The use of the Mplus parameterization in IRT modeling is exemplified in the Cai et al. (2011) Psych Methods article on item bi-factor analysis. Page 224 talks about the binary item case and page 225 the graded case. The article refers to the Mplus parameterization as "slope-intercept" where the intercept is the negative threshold in Mplus. The article refers to the a (theta- b) IRT parameterization as the "slope-threshold" parameterization where the "threshold" is the b difficulty parameter, not what Mplus calls threshold. The authors find that the slope-intercept parameterization (used by Mplus) is more general, saying on page 224:

In the unidimensional case, the logit in Equation 4 can be reexpressed in a more convenient slope-threshold form as $d \quad a_{0}{ }_{-0}$
$a_{0}\left(_0 \quad b\right)$, where $b{ }_{_} d / a_{0}$ is the threshold (or item difficulty) parameter, indicating the point on the _o scale at which the probability for correct- endorsement response is exactly .5 if c 0 , or $.5 _.5 c$ if c is not 0 . Unfortunately, the slope-threshold form does not generalize well to truly multidimensional models, so we adopt the slope-intercept parameterization for this model and all remaining IRT models.

The slope-intercept parameterization is also used in the Reckase (2009) book "Multidimensional IRT"; see section 4.1.1.1.

