2i )v. (22)

This model constraint is quite artificial and essentially results in heavy weight-
ing in the likelihood for observations with higher autoregressive coefficients.
If the constraint doesn’t hold, model parameters will be heavily weighted to
fit the data with higher autocorrelations instead of equal weighting. It is
therefore recommended that models with random drift, also be estimated
with random variances so that the above artificial constraint is not im-
posed on the model. Using a variety of real data examples, we have noticed
the following phenomenon. CT-RDSEM models with random drift often do
not match the estimates of the corresponding RDSEM-TINTERVAL model.
When random variance is added to the model, the model estimates align
and are also much more similar to the RDSEM-TINTERVAL without the
random variance, and are not similar to the CT-RDSEM model without the
random variance. We therefore conclude from this experimentation that the
random variance feature is needed much more in CT-RDSEM models than
in RDSEM models. This is an unusual but important finding.

5.5 Data with abrupt changes

Consider now the situation when two consecutive observations for individual
i are taken closely in time but are substantially different. One such example
that we have found is the case of smoking urge where data is collected at
random prompts but also by self-initiated reporting method in an event of
a spike in smoking urge. If such data is analyzed as one time series and a
random prompt occurs just before a spike in urge, we would have two obser-
vations in proximity of time with potentially large outcome differences. Such
observations typically will become outliers and with a very heavy influence
on the model estimates, which typically will also force the autocorrelation
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to converge to zero (diagonal drift parameter converging to minus infinity).
The explanation is as follows. If the two observations are Yt1 and Yt2 and
t2 − t1 converges to zero, according to the CT-RDSEM model, the obser-
vations Yt2 − Yt1 must also converge to zero and the variance of Yt2 − Yt1

must converge to zero as well. If that doesn’t happen, when for example
abrupt change in outcome happens in proximity of time, the conditional dis-
tribution [Yt2|Yt1 ] will be many times the small residual standard deviation,
i.e., an outlier. This outlier will heavily impact the log-likelihood and the
only resolution will be to have the autoregressive coefficient be pushed down
towards zero or generally small numbers. This issue can be alleviated some-
what if covariates predicting the outcome can be found. Differences in the
covariates might be able to explain the abrupt change in the outcome to
some extent. In the smoking urge example, one predictive covariate can be
the type of prompt used for the observation: random or self-initiated. An-
other alternative to alleviate this problem is to change time stamps so that
all times of observations are apart at least above a minimal value. Many
automated data collection methods already contain such minimal value but
if multiple data collection methods are used the minimal value may have to
be enforced manually. The manual time shift is not a clean and well-defined
process because if there are 3 observations or more collected at almost the
same time, some observations must be shifted multiple times. At that point
the manual shift is engaging in a procedure that is like the TINTERVAL al-
gorithm which by default also sets up the data to have a minimum distance
apart (that would be the value in the TINTERVAL command). Another
alternative is just to average observations taken in proximity or to simply
delete all but one of the approximately repeated observations. The current
Mplus algorithm will not warn if observations are too close in the timeline.
It will do so only if the distance between the observations is precisely zero.
However, the issue can easily be recognized by comparing CT-RDSEM and
RDSEM-TINTERVAL. If the autocorrelation of CT-RDSEM is zero and the
corresponding RDSEM-TINTERVAL autocorrelation is not, then most likely
the data contains observations taken in proximity of time but with very dif-
ferent outcome values.

5.6 The TINTERVAL comparison

There is an easy way to compare the CT-RDSEM model with the dynamic
models introduced in Asparouhov et al. (2018). The direct comparison is
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between CT-RDSEM and the RDSEM model. The TINTERVAL algorithm,
described in Asparouhov et al. (2018), discretizes continuous time stamps so
that the continuous time dynamic model can be approximated by a discrete
time dynamic model. This approximation makes the two models equivalent
in interpretation as well as model parameter estimates. Readers familiar with
RDSEM can thus easily transition into the CT-RDSEM framework by the
existence of this equivalence.

The easiest way to connect the two models is as follows. If the RDSEM
model is based on TINTERVAL=t(δ), to obtain an equivalent CT-RDSEM
model we replace that specification with ctime=t; define: t=t/δ;. With these
settings the autoregressive parameters of RDSEM can be found in the autore-
gressive curves reported by Mplus for time t = 1. The effect of δ is substantial
on the RDSEM model but has no effect on the CT-RDSEM model. In RD-
SEM, δ is typically set to be a value nearing the lower end of the distribution
of the time distance between consecutive observations. If the value of δ is suf-
ficiently small the RDSEM approximation of CT-RDSEM will be very good.
However, when the value of δ is small enough, the analyzed data set becomes
large as missing values populate the unobserved slots in the discretized time
frame. This causes slow and long computations. In addition, the amount
of missing data that is inserted by TINTERVAL may become so large that
the MCMC algorithm which imputes all such values may yield slow and pro-
tracted mixing and ultimately can get destabilized in the attempt to populate
an extraordinarily high dimensional posterior of missing values and parame-
ters. On the other hand, values of δ that are too high provide only a crude
approximation to the CT-RDSEM model. This can be recognized easily if
the results of δ and 2δ yield autoregressive parameter in univariate models
that are not the square of each other. That is a property of the CT-RDSEM
model that never fails. Doubling the distance between observations always
results in the autoregressive parameter in univariate models being squared.
In some complex RDSEM application a proper value of δ might not be found
at all. That is, sufficiently small values that can yield good approximation
do not converge due to large amount of missing data.

In some case the data has integer time stamps, such as daily observations.
In such circumstances, if the model is estimated with TINTERVAL=t(δ = 1),
the time stamp for the RDSEM and CT-RDSEM model are the same. This
implies that the models are the same and typically the estimates match
very closely, apart from minor variations due to the random nature of the
Bayes estimation. Occasionally, however, differences in the estimation can be
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attributed to the different parameterization and the fact that CT-RDSEM
does not accommodate inadmissible autoregressive values such as negative
autocorrelation or autocorrelation bigger than 1. Difference between the two
method can occur also because of different treatment of the initial period
when the time-series data is short.

It should be noted here again that CT-RDSEM model and the RDSEM
model also differ in the residual variance covariance, but that is not because
the models are different but because the parameterization is different. Resid-
ual variance in the CT-RDSEM model is the total variance of the residual
which includes the autoregressive part. The residual variance parameter in
the RDSEM model is the variance of the residual excluding the autoregres-
sive part. In the CT-RDSEM model that is not a model parameter but a
quantity that varies with the continuous time and can become zero when the
time between observations converges to zero.

Finally, the equivalence between RDSEM and CT-RDSEM can be used
in those situations where CT-RDSEM convergence is too slow. The CT-
RDSEM models can be used to fine tune the proper TINTERVAL with sim-
pler univariate models but if a full complex CT-RDSEM model does not
converge, the RDSEM model can be used instead. This synergy between the
two methodologies needs further exploration and development.

5.7 The advantage of the lack of initial condition

The RDSEM and DSEM models, being invariant over time, model the start-
ing equation in the same way as the equations at any other time point using
a predictor from the previous time point. This implies that at time point
0 a missing observation (latent variable) is used as a predictor. That ini-
tial value is imputed by the MCMC algorithm and for models with 10 or
more observations per person has little to no impact on the overall estima-
tion. For shorter time series models, however, the assumptions regarding the
initial value do impact the estimation. The precise assumption about that
initial value is different in the RDSEM / DSEM frameworks and even when
equivalent models are estimated with short (< 10) observations per person
a noticeable difference in results can be seen between the two frameworks.
The assumptions also cause the model estimates to be different than the ML
estimates obtained for the model when the estimation is conducted in a wide
format similarly to the RI-CLPM.

The CT-RDSEM model has an advantage in that regard. The model for
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each observation is time specific and no time invariance is assumed or used in
the estimation. The first observation simply does not have an autoregressive
predictor but is simply given as in equation (6). This avoids the initial
concept altogether. The result of this is that CT-RDSEM yields identical
log-likelihood as ML wide format. In turn, the CT-RDSEM model performs
well even with a very small number of observations per person and is expected
to outperform RDSEM and DSEM.

The wide ML estimation for the autoregressive model with random inter-
cept and continuous time of observations requires setting up autoregressive
structure via model constraint and it can be pieced together from User’s
Guide (Muthén and Muthén (1998-2017)) example 6.17, using the Tscore
command from example 6.12, and the subject specific constraints described
in example 5.23. As such, the setup of this model with ML is much more
complex than the CT-RDSEM model and the input would increase substan-
tially when the number of observations per person increases substantially.
The data would also need to be reformatted so that it comes in a wide for-
mat and missing values must be added at the end of the time series so that
all individuals have an equal number of observations.

Small number of observations per cluster can also hinder comparisons
between CT-RDSEM and RDSEM-TINTERVAL as the initial conditions
assumption will become influential. In most such cases CT-RDSEM should
be preferred.

5.8 The bounded posterior for autoregressive param-
eters

Comparisons between CT-RDSEM and RDSEM-TINTERVAL can also be
invalidated by the fact that the posterior distribution of the autoregres-
sive parameters in CT-RDSEM are bounded between 0 and 1. In RDSEM-
TINTERVAL there are no such constraints. This can be seen typically when
the sample is small or when the autoregressive parameters are random and
the number of observations per person is not large. In both of these situa-
tions the posterior distribution of the autoregressive parameters is wider and
can cross-over in the inadmissible space in the RDSEM framework.
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5.9 Time and variable scale

The scale of the times of observations is not important theoretically but
from a numerical perspective it would be preferable for the time scale to
be somewhat standardized so that the average distance between consecutive
observations is approximately 1. This will enable us to keep the Drift pa-
rameters which are directly multiplied by the time variable from exploding to
large values and potentially appearing as non-converging. Although Mplus
does consider the uncertainty in the scale of the time, it can potentially be-
come an issue in certain situations. Standardizing the time scale would also
improve the readability of the autoregressive curves.

The scale of the variables is also typically not important. However, the
MH algorithm has a starting value of the size of the random jumps, which
is 0.1. The MH algorithm quickly adjusts the size of the jumps to balance
the acceptance / rejection probabilities. However, if the variables are on too
large or too small of a scale, this process unnecessarily hinders the estimation.
Thus, it is advisable for the scale of the variables to be approximately on
a standardized scale. The drift parameters have their own scale, which is
only connected to the time scale. Therefore standardizing the variables is
unlikely to help with drift parameter estimation. It can help, however, with
residual variance covariance estimation which is also estimated with the MH
algorithm.

5.10 Small data convergence issues

Small data typically yields wide posterior distribution for the parameters.
The MH algorithm therefore will take longer to populate the posterior. In
addition, the fringe parts of the posterior distribution are sometimes hard to
escape and convergence can become painfully slow. To avoid such issues the
complexity of the model should match the amount of data. Random drift
and residual variances should be used with larger samples only.

5.11 Starting values

The CT-RDSEM model uses starting values of -1 for all diagonal drift pa-
rameters and zero for the off-diagonal parameters. Changing the diagonal
starting values to 0 or positive values will quickly cause convergence issues.
It is important to understand that the drift parameters scale is different from
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that of the auto-regressive parameter scale and not introduce inappropriate
starting values.

5.12 The burnin phase

The burning phase in the MH algorithm is the phase of the estimation where
the jumps in each MCMC step are adjusted to yield optimal acceptance re-
jection probabilities. The default of the algorithm is 1000 iterations. Simpler
examples can be estimated with shorter bunrin phase such as 100 iterations.
More complex examples might benefit from a longer than 1000 burnin phase.
There is a limit to how much a burnin phase can help the estimation. Re-
gardless of how long the burnin phase is set to be, the size of the jumps are
eventually adjusted to an optimal size. Even if the burnin phase is large, the
size of the jumps will stop changing. Mplus uses as a minimal number of
iterations twice the burnin phase. Therefore, increasing the burnin phase to
extreme values will only protract the convergence.

5.13 Some limitations

The CT-RDSEM model allows only lag-1 models. This technically is not a
precise statement. If the time between consecutive observations is 1, then
Yt is regressed on Yt−1. If the time between the consecutive observations
is 2, then Yt is regressed on Yt−2, which then resembles the RDSEM model
with lag 2. The CT-RDSEM model is a lag-1 model in the sense that only
one previous observation is used as a predictor and that there is just one
autoregressive parameter. The regression parameter of Yt on Yt−2 is not an
independent parameter from the regression parameter of Yt on Yt−1 but is
the square of that.

Various other modeling features are not developed yet, such as factor
models and models with non-continuous outcomes.

5.14 Missing data

In the CT-RDSEM framework, observations with missing values on all depen-
dent variables are automatically removed from the data. Such observations
do not contribute to the model likelihood and if they are included the con-
vergence will be slowed down because the additional missing values would
need to be imputed. This is in stark contrast with the RDSEM-TINTERVAL
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framework where observations with missing values for all dependent variables
are inserted in the analyzed data.

In the CT-RDSEM framework, observations are included if some of the
outcomes are missing, and some are present. The missing outcomes are
imputed during the estimation.

6 Simulation Studies

6.1 The CT-RDSEM VAR model

In this section we consider the bivariate CT-RDSEM VAR model. Let Y1ij

and Y2ij are the two outcomes for individual i at times tij. The model is
given as follows. For p = 1, 2

Ypij = Ywpij + Ybpi (23)(
Yb1i

Yb2i

)
∼ N

((
µ1

µ2

)
,

(
σb11 σb12

σb12 σb22

))
(24)

(
Yw1ij

Yw2ij

)
∼ N

((
0
0

)
,

(
σw11 σw12

σw12 σw22

))
(25)

Yw1ij = rij11Yw1i,j−1 + rij12Yw2i,j−1 + ξ1ij (26)

Yw2ij = rij21Yw1i,j−1 + rij22Yw2i,j−1 + ξ2ij (27)

Rij =

(
rij11 rij12
rij21 rij22

)
= Exp((tij − ti,j−1)D) (28)

D =

(
d11 d12
d21 d22

)
. (29)

The above equations show the model for j > 1. For j = 1, we can assume
that ti0 = −∞ and thus Ri1 = 0 and the predictor from period 0 is multiplied
by 0 and not a part of the model.

The above model relates to the general CT-RDSEM model as follows.
In equation (12), when both regression matrices Bw and Γw are zero, then
Ywij = εij. In the general model these are autoregressed as in equation (7),
which is precisely what equations (26-27) represent.
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Table 1: CT-RDSEM Var model

Parameter True Value Abs. Bias Coverage
σw11 1.1 .01 .92
σw12 0.5 .01 .90
σw22 1.3 .01 .93
σb11 1.2 .20 .89
σb12 0.4 .05 .96
σb22 0.5 .05 .93
µ1 3 .01 .93
µ2 .3 .01 .97
d11 -0.5 .01 .98
d12 .2 .00 .93
d21 .1 .00 .88
d22 -0.6 .00 .89

For this simulation study we generate data using N = 50 individuals with
T = 30 observations per person. Random times of observations are generated
as follows ti1 = 0 and tij = tij−1 + ζij where ζij ∼ IG(3, 5). Mplus uses the
inverse gamma distribution to generate the distances between consecutive
observations. In this simulation the average distance between consecutive
observations is thus 2.5. The mean of the IG(a, b) distribution is b/(a− 1),
while the mode is b/(a+1). The distribution is generally skewed to the right.

We use 100 replications in this simulation. Each replication takes about
5 seconds to estimate the VAR model. The results of the simulation are
reported in Table 1. The estimates have minimal bias, and the coverage is
near the nominal levels. The only parameters that show larger biases are
the variance covariance on the between level, which is related to the fact
that there are only 50 individuals in the data. If we increase the sample to
100 individuals, the bias is decreased by half and the coverage is above 93%.
The Mplus input file for this simulation is given in Figure 1. The input is
the same as for the RDSEM model, with the only addition here being the
CTIME option which specifies how the time increments are generated.
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Figure 1: CT-RDSEM VAR simulation study

MONTECARLO:  NAMES ARE y1-y2;
             NOBS = 1500;
             NREP = 100;
             NCSIZES = 1;
             CSIZES = 50(30);
             lagged=y1-y2(1);
             CTIME=IG(3,5);

ANALYSIS:   TYPE IS TWOLEVEL;
            estimator=bayes; proc=2;
            burnin=100; 

MODEL MONTECARLO:

  %WITHIN%
  y1^ on y1^1*-0.5;
  y2^ on y2^1*-0.6;
  y1^ on y2^1*0.2;
  y2^ on y1^1*0.1;
  y1*1.1; y2*1.3;
  y1 with y2*0.5;
  %BETWEEN%
  y1*1.2 y2*0.5;
  Y1 WITH Y2*0.4;
  [Y1*3 Y2*0.3];

MODEL:

  %WITHIN%
  y1^ on y1^1*-0.5;
  y2^ on y2^1*-0.6;
  y1^ on y2^1*0.2;
  y2^ on y1^1*0.1;
  y1*1.1; y2*1.3;
  y1 with y2*0.5;
  %BETWEEN%
  y1*1.2 y2*0.5;
  Y1 WITH Y2*0.4;
  [Y1*3 Y2*0.3];
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6.2 The CT-RDSEM VAR model with random drift

In this section we conduct a simulation study similar to the one in the previ-
ous section but we now introduce subject specific random drift parameters,
in addition to the subject specific random intercepts. The drift parameters
for individual i are between-level random effects

dip1p2 ∼ N(dp1p2 , vp1p2). (30)

In this simulation, the sample has 100 individuals with 100 observations each.
The time increments are generated from IG(3,3) with a mean value of 1.5
and 95% of the values between 0.4 and 4.5. We generate and analyze 100
samples and each analysis takes approximately 2 minutes to converge. The
results of the simulation study are given in Table 2. The bias is minimal and
the coverage is near the nominal level. Figure 2 shows the input file for this
simulation.

Note here that because the variance of the random drifts is small, the dis-
tribution of the diagonal drift parameters remains negative across the data
generation part of the simulation. This will generally guarantee that in each
cluster the drift matrix yields an admissible solution. If we increase the vari-
ance of the random effects, however, in some instances the generated drift
matrix will be inadmissible and will be discarded. This creates a situation
where the model generating distribution is cut to only a part of the desired
distribution. In such cases, the estimated distribution for the drift param-
eters is expected to match the cut distribution mean and variance and not
those specified in data generation model. This may appear as a bias in the
final results but it is not. The difference between the estimated values and
the generating values would be attributed to the difference between the de-
sired generating distribution and the portion of that distribution that yields
admissible drift matrices.

6.3 The CT-RDSEM path analysis model

In this section we consider the bivariate CT-RDSEM path analysis model.
This model is a simple regression between two variables Y1ij and Y2ij where
times of observations are subject specific. Both variables have autocorrela-
tion across time and the regression is separated as within and between level
regression. That is, the variables have a time invariant component. The
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Table 2: CT-RDSEM Var model with random drift

Parameter True Value Abs. Bias Coverage
σw11 1.1 .00 .94
σw12 0.6 .00 .94
σw22 1.3 .00 .96
σb11 1.2 .04 .97
σb12 0.4 .03 .94
σb22 1.0 .05 .96
µ1 3 .00 .91
µ2 2 .00 .93
d11 -1.0 .00 .95
d12 -.2 .00 .95
d21 0 .00 .89
d22 -0.9 .01 .88
v11 .2 .02 .88
v12 .2 .02 .88
v21 .2 .02 .91
v22 .2 .02 .97
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Figure 2: CT-RDSEM VAR with random drift simulation study

MONTECARLO:  NAMES ARE y1-y2;
             NOBS = 10000;
             NREP = 100;
             NCSIZES = 1;
             CSIZES = 100(100);
             lagged=y1-y2(1);
             CTIME=IG(3,3);

ANALYSIS:   TYPE IS TWOLEVEL random;
     estimator=bayes; proc=2;

MODEL MONTECARLO:

  %WITHIN%
  s1 | y1^ on y1^1;
  s2 | y2^ on y2^1;
  s3 | y1^ on y2^1;
  s4 | y2^ on y1^1;
  y1*1.1; y2*1.3;
  y1 with y2*0.6;
  %BETWEEN%
  [y2*2]; y2*1;
  [Y1*3]; y1*1.2;
  y1 with y2*0.4;
  s1-s4*0.02;
  [s1*-1 s2*-0.9 s3*-0.2 s4*0];

MODEL:

  %WITHIN%
  s1 | y1^ on y1^1;
  s2 | y2^ on y2^1;
  s3 | y1^ on y2^1;
  s4 | y2^ on y1^1;
  y1*1.1; y2*1.3;
  y1 with y2*0.6;
  %BETWEEN%
  [y2*2]; y2*1;
  [Y1*3]; y1*1.2;
  y1 with y2*0.4;
  s1-s4*0.02;
  [s1*-1 s2*-0.9 s3*-0.2 s4*0];
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regression between the time invariant component is the between variable re-
gression. The time specific component of the variables are also regressed on
each other. The model essentially features latent centering for the predictors.
Latent centering is an important concept in multilevel modeling (Asparouhov
and Muthén (2006); Ludke et al. (2008); Asparouhov and Muthén (2019)),
and in DSEM and RDSEM modeling (Asparouhov et al. (2018); Asparouhov
and Muthén (2020)). All the components of this multilevel model are impor-
tant to obtain unbiased estimates for the regression parameters: separating
the within and the between level regressions and allowing for autocorrelation
in both the predictor and the predicted variables which properly accommo-
dates the subject specific times of observations.

The model is given as follows. For p = 1, 2

Ypij = Ywpij + Ybpi (31)

Yb2i = µ2 + βbYb1i + εb2i (32)

Yb1i ∼ N(µ1, σb1), εb2i ∼ N(0, σb2) (33)

Yw2ij = βwYw1ij + εw2ij (34)

Yw1ij ∼ N(0, σw1), εw2ij ∼ N(0, σw1) (35)

Yw1ij = Exp(d1(tij − ti,j−1))Yw1i,j−1 + ξw1ij (36)

εw2ij = Exp(d2(tij − ti,j−1))εw2i,j−1 + ξw2ij (37)

We conduct a simulation study using 100 replications with a sample size
of 100 individuals and 10 observations per person. The distance between
consecutive observations is generated with IG(3,3), which yields a mean value
of 1.5. The results are given in Table 3. The bias is minimal, and the coverage
is near the nominal levels. The input file for this simulation study is given in
Figure 3. At the mean of the data time increments the autocorrelation here
for the first variable is 0.64 and for the second variable it is 0.41.

6.4 Linear Growth Model

Linear growth model is a standard latent variable model, but it can have
two levels of complications with continuous times of observations. First, the
growth factor is multiplied by a subject specific time score, which means
that it is no longer a loading parameter that can be fixed to the time of
observations. In Mplus this can be resolved using type=random which steps
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Figure 3: CT-RDSEM path analysis simulation study

MONTECARLO:  NAMES ARE y1-y2;
             NOBS = 1000;
             NREP = 100;
             NCSIZES = 1;
             CSIZES = 100(10);
             lagged=y1-y2(1);
             CTIME=IG(3,3);

ANALYSIS:   TYPE IS TWOLEVEL;
     estimator=bayes; proc=2;
            burnin=100; 

MODEL MONTECARLO:

  %WITHIN%
  y1^ on y1^1*-0.3;
  y2^ on y2^1*-0.6;
  y2 on y1*1;
  y1*1.1; y2*1.3;
  %BETWEEN%
  y2 on y1*-0.5;
  y1*1.2 y2*0.5;
  [Y1*1 Y2*2];

MODEL:

  %WITHIN%
  y1^ on y1^1*-0.3;
  y2^ on y2^1*-0.6;
  y2 on y1*1;
  y1*1.1; y2*1.3;
  %BETWEEN%
  y2 on y1*-0.5;
  y1*1.2 y2*0.5;
  [Y1*1 Y2*2];
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Table 3: The CT-RDSEM path analysis model

Parameter True Value Abs. Bias Coverage
σw1 1.1 .03 .94
σw2 1.3 .00 .95
βw 1 .01 .97
σb1 1.2 .07 .97
σb2 0.5 .11 .95
βb -0.5 .03 .98
µ1 1 .01 .97
µ2 2 .02 .97
d1 -0.3 .02 .95
d2 -0.6 .01 .91

outside the realm of SEM as loadings are subject specific, or it can be resolved
by estimating the model as a two-level model where the growth factor is
a random slope for the covariate of time. Both approaches use the EM-
algorithm with MLE. The second complication arises from the inclusion of
residual autocorrelation which must also account for the individually specific
times of observation. The model can be described as follows

Yij = αi + βitij + εij (38)

Cov(εij1 , εij2) = σExp(d|tij1 − tij2|) (39)(
αi

βi

)
∼ N

((
α
β

)
,

(
ϕ11 ϕ12

ϕ12 ϕ22

))
(40)

In Mplus currently it is not possible to do a direct simulation study on
this model because the time variable cannot directly be used in the model as
a covariate. It is therefore necessary to conduct a two-step simulation study.
The first step is to generate the data and the second step is to analyze it.
This is accomplished with the external montecarlo feature which allows us to
analyze multiple data sets with the same model. In this simulation, we use
samples with 100 individuals and 10 observations for every individual. The
random times of observation are obtained using time increments generated
from IG(10,3) with a mean of 0.33. The first step in the simulation study is
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given in Figure 4 and the second step is in Figure 5. In Step 1 we generate
the Y variable excluding the growth component. The variable s which will be
used in the second step to augment the data is generated here as an observed
between level variable. All the generated data is saved in this step, meaning
that all 100 data sets are stored. In the second step the variable Y is adjusted
in the defined statement by adding s · t, which is the growth factor. Here s
is the variable generated in the first step intended to be used as the growth
factor. Also, in the defined statement we make a copy of the time variable
which will be used in the model. In the model, the growth factor s here is a
latent unobserved variable. The results of the simulation study are given in
Table 4. The bias in all parameter estimates is minimal and the coverage is
near the nominal level.

It should be noted here that the parameter settings in this simulation
study are not quite selected completely at random. The autocorrelation at
the average increment of time is 0.52. There are three different modeling
components that are competing to fit the correlation among the observed
variables: the random intercept, the random slope and the autocorrelation.
These modeling components are well differentiated if the number of obser-
vations per individual is infinitely large but with smaller numbers of obser-
vations, they overlap quite a bit. For example, autocorrelation that nears 1
when the sample is small can be modeled only with the random intercept.
In that regard, for smaller time-series situations, the likelihood of the model
becomes somewhat flat and the model itself becomes poorly identified. Thus,
not all models of this kind will yield unbiased estimates at T = 10. Some
parameter values will need many observations per person.

6.5 Comparison between CT-RDSEM and RDSEM us-
ing RDSEM data

In this section we compare the estimate of the CT-RDSEM and RDSEM
methods in the situation when the data is generated as RDSEM, i.e., the
times of observations are integer. We consider the simple RDSEM model

Yij = αi + βXij + εij (41)

εij = rεi,j−1 + ξij (42)

ξij ∼ N(0, σ), αi ∼ N(α, v). (43)
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Figure 4: Linear growth model simulation study: Step 1

MONTECARLO:  NAMES ARE y s;
             NOBS = 2000;
             NREP = 100;
             NCSIZES = 1;
             CSIZES = 100(10);
             lagged=y(1);
             CTIME=IG(10,3);
             between=s;
             repsave=all;
             save=a*.dat;

ANALYSIS:   TYPE IS TWOLEVEL;
            estimator=bayes; proc=2;
            burnin=100; 

MODEL MONTECARLO:

  %WITHIN%
  y^ on y^1*-2;
  y*1.1; 
  %BETWEEN%
  y*1.2; s*0.1;
  [Y*1 s*0.2]; 
  y with s*-0.2;

MODEL:

  %WITHIN%
  y^ on y^1*-2;
  y*1.1; 
  %BETWEEN%
  y*1.2; s*0.1;
  [Y*1 s*0.2]; 
  y with s*-0.2;
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Figure 5: Linear growth model simulation study: Step 2

data: file is alist.dat;
      type=montecarlo;

variable:    NAMES ARE ss y id t;
             lagged=y(1);
             cluster=id;
             CTIME=T;
             usevar=y t2;
             within=t2;

define: y=y+ss*t;
        t2=t;

ANALYSIS:   TYPE IS TWOLEVEL random;
     estimator=bayes; proc=2;
            burnin=100; 

MODEL:

  %WITHIN%
  y^ on y^1*-2;
  s | y on t2;
  y*1.1; 

  %BETWEEN%
  y*1.2; s*0.1;
  [Y*1 s*0.2]; 
  y with s*-0.2;
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Table 4: Linear growth model

Parameter True Value Abs. Bias Coverage
α 1 .00 .95
β 0.2 .00 .96
d -2 .03 .92
ϕ11 1.2 .12 .93
ϕ12 -0.2 .02 .91
ϕ22 0.1 .01 .95
σ 1.1 .00 .90

Table 5: Comparison between CT-RDSEM and RDSEM using RDSEM data:
Abs. Bias(Coverage)

Parameter True Value RDSEM CT-RDSEM
r 0.5 .00(.96) .00(.97)
β 1 .00(.94) .00(.97)
σ 1.1 .00(.96) .00(.96)
α 1 .03(.94) .03(.97)
v 1.2 .01(.95) .04(.95)

The data is generated with this RDSEM model and analyzed with both
the RDSEM and CT-RDSEM models. The samples have 100 individuals
with 30 observations. The covariate is standard normal. The results of the
simulation are presented in Table 5. Both methods perform equally well, and
the differences are minimal. The RDSEM estimation setup is given in Figure
6 and the CT-RDSEM estimation is given in Table 7. In the CT-RDSEM
estimation, model constraints are used to perform the reparameterization
from drift to autoregressive coefficient and from the total residual variance
to the residual variance.
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Figure 6: RDSEM estimation on RDSEM data

MONTECARLO:  NAMES ARE y x;
             NOBS = 3000;
             NREP = 100;
             NCSIZES = 1;
             CSIZES = 100(30);
             lagged=y(1);
             repsave=all;
             within=x;
             save=a*.dat;

ANALYSIS:   TYPE IS TWOLEVEL;
         estimator=bayes; proc=2;

            burnin=100; 

MODEL MONTECARLO:

  %WITHIN%
  y^ on y^1*0.5;
  y*1.1; 
  y on x*1;
  x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 

MODEL:

  %WITHIN%
  y^ on y^1*0.5;
  y*1.1; 
  y on x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 
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Figure 7: CT-RDSEM estimation on RDSEM data

data: file is alist.dat;
      type=montecarlo;

variable:    NAMES ARE y x id t;
             lagged=y(1);
             cluster=id;
             CTIME=T;
             within=x;

ANALYSIS: TYPE IS TWOLEVEL random;
   estimator=bayes; proc=2;
          burnin=100; 

MODEL:

  %WITHIN%
  y^ on y^1*-0.693 (d);
  y*1.466 (v); 
  y on x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 

model constraint:
  new(r*0.5); r=exp(d);
  new(sig*1.1); sig=(1-r^2)*v;
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6.6 Comparison between CT-RDSEM and RDSEM us-
ing CT-RDSEM data

In this section we compare the estimate of the CT-RDSEM and RDSEM-
TINTERVAL methods in the situation when the data is generated as CT-
RDSEM, i.e., the times of observations are continuous. We consider the
simple CT-RDSEM model

Yij = αi + βXij + εij (44)

εij = Exp(d(tij − ti,j−1))εi,j−1 + ξij (45)

εij ∼ N(0, σ), αi ∼ N(α, v). (46)

The data is generated with this CT-RDSEM model and analyzed with both
the RDSEM-TINTERVAL and CT-RDSEM models. The samples have 100
individuals with 30 observations. The time increments are generated from
the IG(3, 5) distribution with a mean of 2.5. The covariate is standard
normal. For the TINTERVAL parameter we use two values 1 and 0.5. The
results of the simulation are presented in Table 6. The three methods perform
equally well and the differences are minimal except for the drift parameter.
The RDSEM estimation with TINTERVAL of 1 yields biased estimate for the
drift and lower coverage. When the TINTERVAL is lowered to 0.5 the model
approximation is more accurate, and the drift estimate is nearly unbiased
and the coverage recovers almost to nominal levels. This emphasizes the
importance of using a low enough TINTERVAL value with RDSEM when
the data comes with continuous times of observations.

The CT-RDSEM estimation setup is given in Figure 8, the RDSEM es-
timation with TINTERVAL of 1 is given in Figure 9, and the RDSEM es-
timation with TINTERVAL of 0.5 is given in Figure 10. In the RDSEM
estimations model constraints are used to perform the reparameterization
from autoregressive coefficient to drift parameter and from the residual vari-
ance to the total residual variance.

7 The autoregressive curves

In this section we illustrate the auto-regressive curves utility implemented in
Mplus. We use data generated from the VAR model discussed earlier except
that one of the cross-lagged effects is changed from 0.1 to 0. The input file
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Figure 8: CT-RDSEM estimation on CT-RDSEM data

MONTECARLO:  NAMES ARE y x;
             NOBS = 3000;
             NREP = 100;
             NCSIZES = 1;
             CSIZES = 100(30);
             lagged=y(1);
             CTIME=IG(3,5);
             repsave=all;
             within=x;
             save=a*.dat;

ANALYSIS:   TYPE IS TWOLEVEL;
         estimator=bayes; proc=2;

            burnin=100; 

MODEL MONTECARLO:

  %WITHIN%
  y^ on y^1*-0.7;
  y*1.1; 
  y on x*1;
  x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 

MODEL:

  %WITHIN%
  y^ on y^1*-0.7;
  y*1.1; 
  y on x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 
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Figure 9: RDSEM estimation on CT-RDSEM data using TINTERVAL of 1

data: file is alist.dat;
      type=montecarlo;

variable:    NAMES ARE y x id t;
             lagged=y(1);
             cluster=id;
             Tinterval=T(1);
             within=x;

ANALYSIS:   TYPE IS TWOLEVEL random;
     estimator=bayes; proc=2;

MODEL:

  %WITHIN%
  y^ on y^1*0.497 (r);
  y*0.825 (sig); 
  y on x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 

model constraint:
  new(d*-0.7); d=log(r);
  new(v*1.1); v=sig/(1-r^2);
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Figure 10: RDSEM estimation on CT-RDSEM data using TINTERVAL of
0.5

data: file is alist.dat;
      type=montecarlo;

variable:    NAMES ARE y x id t;
             lagged=y(1);
             cluster=id;
             Tinterval=T(0.5);
             within=x;

ANALYSIS:   TYPE IS TWOLEVEL random;
     estimator=bayes; proc=2;

MODEL:

  %WITHIN%
  y^ on y^1*0.705 (r);
  y*0.554 (sig); 
  y on x*1;
  %BETWEEN%
  y*1.2; 
  [y*1]; 

model constraint:
  new(d*-0.7); d=log(r)/0.5;
  new(v*1.1); v=sig/(1-r^2);
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Table 6: Comparison between CT-RDSEM and RDSEM using CT-RDSEM
data: Abs. Bias(Coverage)

Parameter True Value CT-RDSEM RDSEM(1) RDSEM(0.5)
d -0.7 .00(.91) .10(.30) .03(.85)
β 1 .00(.90) .00(.92) .00(.91)
σ 1.1 .00(.92) .00(.92) .01(.94)
α 1 .02(.92) .02(.93) .02(.93)
v 1.2 .02(.98) .03(.97) .02(.97)

for obtaining the autoregressive curves is given in Figure 11. The command
to request the curves is PLOT: TYPE = DRIFT (0, 5, 0.1). The curves
will be computed for all time values from 0 to 5 with increments of 0.1, i.e.,
the autoregressive coefficients are computed for t = 0, 0.1, 0.2, ..., 4.9, 5 using
the usual formula AR = Exp(tD) where D is the estimated drift matrix.
Even without that command, the autoregressive curves are computed and
reported in the output and if the generic PLOT: TYPE IS PLOT3 command
is used the curves are available in the graphics utility. However, the DRIFT
option can be used to specify the entire region we want the curves to be
plotted in. If the DRIFT option is not used, the autoregressive curves will
be computed and plotted in the region that occurs in the data. To be more
specific, Mplus computes the 5-th and 95-th percentiles of the distribution
of the time increments and uses that as the region where the curves are
plotted. In that regard, this region is also important as it reflects the actual
autoregressive effects that occur in the data that was analyzed.

The autoregressive curves are given in Figure 12. The diagonal entries
start at 1 and gradually decrease towards 0. The off diagonal entries start
at 0 and also converge towards zero but peak somewhere in the middle. The
confidence intervals are also given for all the curves. It should be noted here
that significance does not change across time. AR parameters that are signif-
icant at one point are significant at all time points. AR parameters that are
not significant at one point are not significant at all time points. The signif-
icance of the off-diagonal AR parameters matches that of the corresponding
drift parameters. The cross-lagged effect for the first variable appears to
be decreasing slower that the diagonal autoregressive coefficient and at time
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T=5, the off-diagonal effect is bigger than the diagonal in this example. Be-
cause one of the effects is not significant and nearly 0 we can use formula (19)
to compute the time t∗ for which the cross-lagged effect is maximized. Using
that formula and the two diagonal drift parameters estimates -0.5 and -0.548
we obtain that the significant cross-lagged effect is maximized at t∗ = 1.9.
That is confirmed also visually by Figure 12.

8 Interpretation of the drift matrix

The drift matrix as described so far is difficult to interpret without being
converted to autoregressive coefficients or autoregressive curves. However, a
proper and meaningful interpretation of the matrix does exist. It is based on
differential equations and we purposefully have avoided differential equations
so far. In this section we provide a brief description of the origin of the drift
matrix.

Let Y (t) represent the continuous process of the outcome variable in terms
of the time variable t. Even though statistical data analysis is always based on
a discrete sample from that curve, in reality the model does estimate an actual
curve as a continuous function of time. The continuous time autoregressive
process implies that

F (t) = E(Y (t)|Y (0)) = eDtY (0). (47)

That is, if the starting position is at Y(0) at time 0, at time t the process is
expected to be at F (t) = eDtY (0).

Taking a first derivative of the above equation we get that

F ′(t) = DF (t). (48)

Thus the drift matrix gives us a way to compute the rate of change (first
derivative) for the expected process. At time 0

F ′(0) = DF (0) = DY (0). (49)

The first derivative also shows how the process changes in an infinitesimal
amount of time t and that change is tDY (0). In terms of a Taylor series
expansion, using just the first derivative as an approximation

Y (t) ≈ Y (0) + tDY (0). (50)
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Figure 11: Mplus input for autoregressive curves for the VAR model

variable:    NAMES ARE y1-y2 id t;
             lagged=y1-y2(1);
             cluster=id;
             CTIME=t;

DATA: file=1.dat;

ANALYSIS:   TYPE IS TWOLEVEL;
     estimator=bayes; proc=2;

MODEL:

  %WITHIN%
  y1^ y2^ on y1^1 y2^1;

  %BETWEEN%
  y1 with y2;

PLOT: TYPE = DRIFT (0, 5, 0.1);
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Figure 12: Autoregressive curves for the VAR model
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We can expect that approximation to be very good for small values of t. The
process is approximately linear in terms of infinitesimal amount of time and
DY (0) shows the direction of change for that process.

For two dimension processes, it is customary to plot arrows of the size of
DY (0) on a finite grid to illustrate the direction of change in the entire space,
see Figure 2 in Ryan et al. (2018). Such a plot is called the vector field of the
process and is currently not available in Mplus, but can be done for exam-
ple in an online tool available at https://www.geogebra.org/m/QPE4PaDZ.
Here we illustrate the vector field on the example used in the previous section,
see Figure 13. This plot represents the vector field

< −0.500x+ 0.273y,−0.019x− 0.548y > (51)

where the coefficients are the drift parameter estimates. We should note
here that in this entire section, the variables Y (t) represent the simple au-
toregressive process defined in Section 2, i.e., we are focusing here on the
autoregressive residuals across time. This is why all arrows converge to zero.
The expected value of F (t) for large t is always 0. If we are to include the
between level part of the model or non-autoregressive within-model, then
the arrows will converge to the expected/mean value of the process, which is
often just the between part of the variables.

The curve F (t) is the expected process for Y (t) if you start at Y (0). This
curve can also be plotted in a vector field plot for a particular starting point
Y(0) and it would show that the curve smoothly rides on along the vector
field.

The above equations are sometimes also written as follows

Y (t+∆t) ≈ Y (t) + ∆tDY (t) (52)

where t is any point in time and ∆t represents an infinitesimal increment of
time.

In the above differential equations, we used the derivative of the con-
ditional expectation. However, underlying the continuous time modeling
are actually stochastic differential equations that are utilized in Physics and
Econometrics. In particular, the CT-RDSEM modeling is rooted in the Orn-
stein–Uhlenbeck (OU) stochastic process, Uhlenbeck and Ornstein (1930),
which is defined by the following stochastic differential equation

dY (t) = DY (t)dt+ σdWt, (53)
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Figure 13: Vector field plot for simulated example

whereWt is the Wiener process (Brownian motion), which is the integral, i.e.,
the totality of white noise. The above equation can be interpreted as: the
change in Y (t) consists of the drift part DY (t) and white noise dWt. The OU
process conditional on the observation at minus infinity, i.e., unconditional,
is a stationary process with a constant mean and variance. Furthermore,
the Euler–Maruyama method, used for approximate numerical solutions to
stochastic differential equations, discretizes the OU process to a discrete-time
AR(1) model. This is exactly how the RDSEM-Tinterval model approxi-
mates the CT-RDSEM model.

9 A real-data example

In this section we illustrate the CT-RDSEM model with data from a smok-
ing cessation study (Shiffman et al., 1997, Muthén et al. 2024). Random
prompts were issued by a handheld device on average five times a day for
reporting on smoking urge as well as negative affect. In addition to the ran-
dom prompts, several more event-oriented self reports were also made during
temptations to smoke and brief smoking lapses. There are 235 individuals
in the sample and the number of observations per person varies between 5
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and 239, with an average number of observations per person near 100. On
average 5 observations per day are recorded and the number of recorded days
per person varies from one day to 4 weeks.

The random prompts are a minimum of 10 minutes apart, but the self
reports are not separated in time from other observations. This creates about
5 to 10 occasions where a random prompt recording of no smoking urge is
almost immediately followed by a self-report with maximum smoking urge.
Such observations, as discussed in Section 5.5, become outliers when they are
modeled in dynamic settings. The CT-RDSEM model assumes that obser-
vations taken at almost the exact same time would be very similar and thus
the model can not account for such abrupt changes in outcome. If the data
is analyzed in its original state, the smoking urge autocorrelation estimate is
0. This estimate however is driven only by those 10 observations which have
outsized influence on the likelihood value. If those observations are removed
from the data, the autocorrelation is not zero. One way to try to resolve
the problem is to attempt to explain the abrupt change in the outcome with
covariates. The most promising covariate available in the data is the binary
indicator covariate which is 1 for self-reporting and 0 for random prompts.
Self-reporting by definition is expected to be related to higher smoking urge.
However, that covariate can explain only about 20% of the abrupt change
and thus the problem is alleviated to some extent but not enough to pre-
vent the outsized influence of the outliers. Clearly, the smoking urge variable
is subject to random shocks that can not be accounted for without some
additional latent variable modeling. In addition, it might be hypothesized
that a random prompt regarding smoking urge may itself become a trigger
for the smoking urge. As a resolution to this issue and for the purpose of
this illustration, we have chosen the following approach. A minimum of 10
minutes distance between the observations is set not just for the random
prompts but also for the self-reported prompts. This amounts to altering
the time stamp for 10-20 observations. It should be noted here that such an
issue arises almost exclusively in the continuous time modeling framework.
RDSEM and DSEM models utilizing TINTERVAL automatically space out
observations with nearly identical timestamps. Also it should be noted here
that this issue is not uncommon. About half of the real datasets we have
explored, contained such observations and even observations that are with
exactly identical timestamps. Typically, the number of such observations is
less than 10 and these might be the result of software glitch or typos.

The two variables that we consider for this illustration are smoking urge
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and negative affect. The model we use is the CT-RDSEM VAR model dis-
cussed earlier but with covariates. Four within level covariates are available:
arousal, two dummy covariates indicating that the observation is non-random
and due to temptation or a lapse in smoking, and the current status of Ab-
stinence/Lapsed. Three between level covariates are available: age, gen-
der and the average number of cigarettes at baseline. We analyze the data
with the CT-RDSEM model, and with the RDSEM-TINTERVAL model us-
ing three different settings for the discretization interval: 20 minutes, 30
minutes and 1 hour. The estimation time for the CT-RDSEM model is 10
minutes, for RDSEM-TINTERVAL(20 min) it is 56 minutes, for RDSEM-
TINTERVAL(30 min) it is 9 minutes, and for for RDSEM-TINTERVAL(60
min) it is 1 minute. The RDSEM-TINTERVAL(20 min) analyzes a data
set that is more than 10 times larger than the data set analyzed with CT-
RDSEM due to the inserted missing observations.

The regression coefficients for the predictors are largely unaffected by the
estimation method, all four methods yield nearly identical results and signifi-
cance patterns. Figures 14 and 15 contain the regression parameter estimates
for CT-RDSEM and RDSEM-TINTERVAL(20 min). The autoregressive pa-
rameter results are reported in Table 7. Here we compare the CT-RDSEM
values with the three RDSEM-TINTERVAL estimations for the correspond-
ing time interval. The diagonal autoregressive coefficient for smoking urge
r11 is overestimated by RDSEM-TINTERVAL. Not accounting for the precise
times of observations fails to reflect the more erratic nature of smoking urge.
The underestimation is most pronounced for TINTERVAL of 60 minutes.
The CT-RDSEM values behave as expected across time and the cubic rela-
tionship that we expect (assuming upper-diagonal matrix given that r21 is
approximately 0) when comparing r11 at 20 and 60 minutes holds: .423 = .07.
On the other hand, the RDSEM-TINTERVAL values do not .533 = .15 ̸= .36.
Similar pattern can be observed for the negative affect diagonal autoregres-
sive coefficient but to a much smaller extent. This perhaps is due to the
negative affect being less erratic than smoking urge. Interestingly, the cross-
lag effects are the most robust to the time-frame treatment. The two diagonal
drift parameters are estimated at -0.862 and -0.195. Using formula (19) the
cross-lagged effect from negative affect to smoking urge r12 is maximized at
t∗ = 2.23 which corresponds to a 45 minute interval where the value is .15.
The cross-lagged effect dissipates slowly and for example at 3 hours the value
is .05.

The Mplus input files for the CT-RDSEM and RDSEM-TINTERVAL(20
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Table 7: Smoking urge, negative affect autoregressive comparison CT-
RDSEM (RDSEM-TINTERVAL)

Minutes r11 r12 r21 r22
20 .42(.53) .12(.15) -.01(.00) .82(.83)
30 .27(.44) .14(.16) -.01(.00) .75(.77)
60 .07(.36) .14(.14) -.01(.00) .55(.65)

min) models are given in Figures 16 and 17. The only difference between the
two is the specification of the time variable. The time variable in the data is
in days, meaning that 1 represents 1 day. Dividing the time variable by 0.014,
which represents 20 minutes, allows us to align the time frame between the
CT-RDSEM run and RDSEM-TINTERVAL(20 min) so that 1 represents 20
minutes in both cases.
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Figure 14: Smoking urge model regression parameters CT-RDSEM

                                Posterior  One-Tailed         95% C.I.
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  
Significance

Within Level

 URGE       ON
    OBSTYPE1           0.610       0.037      0.000       0.537       0.679      *
    OBSTYPE2           1.907       0.051      0.000       1.808       2.008      *
    STATUS            -0.480       0.044      0.000      -0.569      -0.396      *
    AROUSAL            0.090       0.016      0.000       0.058       0.121      *

 NEGAFF     ON
    OBSTYPE1           0.163       0.012      0.000       0.140       0.185      *
    OBSTYPE2           0.302       0.016      0.000       0.271       0.332      *
    STATUS            -0.012       0.022      0.281      -0.057       0.030
    AROUSAL            0.165       0.006      0.000       0.152       0.177      *

Between Level

 URGE       ON
    AGE                0.024       0.014      0.045      -0.003       0.053
    GENDER            -0.481       0.298      0.052      -1.062       0.100
    AVECIGS            0.038       0.013      0.002       0.013       0.064      *

 NEGAFF     ON
    AGE                0.006       0.004      0.082      -0.002       0.014
    GENDER            -0.046       0.090      0.303      -0.227       0.130
    AVECIGS            0.008       0.004      0.023       0.000       0.016      *
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Figure 15: Smoking urge model regression parameters RDSEM-
TINTERVAL(20 min)

                                Posterior  One-Tailed         95% C.I.
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  
Significance

Within Level

 URGE       ON
    OBSTYPE1           0.593       0.037      0.000       0.521       0.665      *
    OBSTYPE2           1.890       0.049      0.000       1.795       1.992      *
    STATUS            -0.469       0.045      0.000      -0.552      -0.375      *
    AROUSAL            0.093       0.016      0.000       0.061       0.123      *

 NEGAFF     ON
    OBSTYPE1           0.153       0.011      0.000       0.131       0.175      *
    OBSTYPE2           0.317       0.016      0.000       0.285       0.347      *
    STATUS            -0.006       0.019      0.381      -0.040       0.032
    AROUSAL            0.165       0.006      0.000       0.152       0.176      *

Between Level

 URGE       ON
    AGE                0.024       0.014      0.048      -0.004       0.052
    GENDER            -0.478       0.292      0.051      -1.052       0.096
    AVECIGS            0.038       0.013      0.003       0.012       0.063      *

 NEGAFF     ON
    AGE                0.006       0.004      0.081      -0.003       0.014
    GENDER            -0.045       0.089      0.305      -0.220       0.126
    AVECIGS            0.008       0.004      0.024       0.000       0.016      *
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Figure 16: Smoking urge CT-RDSEM

Data: file = smok.dat;

Variable:

     names = subject timeqd6 ObsType1 ObsType2 Status 
    AROUSAL URGE NEGAFF GENDER AGE AVECIGS;
    missing = all(999);
    cluster = subject;
    lagged = URGE-NEGAFF(1);
    ctime = timeqd6;
    within = ObsType1-AROUSAL;
    between = GENDER-AVECIGS;

define:
    timeqd6=timeqd6/0.014;

Analysis:
    type = twolevel;
    estimator = bayes;
    proc = 2; 

Model:
    %Within%
    URGE^ NEGAFF^ on URGE^1 NEGAFF^1;
    URGE NEGAFF on ObsType1-AROUSAL;

    %Between%
    URGE NEGAFF on GENDER-AVECIGS;
    URGE with NEGAFF
 
Plot: type = plot3 drift(0.5,10,0.5);
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Figure 17: Smoking urge RDSEM-TINTERVAL(20 min)

Data: file = smok.dat;

Variable:

     names = subject timeqd6 ObsType1 ObsType2 Status 
    AROUSAL URGE NEGAFF GENDER AGE AVECIGS;
    missing = all(999);
    cluster = subject;
    lagged = URGE-NEGAFF(1);
    tinterval = timeqd6(0.014);
    within = ObsType1-AROUSAL;
    between = GENDER-AVECIGS;

Analysis:
    type = twolevel;
    estimator = bayes;
    proc = 2; 

Model:
    %Within%
    URGE^ NEGAFF^ on URGE^1 NEGAFF^1;
    URGE NEGAFF on ObsType1-AROUSAL;

    %Between%
    URGE NEGAFF on GENDER-AVECIGS;
    URGE with NEGAFF
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