
Dynamic Structural Equation Modeling
of Intensive Longitudinal Data

Using Mplus Version 8
(Part 1)

Ellen L. Hamaker
Utrecht University
e.l.hamaker@uu.nl

Tihomir Asparouhov & Bengt Muthén
Muthén & Muthén

PSMG, March 14, 2017

1 / 58



Cattell’s data box

va
ri

ab
le

s 

2 / 58



Cross-sectional research: N is large, T=1
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Cattell’s data box
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Panel research: N is large, T is small
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Cattell’s data box
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Time series data: N=1 and T is large
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Time series analysis: Looking at the movie
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Pioneers of idiographic research in psychology
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Idiographic (N=1) research in psychology

N=1 research has included:
• Cattell’s P-technique: factor analysis of N=1 data
• Dynamic factor analysis: considering lagged relationships
• Measurement burst design: multiple waves of intensive measurements
• Intervention research: ABAB design etc.

Critique of this kind of research:
• within-person fluctuations are just noise
• results are not generalizable
• no one has these data
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New technology

Secure continuous remote 
alcohol monitor (SCRAM)  

Activity trackers 

Smart glasses 

Smart phones 

Smart watches 
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Intensive longitudinal data

Different forms of intensive longitudinal data:
• daily diary (DD); self-report end-of-day
• experience sampling method (ESM); self-report of subjective experience
• ecological momentary assessment (EMA); healthcare related self-report
• ambulatory assessment (AA); physiological measurements
• event-based measurements; self-report after a particular event
• observational measurements; expert rater

For more info on methodology, check out:
• Seminar of Tamlin Conner and Joshua Smyth on YouTube

(https://www.youtube.com/watch?v=nQBBVp9vBIQ)
• Society for Ambulatory Assessment (http://www.saa2009.org/)
• Life Data (https://www.lifedatacorp.com/)
• Quantified Self (http://quantifiedself.com/)
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Characteristics of these kind of data

Data structure:
• one or more measurements per day
• typically for multiple days
• sometimes multiple waves (i.e., Nesselroade’s measurement-burst design)

Advantages of ESM, EMA and AA
• no recall bias
• high ecological validity
• physiological measures over a large time span
• monitoring of symptoms and behavior, with new possibilities for feedback and

intervention (e-Health and m-Health)
• window into the dynamics of processes
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A paradigm shift

 

Taken from Hamaker and Wichers (2017)
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Conclusion
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What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics,
seismology, meteorology, control engineering, and signal processing.

Main characteristics:
• N=1 technique
• T is large (say >50)
• concerned with trends, cycles and autocorrelation structure (i.e., serial

dependency)
• goal: forecasting (6= prediction)
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag k: The correlation between yt and yt−k
after removing the effect of the intermediate observations (i.e., yt−1
to yt−k+1).
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Sequence, ACF and PACF
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Conclusion
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A fundamental problem in a nutshell
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Taken from Hamaker (2012).
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Three perspectives on data
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Taken from Hamaker (2012).
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Between-person differences in within-person slopes
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Taken from Hamaker and Grasman (2014).

In conclusion: To study within-person processes we need
• (intensive) longitudinal data
• to decompose observed variance into within and between
• to consider individual differences in within-person dynamics
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive
symptomatology

• Application 2: Intervention study with ESM
• Conclusion
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Data: Daily measurements of negative affect (NA)

Data come from the COGITO study of the MPI in Berlin (based on
Hamaker et al., in preparation).

Here we consider the younger sample:
• aged 20-31
• 101 individuals
• 100 daily measurements of negative affect (NA)

Decomposition into a between part and a within part
NAit = µi + NA∗

it

where
• Between part: µi is the individual’s mean (i.e., baseline, trait, equilibrium)
• Within-part: NA∗

it is the within-person centered (cluster-mean centered) score
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Between versus within

Here, the intraclass correlation is:

σ2
between

σ2
between + σ2

within
= .64

meaning there is about twice as much variability between people as there
is within people in these data.
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Univariate multilevel AR(1) model

Autoregressive part:
NA∗

it = φiNA∗
i,t−1 + ζit

where
• φi is the autoregressive parameter (i.e., inertia, carry-over)
• ζit is the innovation (residual, disturbance, dynamic error) (with ζit ∼ N (0, σ2

ζ ))
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Univariate multilevel AR(1) model

Within level: AR(1) with random φi

NA∗
it = φiNA∗

i,t−1 + ζit ζit ∼ N (0, σ2)

Parameters estimated at this level: residual variance σ2

Between level: fixed and random effects

µi = γµ + u0i
φi = γφ + u1i

[
u0i
u1i

]
∼ MN

[[
0
0

]
,

[
ψ11
ψ21 ψ22

]]

Parameters estimated at this level:
• fixed effects (means): γµ and γφ

• random effects (variances): ψ11 and ψ22

• relation between random effects (covariance): ψ21
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Univariate multilevel AR(1) model
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Mplus input
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Mplus results: Trace plots
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Mplus results: Parameter estimates
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Dynamic multilevel mediation model
Within level: AR(1) with random φi

NA∗
it = φiNA∗

i,t−1 + ζit ζit ∼ N (0, σ2)

Between level: Mediation model
µi = γµ + γ01CESDprei + u0i
φi = γφ + γ11CESDprei + u1i

CESDposti = γ20 + γ21CESDprei + γ22µi + γ23φi + u2i
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Mplus input mediation model
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Mplus output mediation model
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Mplus output mediation model

(continued)
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Mediation model: Standardized results
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Random variance (cf. Jongerling et al., 2015)

Within level: AR(1) with random φi

NA∗
it = φiNA∗

i,t−1 + ζit ζit ∼ N (0, σ2)

Where ζ is the innovation, consisting of:
• external influences
• reactivity to external influences

Reasons to assume individual differences for σ2:
• individuals may differ with respect to the variability in exposure to external factors
• individuals may differ with respect to their reactivity to external influences (see

reward experience and stress sensitivity research)

Hence, we allow for a random innovation variance using a log normal
distribution.
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Random innovation variance
Within level: AR(1) with random φi

NA∗
it = φiNA∗

i,t−1 + ζit ζit ∼ N (0, σ2
i )

Between level: fixed and random effects

µi = γµ + u0i
φi = γφ + u1i

log(σ2
i ) = γlog(σ2) + u2i

u0i
u1i
u2i

 ∼ MN


0

0
0

 ,
ψ11
ψ21 ψ22
ψ31 ψ32 ψ33
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Mplus results
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Mplus results (cf. Schuurman et al., 2016)
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Mediation model with random innovation variance
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Mediation model with random innovation variance
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Mediation model with random innovation variance
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Mediation model with random innovation variance
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Bivariate model: Multilevel vector AR(1) model
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Bivariate model: Mplus code
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Mplus results: Fixed, random, and standardized
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study
• Conclusion
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Intervention study with ESM

When ESM is used in a randomized controlled trial, we can investigate
whether treatment affects:

• means
• dynamics (e.g., autoregression)
• variability

Here we use data from individuals with a history of depression and
current residual depressive symptoms (Geschwind et al., 2011).
Each ESM period consisted of 6 days, 10 beeps per day.
Here we analyze 117 participants, where 56 received a mindfulness
training between the two phases, and 61 served as controls.
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Treatment effect on the within-person mean
Decomposition into a between part and a within part

Pre-treatment phase: y1it = µ1i + y∗
1it

Post-treatment phase: y2it = µ2i + y∗
2it

Between level
µ1i = α1 + β1Groupi + u1i
µ2i = α2 + µ1i + β2Groupi + u2i

• β1 are initial differences between the groups
• α2 is the effect of time
• β2 is the effect of treatment
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Mplus results
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Treatment effect on autoregression
Within level

Pre-treatment phase: y∗
1it = φ1iy∗

1it + ζit
Post-treatment phase: y∗

2it = φ2iy∗
2it + ζit

Between level: Pre-treatment phase
µ1i = α1 + β1Groupi + u1i φ1i = γ1 + δ1Groupi + v1i

We expect β1 and δ1 to be zero.

Between level: Post-treatment phase
µ2i = α2 + µ1i + β2Groupi + u2i φ2i = γ2 + φ1i + δ2Groupi + v2i

• α2 and γ2 represent the effects of time
• β2 and δ2 represent the effects of treatment
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Mplus results
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Mplus results (with fixed change in φ)
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Outline

• Modeling the dynamics of ILD
• Separating between-person and within-person variance
• Application 1: Daily negative affect and depressive symptomatology
• Application 2: Intervention study with ESM
• Conclusion
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Conclusion

• DSEM in Mplus version 8 offers many new modeling opportunities for
analyzing ILD

• There are many additional options not covered here
• We are working on regime-switching extensions
• We (the research community) need to gain new knowledge about
these models
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