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1 Introduction

In this note we discuss model fit evaluation for the Latent Class Analysis
(LCA) model under complex sampling. Suppose that for the i− individual
in the sample we observe r categorical/discrete variables Ui1, ..., Uir. Sup-
pose that for individual i there exist one unobserved categorical variable Ci,
called the latent class variable. The LCA model is described by the following
equations

P (Uij = l|Ci = k) = plk

P (Ci = k) = qk

where plk and qk are the model parameters that are estimate under the con-
straints ∑

l

plk = 1

∑
k

qk = 1.

For complex samples the LCA model is estimated in Mplus by the Pseudo
Maximum Likelihood (PML) algorithm, see Skinner (1989b) and Asparouhov
(2005). In Asparouhov and Muthen (2005) it is shown that the likelihood
ratio test (LRT) can be conducted with complex sampling using the following
chi-square adjustment method. Let H0 and H1 be two nested models with
design effect matrices ∆0 and ∆1, see section 2.11 in Skinner (1989a), and
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log-likelihood values L0 and L1 respectively. Under the more restrictive H0
model the adjusted test statistic

X =
2(L1 − L0)

c
(1)

has approximately a chi-square distribution with p1-p0 degrees of freedom
where p1 and p0 are the number of parameters and c is the correction factor
computed as follows

c =
Tr(∆1)− Tr(∆0)

p1 − p0

. (2)

In LCA two typical tests of fit are the Pearson chi-square test

X1 =
J∑

j=1

(oj − ej)
2

ej

(3)

and the Log-likelihood test of fit

X2 =
J∑

j=1

oj log(oj/ej) (4)

where the oj is the observed quantity in the contingency table of the observed
data and ej is the corresponding LCA estimated quantity. Here J denotes
the number of cells in the contingency table for the LCA model. These tests
are designed to compare the estimated LCA model against the unrestricted
contingency table model. In fact the Log-likelihood test of fit (4) can simply
be viewed as the usual LRT test between the LCA and the unrestricted
contingency table model. Therefore one can use the Asparouhov and Muthen
(2005) method (1) for obtaining a proper log-likelihood test statistic under
complex sampling.

Note also that under complex sampling oj in (34) is not simply the ob-
served quantity but it is computed by

oj =
∑

Ui∈j−th cell

wi,

where wi is the sampling weight for observation i, because these are the PML
estimates of the cell probabilities under the H1 model.
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Rao and Scott (1984) show that under complex sampling both X1 and X2

have the same asymptotic distribution, which is essentially sums of weighted
chi-square distributions with one degrees of freedom, i.e.,∑

δjχ
2(1) (5)

where the weights δj are the eigenvalues of the design effect matrix ∆ of
the additional p1-p0 parameters present in the H1 model. This implies that
the correction factor (2) used for X2 can actually be used for X1 as well.
Rao and Thomas (1989) also describe a second order approximation to the
distribution (5) which matches not only the mean of the distribution, Tr(∆),
but also its variance, 2Tr(∆2).

The Mplus program computes the trace of the design effect matrix for
each model estimated under complex sampling and therefore the LRT test-
ing (1-2) is fairly easy to perform with the Mplus program. However there
are certain difficulties specific to the contingency table test of fit. The H1
model can potentially have a much larger number of parameters and the
computation of the design effect matrix could be potentially quite intensive.
Consider for example a 2-class LCA model with 10 binary variables. The H1
model has 1023 parameters while the H0 model has 21 parameters. The large
number of parameters can also lead to matrix inversion problems. Therefore
it is important to find a computationally efficient solution. Another compli-
cation arises from the fact that the H0 and the H1 model can not be easily
expressed in the form where the H1 model is simply expanded model with
p1 − p0 additional parameters, this would be needed to compute the design
effect matrix and its eigenvalues for deriving a second order approximation
to the chi-square distribution. Another problem that arises here is the fact
that the H1 model simply matches the observed values and therefore the cor-
responding estimated probability parameter will take a value of zero when
certain pattern does not occur in the sample. This however is a bound-
ary parameter value which violates the assumptions of the above asymptotic
formulas which can lead to poor results in the above approximations. In ad-
dition boundary parameters can occur in the H0 model estimation. Finally
we have to also acknowledge the fact that the Pearson and the Log-Likelihood
test of fit for contingency tables is quite difficult to use when the number of
cells is large, for example larger than 5000, even when the sample is a simple
random sample (SRS). Therefore we can not expect to obtain good results
for large tables even if we provide the correct complex sampling adjustment.
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2 First Order Correction

Let us first consider the simple case when there is no cluster, multistage,
without replacement or stratified sampling, i.e., only unequal probability of
selection with replacement is present in the sample and sampling weights in-
versely proportional to the probability of selection are provided. The pseudo
log-likelihood is given by

L =
∑

i

wiL(Ui)

where wi are the sampling weights and L(Ui) is the log-likelihood for the
i−th individual. The design effect matrix for the model is

∆ = V ar(L′)(L′′−1) (6)

where L′ and L′′ are the first and second derivatives of the log-likelihood L.
The variance covariance V ar(L′) is approximated by

V ar(L′) =
∑

i

w2
i L

′(Ui)L
′(Ui)

T . (7)

Let’s call this the direct method for computing the design effect matrix.
Since the number of parameters is relatively small in the H0 model we use
the direct method for computing the design effect matrix for the H0 model

We now focus on the computation of the design effect matrix for the H1
model. We are going to compare the direct method described above with two
other methods. The first method is given in formula (4.15) in Rao-Thomas
(1989)

Tr(∆1) = n
J∑

j=1

V ar(µ̂j)

µ̂j

(8)

where µj is the probability that an observation is in the j−th cell of the
contingency table and n is the sample size. Under the unequal probability
complex sampling

V ar(µ̂i) =
(1− µi)

2 ∑
Ui∈j−th cell w

2
i + µ2

i

∑
Ui 6∈j−th cell w

2
i

(
∑n

i=1 wi)2

Now we are going to describe an alternative approximate method for
computing the H1 design effect matrix. Suppose that we artificially augment
the H1 model by an additional cell, which never occurs in the data. Let’s call
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Table 1: Comparing method for computing the trace of the H1 design matrix

Method Tr(∆1)
Direct 5.057

Rao-Thomas 5.057
Approximate 5.105

this the J +1 cell. Under this augmented model the pseudo H1 log-likelihood
simplifies to

n∑
i=1,Ui∈j−th cell

wilog(µj),

i.e., this augmentation is equivalent to simply ignoring the constraint
∑

j µj =
1. Under this augmented model the direct design effect matrix is easy to
compute, it is a diagonal matrix with the j diagonal entry

δj =

∑
Ui∈j−th cell w

2
i∑

Ui∈j−th cell wi

. (9)

In this case the diagonal entry is also the eigenvalue of the design matrix and
therefore the second order approximation for the chi-square testing is easy
to compute. Let’s call this method the approximate method.

Let’s now compare the 3 methods on an LCA example with 6 binary vari-
ables and sampling weights wi = 1+ exp(ui1 + ...+ui6). Table 1 contains the
trace of the design matrix for the H1 model and it is clear from this example
that the direct method (6) is the same as the Rao-Thomas method (8). It
is also clear from these results that for practical purposes the Approximate
method is nearly identical to these methods as well. We have also conducted
an extensive simulation study comparing the Rao-Thomas method and the
Approximate method and found no essential differences across various models
and weights selection.

3 Second Order Correction

The second order correction for the LRT testing is constructed as follows.
The LRT and the Pearson test statistics under complex sampling have the
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asymptotic distribution given in (5). This distribution has mean Tr(∆) and
variance 2Tr(∆2). Let’s denote the original chi-square test statistic by X.
For example, for the LRT test this will simply be 2(L1 − L0). We look for a
linear combination of this type

aX + b (10)

which has the same mean and variance as the test statistic under SRS, i.e.,
with mean d and variance 2d where d = p1 − p0. Simple algebra gives

a =

√
d

Tr(∆2)
(11)

b = d−

√√√√d(Tr(∆))2

Tr(∆2)
. (12)

4 First and Second Order Corrections for the

Test of Fit

To summarize we use the following method for obtaining the first and second
order adjustments for the test of fit. Let the unadjusted test statistic is X.
The first order correction is obtained as

X

c

where the correction factors c is obtained as

c =
Tr(∆)

d
=

Tr(∆1)− Tr(∆0)

d

where Tr(∆0) is computed by the direct method (6) and Tr(∆1) is computed
by the approximate method (15)

Tr(∆1) ≈
J − 1

J

∑
j

δj

where δj are computed by (15). The correction factor J−1
J

is used to correct
for the augmented cell. In addition, if there are empty cells in the contingency
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table the correction factor is J−1
J0

where J0 is the number of non-empty cells
in the contingency table, i.e., the number of cells for which δj is computable.

The second order adjustment is computed by equations (10-12) where
Tr(∆) = Tr(∆1) − Tr(∆0). Here Tr(∆1) and Tr(∆0) are computed as in
the first order correction described in the previous paragraph. In addition,
we use the following approximation to compute Tr(∆2)

Tr(∆2) ≈ d

J − 1
Tr(∆2

1) ≈
d

J0

∑
j

δ2
j

The first part of this approximation is driven by the fact that the H1 model
usually has many more parameters than the H0 model.

5 Simulation Study

In this section we describe the results of a simulation study across 6 different
LCA models. We are concerned with the performance of the three chi-square
tests of fit: the unadjusted, the first order adjusted and the second order
adjusted. We only report The Pearson chi-square test of fit, however the
results for the Log-Likelihood chi-square test of fit are very similar. For
all 6 models the data is generated according to the same LCA model that
we estimate and therefore we expect the test of fit to accept the estimated
model, i.e., to lead to a Type I error rate of 5%. In the Tables below we
report the average fit statistic, which should match the degrees of freedom
d, and the Type I error which should be close to the nominal 5% level. For
each model we study the performance of the test statistics at various sample
size levels. The data is generated as follows. A large sample of size N is
generated. From that sample we select a subsample that will be analyzed
according to the following probability selection model. The probability that
observation i is included in the subsample is

Pi =
1

1 + Exp(
∑

j αjUij)

where the vector of parameters α varies across the 6 simulation studies.
Varying the α parameters provides different level of informativeness of the
sampling weights w = 1/P . Because of this data generation the sample size
varies across the replications, however that variation is relatively small. We
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Table 2: Pearson test of fit average value (type I error) for M1, d=50

N n unadjusted 1-st order 2-nd order
1000 116 161(0.98) 78(0.65) 67(0.46)
2500 290 213(1.00) 64(0.63) 59(0.45)
5000 586 238(1.00) 77(0.49) 66(0.36)
10000 1173 231(1.00) 61(0.30) 56(0.13)
20000 2343 226(1.00) 53(0.16) 52(0.04)

report the average sample size n in the tables below as well as the size N of
the original sample. The six models and sample selection models we use in
this simulation are as follows

• M1. 2-class LCA with 6 binary indicators and α = (1, 1, 1, 1, 1, 1)

• M2. 2-class LCA with 6 binary indicators and α = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

• M3. 2-class LCA with 6 binary indicators and α = (2, 2, 0.5, 0.5, 0, 0)

• M4. 3-class LCA with 2 binary and 3 tricotomous indicators and α =
(1, 0,−0.5, 0, 0)

• M5. 3-class LCA with 10 binary indicators and α = (1, 0, 0.5, 0, 0, 0,−1, 0, 1.5, 0)

• M6. 2-class LCA with 10 binary indicators and α = (1, 0, 0.5, 0, 0, 0,−1, 0, 1.5, 0)

For each of the models we generate 100 samples and subsamples. These
simulation studies are easy to conduct with Mplus and the scripts are avail-
able from the authors upon request.

It is clear from these results that in all case the first order corrected test
is superior than the unadjusted test and that the second order corrected
test is superior than the first order corrected test. For models M1-M4 the
second order statistics lead to correct Type I error when the sample size is
large, however when the sample size is small Type I error inflation can still
be present to some extent. In models M5-M6 where d is large and the H1
model has many empty cells the performance and usefulness of the tests is
questionable and should be used very cautiously.
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Table 3: Pearson test of fit average value (type I error) for M2, d=50

N n unadjusted 1-st order 2-nd order
1000 214 66(0.46) 52(0.08) 52(0.07)
2500 536 66(0.43) 50(0.07) 50(0.04)
5000 1079 66(0.43) 50(0.10) 50(0.08)
10000 2156 66(0.47) 49(0.07) 49(0.04)
20000 4312 66(0.44) 50(0.04) 50(0.03)

Table 4: Pearson test of fit average value (type I error) for M3, d=50

N n unadjusted 1-st order 2-nd order
1000 162 158(1.00) 86(0.74) 70(0.47)
2500 406 219(1.00) 89(0.76) 71(0.47)
5000 817 245(1.00) 76(0.60) 65(0.38)
10000 1630 238(1.00) 60(0.33) 56(0.15)
20000 3258 230(1.00) 50(0.10) 50(0.05)

Table 5: Pearson test of fit average value (type I error) for M4, d=81

N n unadjusted 1-st order 2-nd order
1000 404 101(0.45) 93(0.19) 91(0.17)
2500 1008 112(0.74) 94(0.32) 92(0.24)
5000 2016 112(0.63) 88(0.22) 87(0.15)
10000 4022 112(0.65) 84(0.17) 84(0.04)
20000 8060 115(0.69) 83(0.13) 83(0.10)
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Table 6: Pearson test of fit average value (type I error) for M5, d=991

N n unadjusted 1-st order 2-nd order
1000 280 1311(0.92) 1267(0.91) 1208(0.83)
2500 701 1461(1.00) 1353(0.99) 1271(0.98)
5000 1403 1523(1.00) 1345(0.99) 1261(0.99)
10000 2811 1558(1.00) 1296(0.99) 1222(0.98)
20000 5627 1566(1.00) 1217(0.95) 1161(0.92)

Table 7: Pearson test of fit average value (type I error) for M6, d=1002

N n unadjusted 1-st order 2-nd order
1000 259 1313(0.93) 1289(0.91) 1225(0.88)
2500 649 1407(1.00) 1350(0.99) 1268(0.99)
5000 1299 1435(1.00) 1329(1.00) 1250(1.00)
10000 2603 1444(1.00) 1275(1.00) 1207(0.97)
20000 5207 1463(1.00) 1214(0.97) 1161(0.90)
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6 Stratified and Cluster Sampling

The methods for correcting the Pearson and Chi-Square tests of fit described
above easily generalize to the case of stratified cluster sampling. The formulas
that are affected by the stratification and the clustering are (7) and (15).
Under stratified cluster sampling V ar(L′) is computed as follows. Let wich

and Lich be the sampling weight and the log-likelihood of individual i in
cluster c in stratum h. Then

V ar(L′) =
∑
h

nh

nh − 1

∑
c

(zch − zh)(zch − zh)
T (13)

where nh is the number of sampled clusters from stratum h,

zch =
∑

i

wichL
′
ich (14)

is the total score for all individuals in cluster c in stratum h and zh is the
average of zch.

Similarly (15) is computed as follows

δj =

∑
h

nh

nh−1

∑
c(vch − vh)

2∑
Uich∈j−th cell wich

. (15)

where
vch =

∑
Uich∈j−th cell

wich (16)

and vh is the average of vch.
We now illustrate the performance of the unadjusted, first and second

order adjusted tests with a simulation study using complex sampling. We
generate data according to a 2-class LCA model with 6 binary indicators. The
data is generated according to a two level mixture model. Within each cluster
a different LCA model is satisfied and the class membership probabilities vary
across clusters. More specifically log(p1k/(1 − p1k) and log(q1/(1 − q1) are
normally distributed cluster level variables. The LCA model is satisfied in the
total population as well because the indicator variables are still independent
given the class variable. As in the previous section we report the average
Pearson test statistic value as well as its Type I error. The number of clusters
in the sample is denoted by m and the size of the cluster by n. The results
of this simulation are presented in Table 8. It is clear here as well that the
adjusted test statistics are more accurate than the unadjusted and the second
order adjustment appears to be valuable here as well.
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Table 8: Pearson test of fit average value (type I error) under cluster sam-
pling, d=50

m n unadjusted 1-st order 2-nd order
100 10 55(0.14) 53(0.05) 53(0.05)
200 20 56(0.10) 49(0.05) 49(0.05)
400 40 68(0.42) 49(0.13) 51(0.11)

7 Conclusion

The adjusted Pearson and Log-likelihood test of fit provide a valuable tool for
LCA models estimated with complex samples, while the unadjusted statistics
will typically have an inflated Type I error. In some cases however such as
large contingency tables or small sample size even the adjusted test of fit
have inflated Type I error, however even in these cases the performance of
the unadjusted test is much worse than that of the adjusted tests.
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