Dynamic Structural Equation Modeling of Intensive Longitudinal Data Using Mplus Version 8 (Part 1)

> Ellen L. Hamaker *Utrecht University* e.l.hamaker@uu.nl

Tihomir Asparouhov & Bengt Muthén Muthén & Muthén

PSMG, March 14, 2017

Cattell's data box

Cross-sectional research: N is large, T=1

Cattell's data box

Panel research: N is large, T is small

Cattell's data box

Time series data: N=1 and T is large

Time series analysis: Looking at the movie

Pioneers of idiographic research in psychology

Idiographic (N=1) research in psychology

N=1 research has included:

- Cattell's P-technique: factor analysis of N=1 data
- Dynamic factor analysis: considering lagged relationships
- Measurement burst design: multiple waves of intensive measurements
- Intervention research: ABAB design etc.

Critique of this kind of research:

- within-person fluctuations are just noise
- results are not generalizable
- no one has these data

New technology

Intensive longitudinal data

Different forms of intensive longitudinal data:

- daily diary (DD); self-report end-of-day
- experience sampling method (ESM); self-report of subjective experience
- ecological momentary assessment (EMA); healthcare related self-report
- ambulatory assessment (AA); physiological measurements
- event-based measurements; self-report after a particular event
- observational measurements; expert rater

For more info on methodology, check out:

- Seminar of Tamlin Conner and Joshua Smyth on YouTube (https://www.youtube.com/watch?v=nQBBVp9vBIQ)
- Society for Ambulatory Assessment (http://www.saa2009.org/)
- Life Data (https://www.lifedatacorp.com/)
- Quantified Self (http://quantifiedself.com/)

Characteristics of these kind of data

Data structure:

- one or more measurements per day
- typically for multiple days
- sometimes multiple waves (i.e., Nesselroade's measurement-burst design)

Advantages of ESM, EMA and AA

- no recall bias
- high ecological validity
- physiological measures over a large time span
- monitoring of symptoms and behavior, with new possibilities for feedback and intervention (e-Health and m-Health)
- window into the dynamics of processes

A paradigm shift

Publications on experience sampling, ambulatory assessment, ecological momentary assessment, or daily diary

Taken from Hamaker and Wichers (2017)

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Conclusion

What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics, seismology, meteorology, control engineering, and signal processing.

Main characteristics:

- N=1 technique
- T is large (say >50)
- concerned with *trends*, *cycles* and *autocorrelation structure* (i.e., serial dependency)
- goal: forecasting (\neq prediction)

Lags

Y	Y at lag 1	Y at lag 2
y_1		
y_2	y_1	
y_3	y_2	y_1
y_4	y_3	y_2
y_5	y_4	y_3
y_6	y_5	y_4
y_7	y_6	y_5
y_8	y_7	y_6
• • •		•••
y_T	y_{T-1}	y_{T-2}
	y_T	y_{T-1}
		y_T

Partial autocorrelation function (PACF)

Partial autocorrelation at lag k: The correlation between y_t and y_{t-k} after removing the effect of the intermediate observations (i.e., y_{t-1} to y_{t-k+1}).

Y	Y at lag 1	Y at lag 2
0.1-		
g_1		
y_2	y_1	
y_3	y_2	y_1
y_4	y_3	y_2
y_5	y_4	y_3
y_T	y_{T-1}	y_{T-2}
	y_T	y_{T-1}
		y_T

Sequence, ACF and PACF

200 400 600 800 1000

Time

0

0 5

25

15

Lag

19 / 58

25

Lag

0 5 15

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Conclusion

A fundamental problem in a nutshell

Taken from Hamaker (2012).

Three perspectives on data

Taken from Hamaker (2012).

Between-person differences in within-person slopes

Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need

- (intensive) longitudinal data
- to decompose observed variance into within and between
- to consider individual differences in within-person dynamics

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Conclusion

Data: Daily measurements of negative affect (NA)

Data come from the **COGITO study** of the MPI in Berlin (based on Hamaker et al., in preparation).

Here we consider the **younger sample**:

- aged 20-31
- 101 individuals
- 100 daily measurements of negative affect (NA)

Decomposition into a between part and a within part

 $NA_{it} = \mu_i + NA_{it}^*$

where

- Between part: μ_i is the individual's **mean** (i.e., baseline, trait, equilibrium)
- Within-part: NA^{*}_{it} is the within-person centered (cluster-mean centered) score

Between versus within

Here, the intraclass correlation is:

$$\frac{\sigma_{between}^2}{\sigma_{between}^2 + \sigma_{within}^2} = .64$$

meaning there is about twice as much variability between people as there is within people in these data.

Univariate multilevel AR(1) model

Autoregressive part:

 $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it}$

where

- ϕ_i is the **autoregressive parameter** (i.e., inertia, carry-over)
- ζ_{it} is the innovation (residual, disturbance, dynamic error) (with $\zeta_{it} \sim N(0, \sigma_{\zeta}^2)$)

Univariate multilevel AR(1) model

Within level: AR(1) with random ϕ_i $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it}$ $\zeta_{it} \sim N(0, \sigma^2)$

Parameters estimated at this level: residual variance σ^2

Parameters estimated at this level:

- fixed effects (means): γ_{μ} and γ_{ϕ}
- random effects (variances): ψ_{11} and ψ_{22}
- relation between random effects (covariance): ψ_{21}

Univariate multilevel AR(1) model

Mplus input

VARIABLE:	
names	= ID sessdate nal na2 na3 na4 na5 na6 na7 na8 na9 na10 pal pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr age pre sex CESDpre CESDpost dayNA dayPA older;
cluster	= ID;
usevar	= dayNA;
lagged	= dayNA(1);
tinterval	<pre>= sessdate(1);</pre>
missing	= all(-999);
ANALYSIS:	<pre>TYPE = twolevel random; estimator = bayes; proc = 2; biter= (5000); bseed = 526; thin = 10;</pre>
MODEL: %WITHIN	8
p_nn	dayNA ON dayNA&1;
%BETWEE	Ng
p_nn WI	IH dayNA;

Mplus results: Trace plots

Mplus results: Parameter estimates

MODEL RESULTS

		Posterior	One-Tailed	95%		
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within Level						
Residual Variances DAYNA	0.307	0.004	0.000	0.299	0.316	*
Between Level						
P_NN WITH DAYNA	0.093	0.025	0.000	0.051	0.146	*
Means						
DAYNA	0.998	0.082	0.000	0.844	1.163	*
P_NN	0.377	0.027	0.000	0.323	0.426	*
Variances						
DAYNA	0.617	0.118	0.000	0.434	0.887	*
P_NN	0.057	0.010	0.000	0.041	0.082	*

Dynamic multilevel mediation model

Within level: AR(1) with random ϕ_i

 $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it} \qquad \qquad \zeta_{it} \sim N(0,\sigma^2)$

Between level: Mediation model

$$\mu_{i} = \gamma_{\mu} + \gamma_{01} CESDpre_{i} + u_{0i}$$

$$\phi_{i} = \gamma_{\phi} + \gamma_{11} CESDpre_{i} + u_{1i}$$

$$CESDpost_{i} = \gamma_{20} + \gamma_{21} CESDpre_{i} + \gamma_{22}\mu_{i} + \gamma_{23}\phi_{i} + u_{2i}$$

Mplus input mediation model

```
VARIABLE:
names
            = ID sessdate nal na2 na3 na4 na5 na6 na7 na8 na9 na10
                pal pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr
                age pre sex CESDpre CESDpost davNA davPA older;
cluster
           = TD:
usevar = dayNA CESDpre CESDpost;
between = CESDpre CESDpost;
lagged = dayNA(1);
tinterval = sessdate(1);
missing = all(-999);
DEFINE: CENTER CESDpre CESDpost (GRANDMEAN);
ANALYSIS: TYPE IS TWOLEVEL random:
           estimator=bayes; proc=2;
            fbiter=5000; bseed=1956; thin=10;
MODEL:
   %WTTHTN%
   p nn | davNA ON davNA&1;
    %BETWEEN%
    p nn dayNA ON CESDpre (a1-a2);
    CESDpost ON p nn davNA CESDpre (b1-b3);
model constraint:
  new (ab p nn); ab p nn=a1*b1; ! MEDIATED PATH THROUGH AR PARAMETER
  new (ab dayNA); ab dayNA=a2*b2; ! MEDIATED PATH THROUGH WITHIN-PERSON MEAN
```

Mplus output mediation model

MODEL RESULTS

		Posterior	One-Tailed	95%	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within Level						
Residual Varia DAYNA	ances 0.307	0.004	0.000	0.299	0.316	*
Between Level						
P_NN ON CESDPRE	0.254	0.071	0.000	0.118	0.397	*
CESDPOST ON P_NN	0.698	0.164	0.000	0.385	1.020	*
DAYNA ON CESDPRE	1.018	0.257	0.000	0.509	1.505	*
CESDPOST ON DAYNA CESDPRE	0.017 0.364	0.044 0.100	0.351 0.000	-0.071 0.170	0.103	*

Mplus output mediation model

(continued)

M - - -- --

means						
CESDPRE	0.000	0.035	0.499	-0.067	0.068	
Intercepts						
CESDPOST	-0.281	0.069	0.000	-0.416	-0.144	*
DAYNA	1.002	0.076	0.000	0.854	1.157	*
P_NN	0.378	0.025	0.000	0.327	0.426	*
Variances						
CESDPRE	0.119	0.017	0.000	0.091	0.159	*
Residual Varia	nces					
CESDPOST	0.081	0.013	0.000	0.060	0.111	*
DAYNA	0.552	0.094	0.000	0.400	0.768	*
P_NN	0.047	0.009	0.000	0.033	0.067	*
New/Additional 1	Parameters					
AB P NN	0.174	0.066	0.000	0.067	0.321	*
AB_DAYNA	0.016	0.046	0.351	-0.069	0.115	

Mediation model: Standardized results

Random variance (cf. Jongerling et al., 2015)

Within level: AR(1) with random ϕ_i

 $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it} \qquad \qquad \zeta_{it} \sim N(0,\sigma^2)$

Where ζ is the **innovation**, consisting of:

- external influences
- reactivity to external influences

Reasons to assume **individual differences** for σ^2 :

- individuals may differ with respect to the variability in exposure to external factors
- individuals may differ with respect to their **reactivity** to external influences (see reward experience and stress sensitivity research)

Hence, we allow for a **random innovation variance** using a log normal distribution.

Random innovation variance

Within level: AR(1) with random ϕ_i

 $NA_{it}^* = \phi_i NA_{i,t-1}^* + \zeta_{it} \qquad \qquad \zeta_{it} \sim N(0,\sigma_i^2)$

Between level: fixed and random effects

$$\begin{array}{c} \mu_i = \gamma_\mu + u_{0i} \\ \phi_i = \gamma_\phi + u_{1i} \\ \log(\sigma_i^2) = \gamma_{\log(\sigma^2)} + u_{2i} \end{array} \begin{bmatrix} u_{0i} \\ u_{1i} \\ u_{2i} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} \\ \psi_{22} \\ \psi_{31} \\ \psi_{32} \\ \psi_{33} \end{bmatrix} \end{bmatrix}$$

MODEL:

%WITHIN%
p_nn | dayNA ON dayNA&1;
logRVNA | dayNA;

%BETWEEN%
p_nn WITH logRVNA dayNA;
logRVNA WITH dayNA;

Mplus results

		Posterior	One-Tailed	95%	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within Level						
Between Level						
P_NN WITH						
LOGRVNA	0.082	0.035	0.004	0.021	0.160	*
DAYNA	0.065	0.022	0.001	0.027	0.114	*
LOGRVNA WITH						
DAYNA	0.563	0.113	0.000	0.379	0.819	*
Means						
DAYNA	0.977	0.075	0.000	0.829	1,123	*
PNN	0.406	0.026	0.000	0.355	0.456	*
LOGRVNA	-1.663	0.118	0.000	-1.905	-1.433	*
Variances						
DAYNA	0.543	0.086	0.000	0.408	0.737	*
P NN	0.058	0.010	0.000	0.042	0.081	*
LOGRVNA	1.382	0.216	0.000	1.046	1.892	*

Mplus results (cf. Schuurman et al., 2016)

STDYX Standardization

		Posterior	One-Tailed	95%	C.I.	
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within-Level Standa	ardized Estim	nates Averag	ed Over Clus	ters		
P_NN DAYNA ON DAYNA&1	0.405	0.010	0.000	0.385	0.425	*
LOGRVNA DAYNA	0.783	0.008	0.000	0.767	0.797	*
Between Level						
P NN WITH						
LOGRVNA	0.294	0.105	0.004	0.079	0.488	*
DAYNA	0.370	0.101	0.001	0.156	0.553	*
LOGRVNA WITH						
DAYNA	0.654	0.061	0.000	0.516	0.756	*
()						

R-SQUARE

Within-Level R-Square Averaged Across Clusters

Variable	Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%
DAYNA	0.217	0.008	0.000	0.203	0.233

MODEL RESULTS

		Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Within Leve	1						
Between Leve	el						
P_NN CESDPRE	ON	0.213	0.070	0.002	0.074	0.350	*
LOGRVNA CESDPRE	ON	1.193	0.326	0.000	0.556	1.837	*
CESDPOST P_NN LOGRVNA	ON	0.569 0.053	0.158 0.035	0.000 0.062	0.258 -0.016	0.876 0.124	*
DAYNA CESDPRE	ON	0.780	0.231	0.000	0.332	1.252	*
CESDPOST DAYNA CESDPRE	ON	-0.010 0.378	0.058 0.099	0.438	-0.126 0.181	0.104 0.570	*

MODEL RESULTS

		Posterior One-Tailed 95% C.I.			C.I.		
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance	
()							
Intercepts							
CESDPOST	-0.134	0.119	0.133	-0.362	0.103		
DAYNA	0.972	0.069	0.000	0.833	1.107	*	
P NN	0.406	0.025	0.000	0.358	0.456	*	
LOGRVNA	-1.664	0.109	0.000	-1.874	-1.446	*	
Residual Variand	ces						
CESDPOST	0.086	0.014	0.000	0.064	0.117	*	
DAYNA	0.459	0.075	0.000	0.345	0.633	*	
P NN	0.049	0.009	0.000	0.035	0.069	*	
LOGRVNA	1.165	0.176	0.000	0.891	1.579	*	
New/Additional Pa	arameters						
AB P NN	0.116	0.053	0.002	0.033	0.238	*	
AB DAYNA	-0.007	0.047	0.438	-0.103	0.088		
AB LOGRV	0.060	0.047	0.062	-0.017	0.168		

Bivariate model: Multilevel vector AR(1) model

Bivariate model: Mplus code

VARIABLE:

```
ID sessdate nal na2 na3 na4 na5 na6 na7 na8 na9 na10
names
               pal pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa9 pa10 sessionNr
               age pre sex CESDpre CESDpost dayNA dayPA older;
cluster
               ID;
           =
usevar
          = davPA davNA;
lagged = dayPA(1) dayNA(1);
tinterval = sessdate(1);
missing = all(-999);
ANALYSIS: TYPE IS TWOLEVEL random; estimator=bayes;
           proc = 2; fbiter= 5000; bseed = 2359; thin = 10;
MODEL:
    %WTTHTN%
   p pp | dayPA ON dayPA&1;
   p pn | dayPA ON davNA&1;
   p np | dayNA ON dayPA&1;
    p nn | dayNA ON dayNA&1;
    %BETWEEN%
   dayPA WITH dayNA;
   p pp WITH p pn-p nn dayPA dayNA;
   p pn WITH p np-p nn dayPA dayNA;
    p np WITH p nn dayPA dayNA;
    p nn WITH dayPA dayNA;
    davPA WITH davNA;
```

Mplus results: Fixed, random, and standardized

neuro						
DAYPA	3.090	0.110	0.000	2.875	3.308	*
DAYNA	0.977	0.077	0.000	0.826	1.128	*
P PP	0.334	0.026	0.000	0.283	0.387	*
P PN	0.050	0.022	0.016	0.006	0.093	*
PNP	0.038	0.015	0.006	0.008	0.068	*
P_NN	0.370	0.027	0.000	0.315	0.423	*
Variances						
DAYPA	1.178	0.189	0.000	0.886	1.618	*
DAYNA	0.595	0.101	0.000	0.443	0.832	*
P PP	0.055	0.010	0.000	0.039	0.079	*
P PN	0.024	0.006	0.000	0.014	0.039	*
PNP	0.013	0.003	0.000	0.008	0.021	*
P_NN	0.062	0.012	0.000	0.044	0.089	*

[...]

STDYX Standardization

		Posterior	One-Tailed	95%	C.I.		
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance	
Within-Level Stand	lardized Estim	ates Averag	ed Over Clus	ters			
P_PP DAYPA ON DAYPA&1	0.335	0.011	0.000	0.312	0.358	*	
P_PN DAYPA ON DAYNA&1	0.034	0.013	0.006	0.008	0.059	*	
P_NP DAYNA ON DAYPA&1	0.038	0.011	0.000	0.017	0.059	*	
P_NN DAYNA ON DAYNA&1	0.370	0.012	0.000	0.347	0.394	*	

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study
- Conclusion

Intervention study with ESM

When **ESM** is used in a **randomized controlled trial**, we can investigate whether treatment affects:

- means
- dynamics (e.g., autoregression)
- variability

Here we use data from individuals with a **history of depression** and current residual depressive symptoms (Geschwind et al., 2011).

Each ESM period consisted of 6 days, 10 beeps per day.

Here we analyze 117 participants, where 56 received a **mindfulness training** between the two phases, and 61 served as **controls**.

Treatment effect on the within-person mean

Decomposition into a between part and a within part

Pre-treatment phase: $y_{1it} = \mu_{1i} + y_{1it}^*$ Post-treatment phase: $y_{2it} = \mu_{2i} + y_{2it}^*$

Between level

 $\mu_{1i} = \alpha_1 + \beta_1 \operatorname{Group}_i + u_{1i}$ $\mu_{2i} = \alpha_2 + \mu_{1i} + \beta_2 \operatorname{Group}_i + u_{2i}$

- β_1 are initial differences between the groups
- α_2 is the effect of time
- β_2 is the effect of treatment

```
MODEL:

%WITHIN%

na_pre WITH na_post@0;

%BETWEEN%

na_pre ON Group;

na_post ON na_pre@1 Group;

na_pre WITH na_post;
```

Mplus results

		Posterior	One-Tailed	95%		
	Estimate	S.D.	P-Value	Lower 2.5%	Upper 2.5%	Significance
Within Level						
NA_PRE WITH NA_POST	0.000	0.000	1.000	0.000	0.000	
Variances NA_PRE NA_POST	0.639 0.483	0.012	0.000 0.000	0.616 0.466	0.662 0.501	*
Between Level						
NA_PRE ON GROUP	-0.005	0.136	0.484	-0.292	0.249	
NA_POST ON NA_PRE GROUP	1.000 -0.320	0.000 0.108	0.000 0.002	1.000 -0.539	1.000 -0.112	*
NA_PRE WITH NA_POST	-0.157	0.046	0.000	-0.262	-0.082	*
Intercepts NA_PRE NA_POST	2.019 0.006	0.095	0.000 0.472	1.837 -0.148	2.210 0.155	*
Residual Variances NA PRE	0.524	0.078	0.000	0.402	0.706	*
NAPOST	0.324	0.050	0.000	0.247	0.439	*

Treatment effect on autoregression

Within level

 $\begin{array}{lll} \text{Pre-treatment phase:} & y_{1it}^* = \phi_{1i}y_{1it}^* + \zeta_{it} \\ \text{Post-treatment phase:} & y_{2it}^* = \phi_{2i}y_{2it}^* + \zeta_{it} \end{array}$

Between level: Pre-treatment phase $\mu_{1i} = \alpha_1 + \beta_1 Group_i + u_{1i}$ $\phi_{1i} = \gamma_1 + \delta_1 Group_i + v_{1i}$

We expect β_1 and δ_1 to be zero.

Between level: Post-treatment phase

 $\mu_{2i} = \alpha_2 + \mu_{1i} + \beta_2 Group_i + u_{2i} \qquad \phi_{2i} = \gamma_2 + \phi_{1i} + \delta_2 Group_i + v_{2i}$

- + α_2 and γ_2 represent the effects of time
- β_2 and δ_2 represent the effects of treatment

Mplus results

Between Level

PHI2 PHI1	ON	1.000	0.000	0.000	1.000	1.000	
PHI2 GROUP	ON	-0.056	0.042	0.095	-0.141	0.025	
PA_PRE GROUP	ON	-0.199	0.150	0.090	-0.497	0.094	
PA_POST PA_PRE GROUP	ON	1.000 0.481	0.000 0.122	0.000	1.000 0.246	1.000 0.736	*
Means PHI1		0.465	0.019	0.000	0.427	0.504	*
Intercepts PA_PRE PA_POST PHI2		3.824 -0.067 0.002	0.102 0.085 0.032	0.000 0.208 0.481	3.628 -0.239 -0.062	4.031 0.104 0.060	*
Variances PHI1		0.019	0.004	0.000	0.013	0.030	*
Residual Va PA_PRE PA_POST	ariances	0.632	0.093	0.000	0.472	0.846	* *
FIILZ		0.01/	0.007	0.000	0.000	0.035	

Mplus results (with fixed change in ϕ)

Between Level

PHI2 PHI1	ON	1.000	0.000	0.000	1.000	1.000	
PHI1 GROUP	ON	0.049	0.045	0.140	-0.041	0.139	
PHI2 GROUP	ON	-0.067	0.032	0.023	-0.132	-0.001	*
NA_PRE GROUP	ON	-0.046	0.126	0.361	-0.308	0.189	
NA_POST NA_PRE GROUP	ON	1.000 -0.280	0.000 0.104	0.000 0.002	1.000 -0.477	1.000 -0.070	*
Intercepts							
NA_PRE		2.007	0.088	0.000	1.839	2.180	*
NA_POST		0.014	0.072	0.421	-0.125	0.152	*
PHI2		-0.013	0.022	0.280	-0.055	0.032	
Residual V	ariances						
NA PRE		0.449	0.068	0.000	0.339	0.603	*
NA POST		0.257	0.043	0.000	0.189	0.356	*
PHI1		0.042	0.007	0.000	0.031	0.059	*
PHI2		0.001	0.000	0.000	0.001	0.001	

Outline

- Modeling the dynamics of ILD
- Separating between-person and within-person variance
- Application 1: Daily negative affect and depressive symptomatology
- Application 2: Intervention study with ESM
- Conclusion

Conclusion

- DSEM in Mplus version 8 offers many new modeling opportunities for analyzing ILD
- There are many additional options not covered here
- We are working on regime-switching extensions
- We (the research community) need to gain new knowledge about these models

References

- Asparouhov, Hamaker & Muthén (2017). Dynamic latent class analysis. *Structural Equation Modeling: A Multidisciplinary Journal, 24*, 257-269.
- Asparouhov, Hamaker & Muthén (in preparation). Dynamic structural equation models.
- Hamaker (2012). Why researchers should think "within-person": A paradigmatic rationale. In M. R. Mehl & T. S. Conner (Eds.). *Handbook of Research Methods for Studying Daily Life*, 43-61. New York, NY: Guilford Publications.
- Hamaker, Asparouhov, Brose, Schmiedek & Muthén (in preparation). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. *Multivariate Behavioral Research*.
- Hamaker & Grasman (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. *Frontiers in Psychology*, *5*, 1492.
- Hamaker & Wichers (2017). No time like the present: Discovering the hidden dynamics in intensive longitudinal data. *Current Directions in Psychological Science*, *26*, 10-15.
- Jongerling, Laurenceau & Hamaker (2015). A multilevel AR(1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. *Multivariate Behavioral Research, 50*, 334-349.
- Schuurman, Ferrer, de Boer-Sonnenschein & Hamaker (2016). How to compare cross-lagged associations in a multilevel autoregressive model. *Psychological Methods*, *21*, 206-221.