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Multilevel Factor Models
for Ordinal Variables

Leonardo Grilli and Carla Rampichini
Department of Statistics, University of Florence

This article tackles several issues involved in specifying, fitting, and interpreting the
results of multilevel factor models for ordinal variables. First, the problem of model
specification and identification is addressed, outlining parameter interpretation. Spe-
cial attention is devoted to the consequences on interpretation stemming from the
usual choice of not decomposing the specificities into hierarchical components. Then
a general strategy of analysis is outlined, highlighting the role of the exploratory
steps. The theoretical topics are illustrated through an application to graduates’ job
satisfaction, where estimation is based on maximum likelihood via an Expecta-
tion-Maximization algorithm with adaptive quadrature.

The classical factor model is a popular and effective tool of analysis in the social
sciences. In its standard formulation (e.g., Anderson, 2003), it concerns a set of
continuous variables measured on a set of independent units. However such fea-
tures may be inadequate in many cases, for example, when the response variables
are measured on ordinal scales (e.g., Likert scales) or the statistical units are nested
in multilevel structures.

In principle, the specification of a factor model when the variables are ordinal
(Jöreskog & Moustaki, 2001; Moustaki, Jöreskog, & Mavridis, 2004) does not en-
tail relevant theoretical problems, but estimation is more computationally demand-
ing, so a number of solutions have been proposed, chiefly (a) transform the ordinal
scale in a continuous scale by assigning a score to each grade, and use methods for
continuous data (this procedure works well when there are enough categories, and
the frequency distribution is unimodal with an internal mode; Muthén & Kaplan,
1985); (b) estimate the polychoric correlations among the ordinal variables and use
these correlations as the input in algorithms for continuous data (this approach
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gives consistent point estimates, but it does not rely on a complete statistical model
for the observed data, so it is not fully efficient). This second method, usually
called weighted least aquares (Muthén, 1984; Muthén & Satorra, 1995), is avail-
able in many packages, including LISREL (Jöreskog, 2005; Jöreskog & Sörbom,
2005) and Mplus (Muthén & Muthén, 2006).

Recent developments in computational statistics have greatly enhanced the fea-
sibility of a maximum likelihood (ML) or Bayesian analysis based on the proper
model. In particular, the software Mplus and the Stata command gllamm
(Rabe-Hesketh, Skrondal, & Pickles, 2004b) perform full information ML via nu-
merical integration.

In many fields the statistical units are quite often nested in hierarchical or multi-
level structures.Even ifmultilevelmodelsarenowwelldeveloped (Goldstein,2003;
Snijders & Bosker, 1999), the subclass of multilevel factor models has received rela-
tively little attention, especially in applied work. For the case of continuous vari-
ables, two classical references are Goldstein and McDonald (1988) and Longford
and Muthén (1992), whereas the case of binary variables has been treated only re-
cently by Ansari and Jedidi (2000) and Goldstein and Browne (2005).

This article focuses on multilevel factor models for ordinal variables, a case
where the problems associated with a proper treatment of ordinal variables add to
the difficulties of a multilevel analysis. From a theoretical standpoint such a model
is a member of some broad frameworks, such as the nonlinear mixed model frame-
work for item response theory (IRT) analysis of Rijmen, Tuerlinckx, De Boerck,
and Kuppens (2003), and the class of generalized linear latent and mixed models
(GLLAMM) of Rabe-Hesketh, Skrondal, and Pickles (2004a) and Skrondal and
Rabe-Hesketh (2004). However, the multilevel factor model for ordinal variables
raises several identification and interpretation issues, as well as computational
problems, so its implementation is not straightforward and, in fact, its use in ap-
plied work is rare.

This article discusses how to specify and fit multilevel factor models for ordinal
variables, illustrating the theory by means of an application on the job satisfaction
of the 1998 graduates of the University of Florence. The graduates responded to a
series of items on job satisfaction using a 5-point ordinal scale, so the model
should treat the responses as ordinal variables. The main aim of the analysis is to
describe and summarize the aspects of job satisfaction measured by the considered
items, separately for the graduate and degree program levels, to shed light on the
effectiveness of the degree programs. Therefore, the hierarchical nature of the phe-
nomenon, with graduates nested in degree programs, has a primary role and the use
of a multilevel factor model is essential, as it allows definition of separate factor
structures at the two levels.

All the computations needed in the application are performed using standard
software. In particular, the model is fitted with the package Mplus, which performs
ML via an EM algorithm with adaptive Gaussian quadrature.

2 GRILLI AND RAMPICHINI

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 1
7:

48
 1

8 
D

ec
em

be
r 

20
13

 



This article considers the case where all the response variables are ordinal. The
case of binary variables is simply a special instance, and the extension to mixed
continuous-ordinal-binary responses is straightforward.

The structure of the article is as follows. In the second section the model is de-
fined, showing the likelihood and outlining the problem of identification; then the
interpretation of model parameters is discussed, stressing the implications of not
decomposing the specificities in the between and within components. The third
section presents a general strategy of analysis with several exploratory steps,
which is made necessary by the computational effort usually required to fit the
model. In the fourth section an application to the analysis of job satisfaction of the
1998 graduates of the University of Florence illustrates the steps of analysis and
the interpretation of the results. The final section concludes with some remarks.

THE TWO-LEVEL FACTOR MODEL
FOR ORDINAL VARIABLES

Description of the Model

The analysis of ordinal data requires choosing a set of probabilities to be modeled
and a suitable link function (Agresti, 2002). The cumulative probabilities are cho-
sen here because this allows representation of each observed ordinal variable in
terms of a continuous latent response endowed with a set of thresholds, a represen-
tation that helps the presentation of the model and the interpretation of the results.
Note, however, that the latent response approach is only a convenient way to repre-
sent an ordinal variable; it does not require that the data have been generated by
categorizing latent response variables.

The model can be formulated with any link function. In the following, the probit
link is adopted because the latent response is assumed to be Gaussian, a quite natu-
ral choice to create a connection with the classical factor model. However, the use
of other links entails few modifications and usually leads to negligible differences
in the results.

Let Yhij be the hth observed ordinal variable (item; h = 1, 2, … , H) for the ith
subject (i = 1, 2, … , nj) of the jth cluster (j = 1, 2, … J). Even if the items could be
seen as lowest level units, here the hierarchical levels are numbered starting from
the subjects, so the subjects are referred to as Level 1 or “within” units, whereas the
clusters are referred to as Level 2 or “between” units. Attention is limited to two hi-
erarchical levels, because the extension to more than two levels is conceptually
straightforward. The model allows for item nonresponse; that is, for subject i of
cluster j, Yhij may be missing for some h. In the application, the clusters are the de-
gree programs, the subjects are the graduates, and the ordinal variables are the rat-
ings on five items of the questionnaire (i.e., H = 5).

MULTILEVEL FACTOR MODELS FOR ORDINAL VARIABLES 3
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A two-level factor model for ordinal variables can be set up by defining two
components, namely: (a) a threshold model that relates a set of continuous latent
variables

~
Yhij to the observed ordinal counterparts Yhij, and (b) a two-level factor

model for the set of continuous latent variables
~
Yhij .

As for the threshold model, assume that each of the observed responses Yhij,
which takes values in {1, 2, … , Ch}, is generated by a latent continuous variable
~
Yhij through the following relation:

where the thresholds satisfy .
The factor model can now be defined on the set of latent variables. Ignoring for

the moment the hierarchical structure, the standard factor model can be written as

where umij are the common factors, and, for each h, µh is the item mean, λmh are the
factor loadings and ehij are the uncorrelated item-specific errors.

A two-level extension of the factor model can be obtained in two different ways
(see, e.g., Muthén, 1994). The simplest way is to decompose the factors and the
item-specific errors in two components, one for each hierarchical level:

Here we use the superscript (l) to denote random variables defined at level l, l = 1,
2, along with their parameters and loadings. Therefore, Model 2 becomes

This formulation is useful if one assumes the existence of certain factors and
wishes to study how they vary between and within the clusters. However, in ap-
plied work it is common to find completely different factor structures at the two hi-
erarchical levels, so a more general formulation is this (Goldstein & McDonald,
1988; Longford & Muthén, 1992):

4 GRILLI AND RAMPICHINI
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In this model the cluster level has M2 factors with corresponding loadings λmh
( )2 ,

and the subject level has M1 factors with corresponding loadings λmh
( )1 . Note that,

even when M2 = M1, the factor loadings in general are different, so the factors may
have different interpretations. Obviously, Model 3 is a special case of Model 4 with
M2 = M1 and λ = λmh mh

( ) ( )2 1 .
Now it is convenient to express the general two-level model (Equation 4) for the

latent responses in matrix notation:

where , , , ,

, , while �(2) is a ma-

trix whose hth row is and �(1) is a matrix whose hth row is

.
The standard assumptions on the item-specific errors of Model 5 are

and

and for the factors it is assumed that

and

where the covariance matrices �(2) and �(1) are, in principle, unconstrained, with
diagonal elements representing factor variances , , .
Moreover, all the errors and factors are assumed to be mutually independent, ex-
cept for the factors at the same level, so Model 5 is equivalent to the following vari-
ance decomposition

This amounts to a couple of factor models, one for the between covariance matrix
and the other for the within covariance matrix (Muthén, 1994).

MULTILEVEL FACTOR MODELS FOR ORDINAL VARIABLES 5
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Finally note that the model can be extended by adding a regression component
x′hij� in Equation 4. Although it does not alter the essence of the article, the intro-
duction of a regression component gives rise to a wide range of models, depending
on the nature of the covariates. The covariates can be of various types (Rijmen et
al., 2003): item covariates, unit covariates, and item by unit covariates, where the
unit covariates can be further distinguished into subject-level and cluster-level
covariates.

Model Likelihood and Identification

The full likelihood for the two-level factor model (Equation 4) can be derived in
the following steps. Denoting with � the set of estimable parameters, the condi-
tional likelihood for subject i of cluster j is

where C is the set of all admissible values of the vector c = (c1, … , ch)′ and dijc is
the indicator of the observed response pattern .

The overall marginal likelihood is then

The probabilities that appear in Equation 7, given the relation (Equation 1) be-
tween the observed and latent responses and the assumptions on the latent model
(Equation 4), can be written as
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where and is the standard Gaus-
sian distribution function. Note that is the inverse of the link function and
stems from the normality assumption on the subject-level item-specific errors .
Other distributional assumptions lead to different link functions (e.g., the logistic
distribution leads to the logit link).

In light of Equations 7 and 9, the likelihood (Equation 8) is equivalent to the
likelihood of a three-level model, where the items are the first-level units, the sub-
jects are the second-level units, and the clusters are the third level-units. This cor-
respondence is useful for estimation purposes.

To discuss identification issues, note from Equation 9 that the model likelihood
is based on the quantities

for h = 1, … H and ch = 1, … , Ch – 1, where the asterisk denotes standardized vari-
ables. Assuming for simplicity that all the factors are uncorrelated, from Equation
10 the estimable quantities are:

• in number of

• in number of HM2.

• in number of H.

• in number of HM1.

Note that all the estimable quantities are expressed in terms of the item-specific
subject-level standard deviations but this is not a problem for interpretation.
See the following subsection “Interpretation of Model Parameters.”

The constraints needed for model identification are of two kinds: Some are
needed for the identification of the distribution of the latent responses determining
the ordinal measures (Equation 1), and others are needed for the identification of the
covariance matrix decomposition (Equation 6) associated with the factor model.

The identification of the distribution of the latent responses yielding the
observed responses Yhij does not depend on the hierarchical nature of the model, so
the considerations are the same as for single-level factor models for ordinal vari-

MULTILEVEL FACTOR MODELS FOR ORDINAL VARIABLES 7
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ables. First, recall that in a univariate ordinal model the mean and the standard de-
viation of the latent response are not identifiable, so it is necessary to use two con-
straints; for example µh = 0 and . In a multivariate ordinal model (Grilli &
Rampichini, 2003), a possibility is to impose constraints on the mean and standard
deviation of each item and freely estimate all the thresholds of all the items. In such
a case, the threshold model uses all the available degrees of freedom, so the facto-
rial part is not threatened by potentially invalid restrictions on the threshold part. A
useful feature of unconstrained thresholds is that all the specificities are equal, so
the factor loadings of two items are directly comparable.

However, the number of freely estimable thresholds, , is usually
quite large, so the parsimony principle suggests to look for a constrained structure
entailing a negligible loss of fit. In general, structuring the thresholds in a sensible
way is not straightforward, but when all the items have the same categories (Ch = C
≥ 3) an appealing option (later called equal latent thresholds) is to assume that at
every cutpoint c the latent thresholds γc, h are equal; that is, γc, h′ = γc, h′′ = γc for each
h′, h′′ and leave µh and free (except for a reference item): In this way the ac-
tual thresholds are , as it is clear from the likelihood contribu-
tion (Equation 9). Obviously, this kind of restriction makes the threshold structure
easily interpretable, although it requires some care in the interpretation of the load-
ings, as each item has its own scale .

As for the identification of the two-level factor model on the continuous latent
variables , the variance–covariance decomposition (Equation 6) entails
and indeterminacies in �(2) �(2) �(2)′ + �(2) and �(1) �(1) �(1)′ + �(1), respec-
tively. In exploratory factor analysis it is customary to assume uncorrelated (or-
thogonal) factors with unit variance, putting the remaining constraints on the
factor loadings in various forms (see, e.g., Anderson, 2003). However, in confir-
matory factor analysis it may be useful to relax either or both the assumptions on
the factor covariance matrix (i.e., unit variance and uncorrelatedness). Relaxing
the unit variance assumption causes a scale indeterminacy that can be solved by
fixing to one a loading for each factor, and the uncorrelatedness is usually compen-
sated for by an adequate number of zeroes in the matrix of loadings. The main ad-
vantage of an unconstrained factor covariance matrix is that the loadings are invari-
ant with regard to certain changes, as in the cases of factor-based unit selection and
comparisons among populations (Anderson, 2003). However, it is clear from the
following that correlated factors complicate the interpretation of the results,
whereas unconstrained variances are harmless in this regard.

The analytical approach to identification just sketched can be formalized, in the
structural equation framework, through the definition of identification mappings
between the structural parameters and identified reduced form parameters, as in
Skrondal and Rabe-Hesketh (2004). Finally, local identification can be empirically
checked in the estimation phase by inspection of the rank of the ML information
matrix (e.g., computing the condition number), as nonsingularity of the informa-

8 GRILLI AND RAMPICHINI
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tion matrix is a sufficient condition—although not necessary in the case of nonlin-
ear models—for local identification (Skrondal & Rabe-Hesketh, 2004).

Interpretation of Model Parameters

The formerly outlined two-level factor model for ordinal variables is based on two
components that can be interpreted separately: (a) a threshold model that relates
the continuous latent responses to the observed ordinal counterparts Yhij, and
(b) a two-level factor model for the continuous latent responses . The follow-
ing discussion focuses on some issues concerning the second component, which
conveys the most important information.

Although the interpretation of the two-level factor model relies on the classical
ideas of factor analysis, some clarification may be useful. Note that the following
formulas are based on the uncorrelatedness of the factors at both levels, whereas
the factor variances may be fixed or free (in any case it is assumed that the model is
identified through adequate constraints on the loadings). It should be noted that the
factor variances are not directly interpretable, even when left free, as they simply
represent contributions with respect to the arbitrary item that has the loading fixed
to one: In general, the only interpretable quantity is the variance contribution ex-
pressed by the product or .

From Equation 6, the total variance of the hth item is decomposed in

where

and

The ratio

is the so-called intraclass correlation coefficient (ICC), which represents the pro-
portion of variance explained by the clusters.
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In most applications, to save computational resources, the cluster-level
item-specific errors in Equation 4 are omitted. In such a case, the variance of
the remaining subject-level item-specific errors represents the total specific-
ity, and the factor structure is unaffected (even if the estimates may change sub-
stantially if the factor structure is poorly specified). A consequence of omitting the
errors is that the variance decomposition (Equation 11) is not feasible, so it is
important to understand the role of such decomposition for interpretation.

First, consider the case where the specificities are not disentangled. In general,
the interpretation of the factor structures at the two levels does not depend on the
decomposition of the specificities and the (relative) communalities can be com-
puted as well. As in standard factor models, the communality is the proportion of
the variance of a given response explained by the factors. As usual with ordinal
items, the communalities are referred to as the latent responses. For example, the
total communality of the hth item is

and the communality of the hth item due to the mth subject-level factor is

Moreover, the decomposition of the specificities is not required for the correla-
tion between two latent responses of the same subject, and :

However, there are other interesting quantities that can be computed only if the
specificities are disentangled, such as the ICCh (Equation 12) and the com-
munalities at a given level. For example, the total communality at subject level of
the hth item is
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and the communality at subject level of the hth item due to the mth subject-level
factor is

Moreover, for a given item, the correlation between two distinct subjects be-
longing to the same cluster is just the ICCh (Equation 12), so it is computable only
if the specificities are decomposed.

Finally, note from Equation 10 that all the estimable quantities are scaled by
. If the cluster-level item-specific errors are omitted, each scale factor
represents the square root of the item total specificity, leading to smaller esti-

mable quantities. Nevertheless, the communalities are unaffected by the item
scale, as they are ratios of parameters within the same item.

PHASES OF THE ANALYSIS

The accomplishment of careful exploratory analyses is extremely important to
achieve a suitable model specification, helping to avoid some of the traps that inev-
itably characterize the development of a complex model. Moreover, fitting the
two-level factor model for ordinal variables, outlined in the previous section, is
computationally intensive. In fact, the marginal likelihood (Equation 8) involves
multiple integrals with respect to Gaussian densities that cannot be solved analyti-
cally. Several estimation methods have been proposed, such as ML with adaptive
Gaussian quadrature (Rabe-Hesketh, Skrondal, & Pickles, 2005) and Bayesian
Markov Chain Monte Carlo (MCMC) algorithms (Ansari & Jedidi, 2000;
Goldstein & Browne, 2002, 2005); but other methods can be successfully applied,
as discussed in the final section. The computational burden is heavy, so it is crucial
to base model selection on suitable exploratory analyses, thus limiting the number
of fitted models and supplying the algorithms with good starting values.

For the analysis we suggest adapting to the ordinal case Muthén’s (1994) strat-
egy for continuous items.

1. Univariate two-level models. As a first step, it is advisable to fit a set of
univariate ordinal random intercept models, one for each item, with the following
specification in terms of latent responses:

where are cluster-level errors with standard deviation and
are subject-level errors with standard deviation , implying
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. To overcome the usual latent response identification problem,
fix µh = 0 and for each item h, where the constant value s depends on
the link; for example, s = 1 for the probit and for the logit. The estima-
ble parameters are then the thresholds and , with the related ICCh =

. The point estimates and significance of the ICCh allow one
to evaluate if a two-level analysis is worthwhile, and a comparison of the thresh-
olds among the items should give some hints about possible restrictions to be im-
posed in the multivariate model.

2. Exploratory nonhierarchical factor analysis. To shed some light on the
covariance structure of the data, it is useful to estimate the matrix of product–mo-
ment correlations among the latent responses (i.e., the polychoric correlation ma-
trix of the items) and to use this matrix to perform an exploratory nonhierarchical
(i.e., single-level) factor analysis by means of standard software.

3. Exploratory between and within factor analyses. More specific sugges-
tions for the two-level model specification can be obtained from separate explor-
atory factor analyses on the estimated between and within correlation matrices
of the latent responses. The results of this two-stage procedure are expected to
be similar to those obtained from the full two-level analysis, as in the continuous
case (Longford & Muthén, 1992). The decomposition of the latent response cor-
relation matrix into the between and within components can be obtained by
means of a multivariate two-level ordinal model with unconstrained covariance
structure. For each item, the equation for the latent response is just Equation 15,
but now the items are jointly modeled with an unconstrained between covariance

matrix and an unconstrained within covariance matrix

. Despite the latent nature of the involved variables, the cor-
relation matrices are identified. Note that the number of random effects in this
multivariate model is equal to twice the number of considered items, so the esti-
mation process is computationally demanding. If the computation takes too long,
it may be advisable to consider an approximate solution, assigning a score to the
item categories and fitting a multivariate two-level model for continuous re-
sponses: The resulting correlation matrices will have slightly attenuated values,
unless the distributions of the transformed variables are very far from the
Gaussian distribution (Muthén & Kaplan, 1985).

4. Confirmatory two-level factor analysis. The results of the exploratory
two-stage factor analysis outlined in Step 3 are used to specify one or more confir-
matory two-level ordinal factor models as defined by Equation 4. These models
can be fitted by means of likelihood or Bayesian methods and compared on the ba-
sis of appropriate indicators. The exploratory two-stage factor analysis of Step 3
provides fine initial values for the chosen estimation procedure, which may allow a
substantial gain in computational time. Note that a large amount of computational
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time can be saved by omitting the cluster-level item-specific errors so that the
variances of the subject errors are in fact the total specificities. As illustrated
earlier, this simplification prevents a full variance decomposition and the computa-
tion of the related quantities, but it is expected to be of minor importance because
the interest of the researcher centers on the factor structure.

APPLICATION

The ordinal multilevel factor model was used to analyze five items on job satisfac-
tion taken from a telephone survey conducted on 1998 graduates of the University
of Florence, from 1 to 2 years after they obtained their degree.

The question on job satisfaction was asked to the employed graduates. Alto-
gether the considered data set includes 2,432 graduates from 36 degree pro-
grams, with a highly unbalanced structure: The minimum, median, and maxi-
mum number of employed graduates per degree program are 3, 31.5, and 495,
respectively.

The question—How satisfied are you with the following aspects of your present
job?—required a response on a 5-point scale ranging from 1 (very much satisfied)
to 5 (very unsatisfied). The five considered items were earnings, career (career op-
portunities), consistency (consistency with degree program curriculum), profes-
sionalism (acquisition of professionalism), and interests (correspondence with
one’s own cultural interests). The univariate distributions of the items are reported
in Table 1. Note that the number of responses for each item is different due to item
nonresponse. The multilevel factor model adopted here allows for missing item
values: ML estimates are consistent under the usual missing at random (MAR) as-
sumption (Little & Rubin, 2002).
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(1)
hije

TABLE 1
Univariate Distributions of Job Satisfaction Items. Graduates From the

University of Florence, 1998

Level of Satisfaction Total

Item 1 2 3 4 5 % N

1. Earnings 7.8 23.9 38.1 20.5 9.7 100.0 2,421
2. Career 11.0 28.2 32.6 18.0 10.2 100.0 2,393
3. Consistency 24.5 27.5 24.2 12.5 11.3 100.0 2,427
4. Professionalism 26.0 40.3 22.8 7.7 3.2 100.0 2,420
5. Interests 21.5 32.7 28.2 10.8 6.8 100.0 2,419
Total 18.2 30.5 29.2 13.9 8.2 100.0 12,080
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The main aim of the analysis is to describe and summarize the aspects of satis-
faction measured by the five considered items, separately for the graduate and de-
gree program levels. The two-level factor model for ordinal variables, defined by
Equations 1 and 4, is a useful tool to achieve this goal. The model is quite complex
and, whichever algorithm is used, the fitting process is very time consuming, so it
is advisable to follow the exploratory steps outlined earlier.

Univariate Two-Level Models

The analysis begins by fitting the univariate ordinal random intercept models
(Equation 15), using the logit link for consistency with the confirmatory factor
model. The ML estimates, via adaptive quadrature, are reported in Table 2.

The between proportion of variance of the latent responses, ICCh, is signifi-
cantly different from zero for all items, as shown by the Likelihood Ratio Test
(LRT) comparing the models with and without random intercept. Note that when
the LRT is testing on the boundary of the parameter space, as in this case, the limit-
ing distribution of the LRT statistic is not the usual , but instead a 50–50 mix-
ture of a (i.e., a point mass at zero) and a . Therefore the p values reported in
Table 2 are halved (Snijders & Bosker, 1999).

The estimated ICC is low for the last two items (1.8% and 2.1%) and it is mild
for the first three items, ranging from 5.5% to 8.7%. Such values of the ICC, al-
though mild in terms of the latent response, imply relevant variations in the proba-
bilities of the observed responses for different clusters.

A comparison among the thresholds gives some ideas on possible constraints
on the thresholds in the multivariate model. In particular, the differences between
adjacent thresholds among the items should be compared to informally evaluate
the plausibility of the equal latent thresholds structure outlined earlier. In this case,
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2
1χ

2
0χ 2

1χ

TABLE 2
Univariate Ordinal Logit Random Intercept Models: ICC, Thresholds, and
LRT Comparing Models With and Without Random Intercept. Graduates

From the University of Florence, 1998

ICC
(%)

Thresholds LRT

Item γ1 γ2 γ3 γ4 Statistic p

1. Earnings 5.5 –2.56 –0.81 0.86 2.29 88.40 .000
2. Career 8.7 –2.35 –0.63 0.84 2.14 145.68 .000
3. Consistency 6.6 –1.14 0.11 1.25 2.19 98.80 .000
4. Professionalism 1.8 –1.03 0.71 2.15 3.46 6.18 .006
5. Interests 2.1 –1.24 0.24 1.63 2.71 17.79 .000

Note. ICC = intraclass correlation coefficient; LRT = Likelihood Ratio Test.
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these differences are similar for all the items, except for the third one, which shows
smaller differences. This suggests that the third item has a higher variability, as
also confirmed by the variances calculated after item scoring (seen later in Table
5). The confirmatory factor analysis includes a test comparing the equal latent
thresholds structure with the unconstrained one.

Exploratory Nonhierarchical Factor Analysis

The second step requires the estimation of the matrix of product–moment correla-
tions among the latent responses; that is, the polychoric correlation matrix (see Ta-
ble 3) with entries that are all significantly different from zero. This matrix is used
to perform an exploratory ML factor analysis via standard software. The results of
this analysis (Table 4) suggest the presence of two factors: a cultural factor (labeled
Factor 1) that explains primarily the consistency–professionalism–interests corre-
lations, and a status factor (labeled Factor 2), explaining mainly the earnings–ca-
reer correlation. Given the low proportions of between variance (ICCs of Table 2),
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TABLE 3
Polychoric Correlation Matrix of the Items,

Graduates From the University of Florence, 1998

Item 1 2 3 4 5

1. Earnings 1.00
2. Career 0.54 1.00
3. Consistency 0.11 0.25 1.00
4. Professionalism 0.28 0.45 0.54 1.00
5. Interests 0.16 0.33 0.61 0.58 1.00

TABLE 4
Exploratory Factor Analysis on the Polychoric Correlation Matrix

of the Items: Varimax Rotated Factors and Communalities. Graduates
From the University of Florence, 1998

Factor Loadings

Factor 1 Factor 2 Communality

1. Earnings .08 .65 .43
2. Career .26 .80 .70
3. Consistency .77 .07 .60
4. Professionalism .68 .34 .58
5. Interests .78 .16 .63
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this structure is expected to be quite similar to the within structure, although it may
be very different from the between structure.

Exploratory Between and Within Factor Analyses

The third step of the analysis calls for the decomposition of the overall correlation
matrix of the latent responses into the between and within components. This task
would require fitting a two-level multivariate ordinal model with five random ef-
fects for each level, which takes too long to be fitted with numerical integration.
Therefore an approximate procedure is adopted, assigning a score to each item cat-
egory. Various sophisticated scoring systems could be applied (Fielding, 1999),
but given the preliminary nature of this step, the simplest scoring system is applied,
assigning integer values 1 to Ch to the categories. After scoring, the within and be-
tween covariance matrices can be estimated by fitting a multivariate two-level
model for continuous responses. To this end, the MLwiN software with RIGLS al-
gorithm (Rasbash, Steele, Browne, & Prosser, 2004) is used. RIGLS yields re-
stricted ML estimates, which are less biased for variance–covariance parameters
than full ML (Goldstein, 2003).

The results are shown in Tables 5 and 6. For Table 5, note the following points:
(a) It is clear from the last row that the third item (consistency) has the higher vari-
ability, as already noted in the univariate analysis (Table 2); (b) the between per-
centages of variance (i.e., the values on the diagonal) are in line with the ICCs of
Table 2; and (c) the between percentages tend to be higher for covariances than for
variances.

For Table 6, note the following points: (a) The total correlation matrix, which is
obtained from the between and within components, is similar to the polychoric
correlation matrix (Table 3), with a moderate attenuation; (b) the between and
within correlation matrices have quite different structures (e.g., the between corre-
lations are always higher than the within correlations); and (c) the within correla-
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TABLE 5
Two-Level Multivariate Model on Item Scores: Between Percentage
of Variance (in Italics) and covariance, and Total Variance of Items;

Graduates From the University of Florence, 1998

Item 1 2 3 4 5

1. Earnings 5.90
2. Career 12.96 8.63
3. Consistency 21.02 13.09 7.37
4. Professionalism 10.55 7.63 6.62 2.30
5. Interests 9.57 4.75 6.07 2.76 2.36
Total variance 1.15 1.31 1.68 1.04 1.31
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tion matrix is similar to the total correlation matrix, due to the low proportion of
between variances and covariances.

The results of the exploratory ML factor analyses performed on the within and
between correlation matrices of Table 6 are reported in Table 7.

As for the within structure, Bartlett’s test indicates that two factors are sufficient
(p value = .5082). The factor loadings are similar to those found in the non-
hierarchical analysis (Table 4).

As for the between structure, although one factor is not enough, the estimation
with two or more factors encounters a Heywood case. We decided to retain two
factors, forcing the specificities to be nonnegative. The second factor is measured
by all items, whereas the first factor has relevant loadings only for the last three
items.

Confirmatory Two-Level Factor Analysis
With Unconstrained Thresholds

Finally, in light of the results of the exploratory analysis, a two-level confirmatory
factor analysis is performed using the model defined by Equations 1 and 4. ML es-
timates are obtained with Mplus (Muthén & Muthén, 2006). Mplus performs ML
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TABLE 6
Two-Level Multivariate Model on Item Scores: Correlation Matrix
Decomposition. Graduates From the University of Florence, 1998

Item 1 2 3 4 5

Between
1. Earnings 1.00
2. Career .89 1.00
3. Consistency .36 .40 1.00
4. Professionalism .72 .69 .79 1.00
5. Interests .39 .32 .81 .62 1.00

Within
1. Earnings 1.00
2. Career .46 1.00
3. Consistency .10 .23 1.00
4. Professionalism .23 .39 .48 1.00
5. Interests .14 .31 .55 .52 1.00

Total
1. Earnings 1.00
2. Career .49 1.00
3. Consistency .11 .24 1.00
4. Professionalism .25 .40 .49 1.00
5. Interests .15 .30 .55 .53 1.00
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estimation via an EM algorithm, solving the integrals with adaptive Gaussian
quadrature. Mplus version 4 allows modeling of ordinal responses using the probit
or the logit link. However, Mplus version 3 was used here, which employs only the
logit link. This implies a little change with respect to the model discussed earlier,
namely the distribution of is logistic instead of Gaussian. Note that the logit
implies that is equal to , instead of 1 for the probit, whereas µh = 0 as
for the probit.

The within and between structures emerging from the exploratory analyses are
not equally reliable: The within part is estimated on a large number of observations
and Bartlett’s test clearly indicates the presence of two factors, whereas the be-
tween part is estimated on only 36 degree programs and the estimation is compli-
cated by the presence of a Heywood case.

Therefore, for the within part of the model, the two-factor structure suggested
by the exploratory within factor analysis (see Table 7) is retained, constraining to
zero the loadings that were close to zero, that is the loading of earning in the first
factor and the loadings of consistency and interests in the second factor. As for the
between structure, because the hints from the exploratory analysis are less clear,
two configurations at this level have been tried: (a) a one-factor unconstrained
structure (Model M1), and (b) a two-factor structure (Model M2), with uncon-
strained loadings in the first factor and two loadings equal to zero in the second fac-
tor (earning and career; see Table 7).

Models M1 and M2 are fitted without imposing any restriction on the thresh-
olds, to preserve the covariance structure from possible misspecifications of the
thresholds. Because we are not particularly interested in decomposing the item
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(1)
hije

(1)
hψ / 3π

TABLE 7
Exploratory Maximum Likelihood Factor Analysis on the Within and
Between Correlation Matrices Estimated From Item Scores: Factor

Loadings and Communalities (Varimax Rotation Only for the Within Part),
Graduates From the University of Florence, 1998

Within Between

Loadings Loadings

Item F1 F2 Communality F1 F2 Communality

1. Earnings .07 .59 .35 .00 1.00 1.00
2. Career .25 .75 .63 .08 .89 .80
3. Consistency .72 .07 .53 .93 .36 1.00
4. Professionalism .64 .32 .50 .57 .72 .84
5. Interests .74 .16 .58 .71 .39 .66
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specificities, to reduce the computational effort the cluster-level item-specific er-
rors are omitted, so the specificities are in fact total specificities. The models
are fitted using five quadrature points for each factor, with a total of 125 and 625
quadrature points for M1 and M2, respectively. Some limited trials suggest that
larger numbers of quadrature points do not improve the estimates in a significant
manner.

The LRT comparing the models M1 and M2 clearly indicates that the second
model is better. The preferred model, M2, has 35 estimable parameters: 20 thresh-
olds γc, h, 5 factor loadings and 2 factor standard deviations at the gradu-
ate level (m = 1, 2); and 6 factor loadings and 2 factor standard deviations

at the degree program level (m = 1, 2). The parameter estimates for Model M2
are reported in Table 8. The interesting part of the model is the covariance structure
at both levels, which does not depend on the item means and thresholds and can be
summarized by the communalities (see Table 9). These values are obtained as suit-
able transformations of model parameters: The factor-specific communalities are
computed from formulas such as Equation 14; the total communality is obtained
by summing the row values FW1, FW2, FB1, and FB2 (see Equation 13); and the
last column of Table 8 is the percentage of total communality due to the between
level. The following points should be noted: (a) For the first three items, the be-
tween component is greater for the communality (last column of Table 9) than for
the total variance (ICCs of Table 2); (b) the last two items, professionalism and in-
terests, are very poorly explained by the factors at degree program level; and (c) the
first factor at the degree program level, FB1, is interpretable as a status factor,
whereas the second one, FB2, is essentially related to the item consistency.
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mhλ (1)
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mhλ
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TABLE 8
Confirmatory Two-Level Factor (F) Analysis (Model M2): Parameter

Estimates, Graduates From the University of Florence, 1998

Loadings

Within (W) Between (B) Thresholds

Item λ1
1
h

( ) λ2
1
h

( ) λ1
2
h

( ) λ2
2
h

( ) γ1,h γ2,h γ3,h γ4,h

1. Earnings — 1.09 0.75 — –3.96 –1.39 1.24 3.29
2. Career 1a 1a 1a — –3.64 –0.92 1.46 3.37
3. Consistency 2.30 — 0.32 1a –1.80 0.19 1.98 3.39
4. Professionalism 2.25 0.41 0.31 0.27 –1.79 1.07 3.36 5.27
5. Interests 2.85 — 0.09 0.47 –2.34 0.34 2.83 4.62
Factor variance 0.75 3.09 0.71 0.45

aDenotes a fixed value.

(2)
hje
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The factor scores at degree program level are represented in Figure 1, where the
labels are attached to the degree programs with extreme scores: The points on the
right side of the figure indicate a high satisfaction on earning and career, whereas
the points on the top denote a high satisfaction on consistency. Note that there are
two degree programs in the lower left corner (philosophy and natural sciences)
with low satisfaction on both dimensions.

The analysis could be deepened by adding some covariates, but this is beyond
the goal of this article. This extension is straightforward even if it might require a
substantial increase in computational time.

Finally, a quick test to evaluate if the model selection is influenced by the omis-
sion of the cluster-level specific errors consists in fitting the same models as
before except for treating the responses as continuous (i.e., using the item scores).
In such a case, Mplus avoids numerical integration, so estimation takes only a few
seconds. Two models on item scores are fitted: M1* and M2*, with the same factor
structure as M1 and M2, respectively. In both M1* and M2* the cluster-level
item-specific errors are omitted. The LRT comparing these two models con-
firms that M2* is better than M1* (LR statistic = 51.7, df = 3). Subsequently, the
cluster-level item-specific errors are added to M1* and M2*. Denoting with
M1+ and M2+ the resulting models, the LRT comparing M1+ with M2+ leads to a
less clear result (LR statistic = 7.4, df = 3, p = .06). Therefore the choice of not de-
composing the specificities may have unexpected consequences on the selection of
the factor structure.

Confirmatory Two-Level Factor Analysis
With Constrained Thresholds

In the search for a more parsimonious specification of the model, it is interesting to
consider the equal latent thresholds structure described earlier, comparing Model
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TABLE 9
Confirmatory Two-Level Factor (F) Analysis (Model M2): Communalities,

Graduates From the University of Florence, 1998

% Communality

% Between
on Total

Within (W) Between (B)

Item FW1 FW2 FB1 FB2 Total

1. Earnings — 49.9 5.4 — 55.2 9.7
2. Career 9.6 39.4 9.0 — 58.0 15.6
3. Consistency 51.1 — 0.9 5.7 57.7 11.5
4. Professionalism 49.2 6.7 0.9 0.4 57.2 2.3
5. Interests 64.2 — 0.1 1.0 65.3 1.6

(2)
hje

(2)
hje

(2)
hje
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M2 with a model having the same factor structure, but constrained thresholds.
This structure cannot be easily imposed in Mplus because the subject-level
item-specific standard deviations are assumed to be equal across items and
cannot be defined as model parameters. This point can be overcome in two ways.

First, it is possible to add a set of fictitious factors each pointing to one item, ex-
cept for the reference item. This allows definition of the item-specific means µh

and specificities . However, this solution is computationally inefficient, as it
increases by (H – 1) the number of latent variables and thus the dimension of the
integration in the marginal likelihood. Second, it is possible to impose nonlinear
constraints on the thresholds to obtain the desired threshold structure. As previ-
ously noted, under the assumption that the thresholds γc, h are constant across items
and hence written as γc, the actual thresholds are , for a total
of (C – 1) + 2 · (H – 1) free parameters. In the Mplus parametrization µh and
are assumed to be constant across items, so the threshold model for the ordinal
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(1)
hψ

(1)
hψ

FIGURE 1 Estimated factor scores for the degree programs (model M2). Graduates from the
University of Florence, 1998.

(1)
, = ( )/c h c h hτ γ µ ψ�

(1)
hψ
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variables is characterized by (C – 1) · H estimable thresholds: therefore (C – 3) · (H
– 1) constraints must be imposed to get the correct number of free parameters. To
this end, note that the relation implies the following equali-
ties for any c = 2, … , C – 1, and any pairs of items h and h*:

Hence, in the present case (C = 5 and H = 5) the required 2 · 4 = 8 constraints on
the actual thresholds could be:

for h* = 2 (the reference item) and h = 1, 3, 4, 5.
After estimation, the item-specific standard deviations and means (with respect

to the reference item) can be recovered using appropriate formulas; for example,

and

Mplus is used to fit a model with the same factor structure of Model M2, but
with equal latent thresholds. This leads to a model with 35 parameters and 8 non-
linear constraints on the thresholds. The LRT statistic for the equal latent thresh-
olds assumption is 17.19 (df = 8, p = .028). Therefore, with the data at hand the use
of such structure is questionable, although the consequences on the communalities
and factor scores are found to be modest.

An alternative software for fitting the models described in this article is the
gllamm command of Stata (Rabe-Hesketh et al., 2004b), a highly flexible proce-
dure that allows fitting of the two-level factor model for ordinal variables both with
unconstrained thresholds and with equal latent thresholds. In gllamm the equal
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latent thresholds structure is appealing, as it is implemented through a special link
function, the scaled ordered probit (option link(soprobit)), whose scale pa-
rameters are the standard deviations of the specificities,

The gllamm command performs ML, using a Newton–Raphson algorithm
with adaptive Gaussian quadrature. In our application, the results obtained with
gllamm are similar to those yielded by Mplus, although the computational times
are substantially longer.

CONCLUDING REMARKS

Multilevel factor models for ordinal variables are useful but complex tools, giving
rise to problems of specification, identification, estimation, and interpretation. At
present the major obstacle to a wide use of such models is software limitations. To
our knowledge the only widespread packages able to yield full information ML es-
timates for the models discussed here are Mplus and the gllamm command of
Stata.

Full information ML has several advantages over limited information methods,
namely (a) efficiency; (b) availability of a likelihood, allowing likelihood-based
inference; and (c) ability to deal with many patterns of missingness, yielding con-
sistent estimates under the usual MAR assumption. The techniques to obtain full
information ML can be classified along two dimensions (Rijmen et al., 2003): the
method of numerical integration of the intractable integrals used to approximate
the marginal likelihood and the type of algorithm used to maximize the approxi-
mate marginal likelihood.

Numerical integration can be deterministic, such as Gaussian quadrature (adap-
tive or not), or stochastic, such as Monte Carlo integration. In general the computa-
tional time of Gaussian quadrature is roughly proportional to the product of the
number of quadrature points for all the latent variables used, so models with three
or more factors per level may take too much time to be of practical use. In such
cases, Monte Carlo integration may be more convenient. There are promising at-
tempts to improve the efficiency of numerical integration techniques (e.g., spheri-
cal quadrature: Rabe-Hesketh et al., 2005; quasi-Monte Carlo: Pan & Thompson,
2004).

The maximizing algorithm can perform the maximization directly on the mar-
ginal likelihood, such as the Newton–Raphson, or indirectly on some variant of the
likelihood, such as the EM. Further research is needed to assess the relative merits
of Newton–Raphson, EM, and their numerous variants, and to assess the interac-
tions with the numerical integration techniques.

A promising route is the adaptation of simulation-based methods (Gouriéroux
& Monfort, 1996) to the class of multilevel factor models: An interesting example
in this respect is the application of Mazzolli (2001) concerning a multilevel struc-
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tural equation model with ordinal variables. Moreover, in the search for approxi-
mate but computationally efficient methods, the development of limited informa-
tion methods (Muthén & Satorra, 1995) may be worthwhile.

In the Bayesian paradigm there is a growing research activity aimed at develop-
ing efficient MCMC algorithms for models with latent variables: In particular,
Ansari and Jedidi (2000) and Goldstein and Browne (2005) treated multilevel fac-
tor models with binary responses, and Fox and Glas (2002) considered more gen-
eral multilevel structural models.

Although faster estimation algorithms can be developed, the supplementary
computational effort needed to treat the response variables as ordinal, instead of
continuous, is inevitably not negligible, so one can legitimately wonder whether
the effort is adequately repaid in terms of the quality of statistical inference. A gen-
eral answer is obviously not possible. The results of Muthén and Kaplan (1985)
suggest that, in standard factor models, treating the ordinal variables as continuous
is not severely harmful when the frequency distributions are unimodal with an in-
ternal mode. However, the use of a proper model is always a desirable feature of
the analysis and the resulting inferences are generally more reliable.

As a final note, multilevel factor models should be handled with care. Hence,
even if very efficient estimation algorithms were available, it is a good practice, es-
pecially in the case of categorical response variables, to fit a multilevel factor
model as the final step of the analysis, after having explored the data with simpler
techniques.
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