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Latent growth curve models with piecewise functions for continuous repeated

measures data have become increasingly popular and versatile tools for investigat-

ing individual behavior that exhibits distinct phases of development in observed

variables. As an extension of this framework, this research study considers a

piecewise function for describing segmented change of a latent construct over

time where the latent construct is itself measured by multiple indicators gathered

at each measurement occasion. The time of transition from one phase to another is

not known a priori and thus is a parameter to be estimated. Utility of the model is

highlighted in 2 ways. First, a small Monte Carlo simulation is executed to show

the ability of the model to recover true (known) growth parameters, including the

location of the point of transition (or knot), under different manipulated condi-

tions. Second, an empirical example using longitudinal reading data is fitted via

maximum likelihood and results discussed. Mplus (Version 6.1) code is provided

in Appendix C to aid in making this class of models accessible to practitioners.

Increasingly, investigators are interested in how variables capturing facets of

cognitive or behavioral development change across a particular span of time.

Initially, the scientific objective in these studies focuses on effectively describing

patterns of change for each individual as well as the population mean trajectory.

Measuring change over time necessarily requires a longitudinal perspective

Correspondence concerning this article should be addressed to Jeffrey R. Harring, Measurement,

Statistics & Evaluation, 1230 Benjamin Building, University of Maryland, College Park, MD 20742-

1115. E-mail: harring@umd.edu
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PIECEWISE GROWTH MODELS 371

where repeated measurements are gathered for a collection of individual par-

ticipants. The latent growth curve (LGC) model (Meredith & Tisak, 1990), a

special subclass within structural equation modeling (SEM), is commonly em-

ployed to analyze continuous repeated measures data of this type. Theoretically,

this approach posits the existence of latent trajectories capturing an underlying

process that can only be observed indirectly via the repeated measures (Bollen &

Curran, 2006). For instance, researchers in cognitive development may theorize

the presence of an unobserved ability to read that develops as a continuous

function of time. The repeated measures enable the estimation of the underlying

reading ability trajectories that give rise to the measures over time. It is this

trajectory estimate that is of primary interest in subsequent modeling.

In addition to finding a functional form that summarizes the repeated mea-

sures satisfactorily, assessing patterns of variability stemming from (a) between-

subject heterogeneity and (b) within-subject fluctuations is critical to properly

specifying the LGC model. The LGC model allows the correlational structure

of the repeated measures to be disentangled into intraindividual (within-person)

variability as well as interindividual (between-person) variability in individual

participants’ growth characteristics across time (Preacher, Wichman, MacCal-

lum, & Briggs, 2008). Furthermore, the covariance matrices that model these

patterns of between-subjects and within-subjects variability can be tailored to

account for interesting features of the data or longitudinal design (see, e.g.,

Fitzmaurice, Laird, & Ware, 2011; Verbeke & Molenberghs, 2000).

A classic application of LGC models specifies a function describing a linear

change process often comprised of two latent growth factors: (a) an intercept that

describes initial level or status at some temporal reference point and (b) a linear

slope of growth that summarizes constant change over time. These two latent

growth factors can be characterized by their mean values, individual random

variation, and covariation around these two latent growth components (Duncan,

Duncan, & Strycker, 2006). Certainly, other functional forms besides one that

posits a linear change process for the repeated measures are possible. In lieu

of choosing a model on a strictly theoretical basis, summarizing the repeated

measures data in this way is typically accomplished via an empirical exploration

of the data. For repeated measures data that exhibit curvilinear behavior, the

LGC framework is flexible enough to accommodate a variety of nonlinear

functions (see, e.g., Choi, Harring, & Hancock, 2009; Grimm & Ram, 2009). For

example, a quadratic function may be proposed for a developmental process that

increases across initial measurement occasions, attains some maximum level of

performance or proficiency, and finally declines toward the end of study period—

perhaps due to fatigue or some other phenomenon. In other research scenarios,

individual performance on a learning task that levels off toward the end of the

study period may suggest choosing an intrinsically nonlinear function that can

represent this type of limiting, asymptotic behavior. Another possibility allows
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372 KOHLI AND HARRING

the functional form for the repeated measures not to be specified in advance

but rather to be estimated (see, e.g., Meredith & Tisak, 1990). A more detailed

discussion of LGC models, along with a number of extensions, can be found in

Duncan et al. (2006) as well as Preacher et al. (2008).

An LGC model that examines change across time in repeated measurements

of observed variables is termed a “first-order” LGC model. An extension of

first-order LGC models are “second-order” LGC models that describe change in

a latent construct over time, where the latent construct of interest is measured

by multiple indicators gathered at each measurement occasion. In second-order

LGC models the first-order latent factors are modeled as dependent on one or

more second-order latent growth factors, with the latter having only the first-

order latent factors as indicator variables. Thus, second-order latent factors ex-

plain the means and variances of and covariances among first-order latent factors

(see, e.g., Duncan et al., 2006; Hancock, Kuo, & Lawrence, 2001). Of course,

auxiliary variables representing individual attributes, demographic information,

or treatment condition can be incorporated to explain why second-order latent

growth characteristics differ among individuals. This parallels many applications

of first-order LGC models in which investigating treatment effectiveness or

attributing differences in growth characteristics to subject-specific explanatory

variables is accomplished at a secondary stage of the analysis—typically after

the functional form of the repeated measures has been established.

Whether first-order or second-order LGC frameworks are used to investigate

longitudinal change, the vast majority of research studies using LGC models reg-

ularly presume that the functional form describing the overall change process in

the repeated measures data is a smooth, continuous curve with no breaks, elbows,

or other irregularities. However, assuming a single uninterrupted functional

form underlies the overall change process may be unrealistic for applications

where data are comprised of different growth phases. Piecewise latent growth

curve (PLGC) models, an extension of LGC models, allow the incorporation of

separate growth profiles corresponding to multiple developmental stages from

which repeated observations are made (Chou, Yang, Pentz, & Hser, 2004). PLGC

models are flexible because each phase can be specified to conform to a particular

functional form of the overall change process (Cudeck & Harring, 2010). The

term piecewise originates from a piecewise regression model, which is a special

case of a spline regression model (Marsh & Cormier, 2001). To make this idea

more concrete, consider a linear-linear piecewise process. In this situation, the

formulated model assumes a simple regression line for the dependent variable

but with possibly different parameterizations in different ranges of the predictor

(Bates & Watts, 1988; see also Seber & Wild, 1989, Chapter 9). Figure 1 shows

a plot of a linear-linear process.

One of the most interesting features of a piecewise model is the knot or

changepoint. The knot is the value of the predictor where the “pieces” from the
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PIECEWISE GROWTH MODELS 373

FIGURE 1 Plot of generic linear-linear process for a latent dependent variable Y , with

knot at ”.

developmental stages meet and can be known a priori (fixed) or freely estimated.

The knot is denoted as ” in Figure 1. Harring, Cudeck, and du Toit (2006)

demonstrated how a first-order piecewise linear mixed effects model, where the

location of the knot was unknown, could be fit as an SEM to data for investi-

gating individual behavior that exhibited distinct phases in observed variables.

The purpose of the current study is to extend the first-order PLGC model to

a second-order structure to examine a linear-linear piecewise change process in

latent variables, where the location of knot is unknown. The proposed model is a

hybrid of the second-order PLGC model with “fixed” knot location described by

Sayer and Cumsille (2001) and the first-order PLGC model with “unknown” knot

location described by Harring et al. (2006). That is, the proposed model permits

change in a latent variable at the individual level but whose point of transition

from one phase to another is unknown a priori. This particular proposed model

can be quite useful and relevant, especially in education, psychology, and devel-

opmental studies, as so many developmental processes, such as the acquisition of

foundational vocabulary knowledge (see empirical example in the later section),

may progress in two phases where the functional form in each phase may well

be different. The time at which the trajectory for behavior transitions from one

phase to the other (i.e., the knot) is important scientifically and often marks a
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374 KOHLI AND HARRING

substantive watershed moment (e.g., a level of proficiency has been attained) or

suggests when an intervention may be most beneficial.

In the context of the proposed model, the latent variable is measured by

the same multiple indicators gathered at each measurement occasion, although

this restriction is not necessary to draw valid longitudinal inferences (see, e.g.,

Bollen & Curran, 2006; Hancock & Buehl, 2008). Although the knot is to

be estimated, it is assumed to be the same across individuals. At first glance,

constraining the knot to be the same across individuals may seem overrestrictive,

yet in many biological or behavioral processes it does not seem unreasonable

that some watershed event may occur at roughly the same moment in time for

all individuals. For instance, in reading research it is hypothesized that fluency, a

measure of accurate and automatic decoding at an appropriate pace, may increase

at one rate beginning in second grade but then changes at a different, slower rate

for most students in the middle of their third-grade year (R. Silverman, personal

communication, June 15, 2011). If grade is used as a proxy for the timing of

collected observations, the transition between two phases of fluency development

might be expected to be the same for all students but unknown a priori. Because

the knot enters the function in a nonlinear manner but is fixed across individuals;

this second-order PLGC model turns out not to be much more complicated to set

up than a restricted factor analysis with structured mean vector and covariance

matrix (see, e.g., Blozis, 2006; Harring, Kohli, Silverman, & Speece, 2012).

Thus, SEM software—with all of its features—can be utilized as the platform

for estimating model parameters. The estimation of this model is carried out in

Mplus 6.1 (Muthén & Muthén, 1998–2010), a popular SEM program. Mplus

code for the model can be found in Appendix C.

The remainder of the article is outlined in the following way: In the next

section, the model is developed and the likelihood function specified. In the

subsequent section, a small Monte Carlo simulation is performed to empirically

investigate the ability of second-order PLGC models to recover true (known)

growth parameters. Specifically, the current research compared the performance

of the second-order PLGC model under different manipulated factors of (a) sam-

ple size, (b) location of the knot, and (c) reliability of indicator variables. Reading

data obtained from a longitudinal study is introduced and analyzed in the next

section. Finally, conclusions are framed in terms of the model’s limitations as

well as directions for future research.

MODEL SPECIFICATION

Measurement Model

In a second-order PLGC model the repeated measure to be analyzed is an

unobservable construct; hence to fit this model to data the model is augmented to
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PIECEWISE GROWTH MODELS 375

include a measurement model that directly connects the observed variables to the

latent factors. This relation is typically operationalized in terms of a measurement

model connecting the observed indicators with the corresponding latent variable

across time. Consider the .k � 1/ response vector, yij D .yij1; yij 2; : : : ; yijk/
0 for

individual i, i D 1; : : : ; n, at time j with 1 � j � m. It is assumed that these

k observed variables at time j measure a single latent variable, ˜i , for the ith

individual. A linear factor model (cf. Lawley & Maxwell, 1971) is specified that

characterizes the relation of the observed variables to the latent variable:

yij D �j C œj ˜ij C •ij ; (1)

where �j is a k � 1 vector of variable intercepts, œj is a k � 1 vector of

fixed or unknown factor loadings that describe the linear relation between the

latent variable and the manifest variables, ˜ij is the latent variable, and •ij is a

k � 1 vector of time-specific unique factors. Like standard factor analysis, the

common factor is assumed to be independent of the errors (i.e., cov.•ij ; ˜ij / D
0/. Furthermore, once the linear dependence among the manifest variables is

accounted for, the unique factors are assumed to be mutually independent (i.e.,

cov.•ij ; •ij 0/ D 0, for all j ¤ j 0).

In many situations where multiple instruments are used in a longitudinal

design, it is not unusual for the same battery to be given repeatedly. This

is the situation found in the subsequent empirical example. In this case, if a

complete set of the same k variables were obtained at multiple occasions—with

a maximum of m potential time points .j D 1; : : : ; m/ then individual i would

have a response vector with a total number of T D mk observations—although

other design considerations are certainly possible depending on the availability

of the same instrumentation (Bollen & Curran, 2006) and whether or not the

indicators of the construct shifts over time (Hancock & Buehl, 2008).

Working from the scenario that the observed variable indicators are identical

at each time point, let y0

i D .y0

i1; : : : ; y0

im/ denote a T � 1 vector of responses

for individual i, stacked according to j across all m occasions. Similarly, the

linear factor model can be viewed as the stacked response vectors across all m

measurement occasions can be specified as

yi D � C ƒ˜i C •i : (2)

In Equation 2, � is a T � 1 vector of intercepts,

� D

2

6

4

�1

:::

�m

3

7

5
;
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376 KOHLI AND HARRING

ƒ is a T � m block diagonal matrix of factor loadings,

ƒ D

2

6

4

œ1 0 0

0
: : : 0

0 0 œm

3

7

5
;

˜i is an m � 1 vector of latent factors corresponding to individual i,

˜i D

2

6

4

˜i1

:::

˜im

3

7

5
;

and •i is a T � 1 vector of unique factors,

•i D

2

6

4

•i1

:::

•im

3

7

5
:

The distribution of the unique factors is given as

•i � N.0; ‚.®//: (3)

The matrix ‚.®/ is a T �T symmetric covariance matrix in which the diagonal

elements contain the variances of the unique factors corresponding to the linear

factor model of the repeated measures whereas the off-diagonal elements are

their corresponding covariances. Unlike conventional factor analysis where the

covariance matrix of the unique factors is assumed to be strictly diagonal,

specification of off-diagonal elements of ‚.®/ under the longitudinal design

implied in Equation 2 is commonplace. For example, allowing covariances of

temporally adjacent pairs of unique factors to be freely estimated would seem

plausible given that the same indicators are measured repeatedly over time. In

some domains, the within-individual variances may actually increase or decrease

systematically—a situation in which variances may depend on the mean. Other

structures can be tailored to correspond with other design, theoretical, or empir-

ical considerations with the stipulation that this be done as parsimoniously as

possible.

Piecewise Model for the Latent Repeated Measures

The structural model for the repeated latent variable is a two-phase linear-linear

latent growth process with a piecewise function:

˜i D gij .tj ; ’i ; ”/ C —i ; (4)
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PIECEWISE GROWTH MODELS 377

where —i is a vector of random disturbances in the first-order latent factors,

˜i , that are often assumed to be normally distributed with mean vector, 0, and

covariance matrix � (i.e., —i � N.0; �// and uncorrelated with ’i and •i .

Function g defines a general piecewise regression model. For repeated latent

variables that may follow a linear-linear trend, g is specified as

gij D

8

<

:

’i1 C ’i2tj tj � ”

’i3 C ’i4tj tj > ”

; (5)

where tj is the jth time point, ” is the unknown knot, ’i1 and ’i2 are the intercept

and linear slope of the first segment, and ’i3 and ’i4 are the intercept and linear

slope of the second segment. Note that the regression coefficients have an i

subscript and therefore vary by individual whereas the knot, ”, is fixed for all

participants. Although not universally true, if it is presumed that the functions

characterizing the two phases join at the knot, then the function values at ”

are equal (i.e., ’i1 C ’i2” D ’i3 C ’i4”). This implies that one parameter is

unnecessary and can be eliminated. Of the four regression parameters, ’i3 seems

the least interesting as it corresponds to the value of ˜ at t D 0 of the second

segment—a point not pertinent to the second phase. In the end, the choice is

completely arbitrary. The terms of the equality constraint can be rearranged and

solved for ’i3: ’i3 D ’i1 C ’i2” � ’i4”. Equation 6 shows this modification:

gij D

8

<

:

’i1 C ’i2tj tj � ”

’i1 C ’i2” C ’i4.tj � ”/ tj > ”

: (6)

The number of parameters that must be estimated in the Equation 6 is four,

three linear coefficients: ’0

i D .’i1; ’i2; ’i4/ and one nonlinear coefficient, ”.

Note that it is not necessary for the two segments to always join at the knot,

”. In this scenario, the model specification will be identical to that in Equation

5. Cudeck and Codd (2012), for example, proposed a piecewise function for

modeling a phenomena called reminiscence (i.e., the demonstration of improved

memory or learning without practice or review) in which the reminiscence effect

was formulated as the change in the response—a target score on the pursuit rotor

task—over repeated trials on successive days. This effect leads to a piecewise

function whose segments are disjointed across days.

As a starting point, an individual’s regression coefficients, ’i , are simply the

sum of fixed and random effects

’i D ’ C ai ;
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378 KOHLI AND HARRING

where the random effects are assumed to be multivariate normal such that ai �
N.0; ˆ/. Time-invariant covariates, xi , for participant i can be incorporated in

a straightforward manner as

’i D ’ C �xxi C ai ;

where �x is a matrix of regression coefficients relating the covariates to the

growth parameters.

In its current form, the model in Equation 6 together with the measurement

model in Equation 2 cannot be directly estimated within SEM software. The

difficulty stems from the inability of the software to incorporate executable

programming functions, like if-then statements, in the estimation step. In other

environments, there have been several solutions put forth to work around this

problem including using built-in minimum/maximum functions or user-defined

programmable statements within the statistical software module. A parameteri-

zation used here was first introduced by Harring et al. (2006), which circumvents

this problem by rewriting the function as a polynomial and using the nonlinear

constraints feature now pervasive in most SEM software packages. Appendix A

illustrates the parameterization procedure used in this study. Following Harring

et al. (2006), the reparameterized model is

gij D “i1 C “i2tj C “i3

q

.tj � ”/2: (7)

In Equation 7, the original coefficients in Equation 6 are reparameterized as

follows: “i1 D .’i1 C ’i3/=2, “i2 D .’i2 C ’i4/=2 and “i3 D .’i4 � ’i2/=2.

The newly formed parameters “0

i D .“i1; “i2; “i3/ are assumed to follow a

multivariate normal distribution “i � N.“; �/. Upon convergence of the

program, the estimated original regression coefficients and their corresponding

standard errors can be reconstructed via the multivariate delta method (Oehlert,

1992). The procedure of transforming the estimated regression coefficients back

to the original function is described in Appendix B. Note that the estimated

location of knot comes out as a function of time; hence, it does not require any

kind of transformation.

MAXIMUM LIKELIHOOD ESTIMATION

All of the parameters on the right side of Equation 7 that have i subscripts enter

function g in a linear fashion. Thus, the model in Equation 7 can be written in

matrix form as gij D � “.”/“i . The coefficient matrix �“.”/ is a function of

constants, time, and nonlinear parameter ” with the jth row of �“.”/ defined as

�“.”/j D Œ1 tj

q

.tj � ”/2�:
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PIECEWISE GROWTH MODELS 379

In the final staging of formulating the model, the first-order linear factor

model for manifest variables in Equation 2 and the model for the first-order

factors in Equation 4 with the model for g in Equation 7 substituted in Equation

4 can be expressed jointly as follows:

yi D � C ƒŒ�.”/“i C —i � C •i :

Given the distributional assumptions of “i , —i , and •i the model-implied mean

vector and covariance matrix of the response yi are, respectively,

EŒyi � D �y D � C ƒ�“.”/“

VarŒyi � D †y D ƒ.�“.”/�� 0

“.”/ C �/ƒ0 C ‚:

Fitting the Model

A second-order PLGC model imposes structures on the mean vector and covari-

ance matrix, � D �.™/, † D †.™/, where ™ is a z � 1 vector whose elements

consist of all free parameters of the model. Typically, these models are fitted by

minimizing, with respect to ™, a function, F.y; SI �.™/; †.™//, that measures

the discrepancy between the sample mean vector, y, and covariance matrix S and

the mean vector and covariance matrix implied by the model, �.™/ and †.™/,

respectively. For maximum likelihood estimation the discrepancy function to be

minimized is

F.y; SI �; †/ D .y � �/0†�1.y � �/ C ln j†j � ln jSj C t r Œ.S � †/†�1�:

Estimation of the model requires that the software program is capable of spec-

ifying nonlinear constraints. A number of recent articles have explicated their

use in fitting a variety of nonlinear growth models (e.g., Grimm & Ram, 2009;

Harring et al., 2012; Preacher & Hancock, 2012). Computations were carried

out using Mplus 6.1 (see Appendix C for Mplus input file).

SIMULATION STUDY

A Monte Carlo simulation approach was used to investigate the extent to which

the performance of a second-order PLGC model was influenced by different pop-

ulation characteristics. Factors that were hypothesized to impact the estimation of

the knot, along with the estimation of other model parameters, included sample

size, location of the knot, and reliability of indicator variables. To evaluate

parameter recovery, the proposed model was fitted to data generated from a

population model with true (known) parameters, and parameter estimates were
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380 KOHLI AND HARRING

then compared with their true values. The design of the simulation study was a 3

(sample size levels) � 2 (observed variable reliability levels) � 3 (knot location

levels) completely crossed factorial design resulting in 18 possible combinations.

For each cell, 500 replications were generated to assess parameter recovery.

Clearly, the factors chosen in this study hardly represent an exhaustive set. Yet,

our primary goal was not to conduct a multifaceted comprehensive empirical

study but rather to develop the second-order PLGC model and demonstrate how

it may be used in an application with real data. A secondary goal was to provide

some guidance to practitioners regarding the feasibility of fitting this model in

practice based on results from a small simulation study.

Data Generation

A second-order PLGC model was used as the population model to generate

repeated measures data conforming to nine equally spaced time points (coded 0

to 8), following Equation 2, Equation 4, and Equation 6. The data were generated

using the R program (R Development Core Team, 2009). It has often been

the case in both methodological and substantive research of piecewise growth

models that the minimum number of time points is at least six (see, e.g., Cudeck,

1996; Cudeck & Klebe, 2002; Harring et al., 2006), hence, the choice of nine

time points seemed to be a reasonable choice. In the data generation process,

some factors were fixed throughout all simulations, whereas other factors were

manipulated. Both types of factors are subsequently described.

Manipulated Factors

Sample size. Three levels of sample sizes (n D 100, n D 250, and

n D 500) were chosen to reflect low, intermediate, and high degrees of estima-

tion precision for measurement and structural parameters, respectively. Previous

studies that demonstrated the fit of second-order LGC models to real data used

sample sizes ranging from n D 230 (Harring et al., 2012), n D 610 (Ferrer,

Balluerka, & Widaman, 2008), and n D 1,994 (Blozis, 2006). From preliminary

investigations, it was determined that for even more extreme sample sizes (e.g.,

n D 750, n D 1,000), the increase in estimation precision relative to that

observed when n D 500 was negligible.

Location of knot. Nine equally spaced repeated measures data were gener-

ated according to the sample size condition. The range in which the population

values of the knot were chosen was between time point 2 and time point 6.

These values were chosen based on the rationale that before time point 2 and

after time point 6 there is too little information available to estimate the mean
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PIECEWISE GROWTH MODELS 381

TABLE 1

Population Values for the Manipulated Conditions

Levels

Manipulated

Conditions Level 1 Level 2 Level 3

Sample size 100 250 500

Location of knot 2 4 6

Indicator reliability 0.45 0.85

Note. The unique factors, •im, were generated under •im � N.0; 1/ and

manipulated with variances of the unique factors chosen so that the reliability

of the each indicator corresponded to the two levels chosen for the simulation.

and the variance of the slopes of the first phase or of the slope of the second

phase, respectively. Thus, the three levels of location of knot (i.e., ” D 2, ” D 4,

and ” D 6) were chosen to reflect the estimation precision for measurement and

structural parameters, respectively, when the knot occurs earlier in the process,

about midway through the process, and toward the end of the process.

Indicator reliability. An advantage of SEM over latent growth curve models

for observed variables is that, by definition, latent variables are measured without

random error. Reliability of the observed variable indicators was chosen as a

factor to be manipulated because it has been documented to impact estima-

tion of structural parameters in other structural equation models (Dimitruk,

Schermelleh-Engel, Kelava, & Moosbrugger, 2007). Based on the literature

(see, e.g., Harring et al., 2012; Weiss, 2010), reliabilities of indicator variables

were chosen to be 0.45 (indicating poor reliability) and 0.85 (indicating a

reasonably good level of reliability). Indicator reliabilities were held equal across

the indicator variables, primarily to keep the scope of the simulation manageable

although we acknowledge that the reliabilities for each observed variable indi-

cator could very well be distinct in applied research. The manipulated factors

are summarized in Table 1.

Population Values

The focal point of this empirical investigation is to examine the feasibility

of estimating the location of the knot in a second-order PLGC model under

different manipulated conditions that are assumed to impact its estimation. In

any simulation, decisions must be made regarding the number of factors to

manipulate as well as the number of levels within each factor, knowing full

well that not every contingency can be addressed. The population values for

the second-order PLGC model were chosen based on the empirical study by
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382 KOHLI AND HARRING

Kohli (2011) as well as on values of parameters resulting from a preliminary

examination of the reading data used in the subsequent empirical example. The

population generating values are described in Table 2.

Outcome Measures

Upon convergence of the program, the estimated parameters of the reparam-

eterized model were transformed back to the original regression coefficients

and their corresponding standard errors using the multivariate delta method.

To evaluate the performance of the second-order PLGC model under different

manipulated conditions, the following outcome measures were used: relative bias

and a variability index of parameter bias. Relative bias and variability index of

parameter bias was computed from the parameter estimates O™i .i D 1; : : : ; 500/

obtained from the 500 replications. Bias was computed as the difference between

the average of the parameter estimates and the true value of the parameter being

estimated. That is,

O™bias D 500�1

500
X

iD1

O™i � ™0;

where ™0 is the population value for ™. Relative bias for each parameter was

subsequently defined in relation to its population value.

O™rel-bias D
O™bias

™0

� 100%:

Additionally, a variability index for parameter bias corresponding to each of

the estimated parameters for each replication in each cell was computed. The

TABLE 2

Population Values for Generating Data for the

Second-Order PLGC Model

Parameter Value Distribution

’1 25

’2 5

’4 1

� 0

œ 0.7

ˆ ˆ D

0

@

10

0 1

0 0 :5

1

A ai � MVN.0; ˆ/

— 0.5 —i � N.0; 1/
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PIECEWISE GROWTH MODELS 383

variability index for parameter bias is an index of the stability of parameter

estimates. It was computed for each replication for each parameter as

Variability Index D .O™i � O™/2:

Furthermore, to quantify relative bias as a function of the manipulated conditions,

a completely crossed factorial ANOVA [3 (sample size) � 2 (indicator reliabil-

ity) � 3 (location of knot)] was executed. Partial eta squared, ˜2
p, corresponding

to each manipulated factor and the interaction terms, was computed as a method

to filter the results in terms of practical importance. Partial ˜2
p for a manipulated

factor was defined as the proportion of total variation attributable to the factor,

partialling out (excluding) other factors from the total nonerror variation (Pierce,

Block, & Aguinis, 2004). Only those main effects of the manipulated factors and

any two-way or three-way interaction terms were reported and interpreted when

both statistical significance .p < :05/ and practical significance .˜2
p � 0:06/

were achieved. The latter threshold was chosen to correspond to a medium-size

effect (Cohen, 1988).1

RESULTS OF SIMULATION STUDY

All 500 replications in each of the 18 manipulated conditions converged suc-

cessfully, where a properly converged replication was determined to be one in

which the solution converged with no parameter estimates outside the possible

range for that parameter.

Relative Bias and Variability Index of Bias

The results from the ANOVA analyses indicated that the only manipulated factor

that was systematically related to the outcome measure, relative parameter bias

with respect to the estimated model parameters, was the location of the knot.

Unlike the location of the knot factor, the manipulated factors of sample size and

indicator reliability had no associated main effects and/or interaction effects that

satisfied both the statistical and the practical significance criteria. The location

of the knot was systematically related to the parameter bias with respect to

the estimation of the mean of slope of the second segment2 ŒF.2; 8982/ D
304:5; p < :001; ˜2

p D 0:063�, variance of the mean intercept of the first

1Cohen’s (1988) heuristic values were computed and reported for ˜2 . Justification for using the

same benchmark for ˜2
p as for ˜2 comes from Sapp (2006), who stated that the difference between

the two effect-size indices becomes negligible as sample size increases.
2There was a small effect size .˜2

p D 0:02/ for the mean slope of the first segment.
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384 KOHLI AND HARRING

segment ŒF.2; 8982/ D 5557:0; p < 0:001; ˜2
p D 0:553�, and variance of

random disturbances in the first-order latent factors ŒF.2; 8982/ D 1088:0; p <

0:001; ˜2
p D 0:195�. The subsequent paragraphs further explore the relation

between the parameter bias and the location of knot. Furthermore, for the

variability index outcome measure, none of the manipulated factors had any

associated main effects and/or interaction terms that satisfied both the statistical

and the practical significance criteria. Thus, it could be concluded that these

manipulated factors, at the particular levels chosen, were not systematically

related to the variability index for parameter bias.

Relative bias of the mean slope of the second segment across the three levels

of the knot location is pictured in Figure 2. The median of relative bias when

the knot was located at t D 2 was 1% whereas when t D 4 and t D 6 were 0%

and 4%, respectively. The median was chosen as a measure of location due to

the obvious skew induced by several outliers, especially in the t D 6 condition.

Relative bias in the t D 6 condition ranged from �183% to 94%. However,

the 95% confidence interval was computed as (�10.1, �8.2), which indicates

that the slope of the second segment was underestimated (negative bias) by

approximately 10%. On average, the relative bias for the other two conditions

was essentially zero. Although not reported due to the partial eta-squared value

FIGURE 2 Boxplot of relative bias for parameter estimates of the mean slope of the

second segment.
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PIECEWISE GROWTH MODELS 385

not meeting the specified threshold, relative bias for the mean slope of the first

segment demonstrated a similar pattern yet in the opposite direction. That is,

that the mean slope showed the greatest bias when the knot was located at t D 2

and declined to zero at the other conditions.

Relative bias with respect to the variance of the intercept of the first segment

was positive and increased as the location of the knot moved from t D 2 to

t D 6. In other words, the variance was increasingly overestimated at all the

three levels of the location of knot factor. Graphical representation of relative

bias for the variance for the intercept of the first segment using side-by-side

boxplots is shown in Figure 3. This finding is not all that surprising because,

in general, the estimation of variances/covariances of growth factors, especially

in the context of a nonlinear model like a piecewise growth model, is known to

be notoriously problematic. Upon closer inspection, when the knot was located

earlier in the overall trajectory (i.e., t D 2), the formulation of the first segment

is quite constrained—having only three time points to define the first linear

function. In this case, the variability of the intercept may better coincide with the

population value. On the other hand, when the knot is located at t D 6, the first

segment is comprised of an intercept and slope estimated using more data (and

potentially affected by more disturbance error variance—which itself appears to

FIGURE 3 Boxplot of relative bias for parameter estimates of the variance of the intercept

of the first segment.
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386 KOHLI AND HARRING

have been overestimated). Thus, the intercepts may indeed demonstrate more

variability than what was intended via the simulation design. This was certainly

an unexpected but interesting finding.

The relative bias for the variance of random disturbances in the first-order

latent factors ranged from 30% to 36%. It is clear that the parameter was

overestimated at all the three levels of location of knot, although it should

be noted that the magnitude of overestimation was not that dissimilar from one

another.

AN EXAMPLE: ANALYSIS OF READING DATA

For illustrative purposes, data were collected from a 2-year longitudinal study

that investigated the components and processes of vocabulary development among

linguistically diverse children as they relate to reading growth over time (Proctor,

Silverman, Harring, & Montecillo, 2011). Three hundred ninety-one children

participated in the study. There were 144, 130, and 117 participants in Grades

2, 3, and 4, respectively. Fifty-six percent of the sample was comprised of

monolingual English speakers. Forty-four percent of the students were Spanish-

English bilinguals. Students were recruited from one Northeastern site .n D
121/ and one Mid-Atlantic site .n D 270/ from one of three schools per site

(six total schools). An accelerated cohort-sequential longitudinal design was

employed and students were followed over 2 years. Students were assessed in

the middle of fall and middle of spring (at approximately half-year increments)

during the 2009–2010 and the 2010–2011 school years. A primary objective

in the study was to determine a functional form for changes in foundational

vocabulary knowledge (depth) as measured by observed language-related process

indicators—morphology, syntax, and semantics. Over the span of the study, data

were collected at eight time points in half-year increments starting in the fall of

second grade and running through the spring of fifth grade.

The latent variable, vocabulary depth, was defined as including observed

indicators of morphological awareness, awareness of semantic relations, and syn-

tactic awareness. The Extract the Base test (ETB; Anglin, 1993; August, Kenyon,

Malabonga, Louguit, & Caglarcan, 2001; Carlisle, 1988) was individually ad-

ministered to all students to evaluate awareness of derivational morphology.

The score reliability was computed using a Rasch item response theory (IRT)

model as 0.98 (August et al., 2001). The Word Classes 2 subtest of the Clinical

Evaluation of Language Fundamentals (CELF; Semel, Wiig, & Secord, 2003)

was used to measure awareness of semantic relations. Test–retest reliability as

indicated in the CELF manual ranges from .83 to .91 for children ages 7.0–9.11.

The CELF Formulated Sentences subtest was used to measure this construct.

Test–retest reliability as reported in the CELF manual ranged from .74–.79
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PIECEWISE GROWTH MODELS 387

for children ages 7.0–9.11 and internal consistency as measured by Cronbach’s

alpha was .80–.82 for these same ages. Raw scores were used in the analysis.

The assessments, Extract the Base and Word Classes 2, were conducted only in

English whereas the CELF Formulated Sentences subtest was conducted in both

English and Spanish. Interested readers are directed to Proctor et al. (2011) for a

more comprehensive description of these measures as well as the characteristics

of the design and sample.

When using second-order growth models to investigate longitudinal change,

an implicit assumption is that the same latent variable has been measured across

time. That is, any change in the latent variable is due to true change in the

underlying phenomena or construct and not due to changes that may occur in

the measurement model. Thus, the invariance of measurement properties of the

latent construct over time must be determined in order to draw valid inferences

regarding the change process (see, e.g., Ferrer et al., 2008, for a detailed dis-

cussion of the issues arising when establishing longitudinal invariance).

Four factor models distinguished by increasingly more stringent levels of

factorial invariance were fitted to the data. Model fit was evaluated by assessing

and comparing estimates of root mean square error of approximation (RMSEA),

the Bayesian information criteria (BIC), and the comparative fit index (CFI).

Indices for the fitted models are summarized in Table 3. For the vocabulary

depth construct, strong factorial invariance provided reasonable fit to the data.

The RMSEA point estimate 0.080 (with 90% confidence interval (CI) at this

level of invariance, [0.062, 0.098]), demonstrated fair model fit (Hu & Bentler,

1999). The BIC favored the model with strong factorial invariance as well. The

CFI was highest under configural invariance, although values for the model

TABLE 3

Model Comparisons for Varying Levels of Factorial Longitudinal Invariance

Model �2lnL p RMSEA

RMSEA

90% CI BIC CFI

1 21,682.6 136 0.057 [0.037, 0.074] 22,494.3 0.983

2 21,724.1 122 0.066 [0.049, 0.082] 22,452.2 0.974

3 21,843.4 108 0.080 [0.062, 0.098] 22,441.2 0.942

4 21,921.9 87 0.102 [0.089, 0.114] 22,488.0 0.924

Note. Model 1 denotes configural invariance. Model 2 represents weak invariance with equal

factor loadings, unequal observed variable intercepts, and unequal unique variances. Model 3 denotes

strong invariance with equal factor loadings, equal observed variable intercepts, and unequal unique

variances. Model 4 represents strict factorial invariance with equal factor loadings, equal observed

variable intercepts, and equal unique variances. The number of parameters is p. The baseline model

on which CFI is based is a model for which the covariances between temporally adjacent observed

variables are nonzero.
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388 KOHLI AND HARRING

under strong invariance still demonstrated relatively good fit (Hu & Bentler,

1999). The fit of model under strict factorial invariance provided the poorer fit

compared to the model with strong factorial invariance. Thus, the measurement

model under strong measurement invariance was provisionally taken as an ac-

ceptable model. This model corresponds to the minimally acceptable level of

invariance generally considered necessary for meaningful comparisons of the

means (Blozis, 2006).

The data were fit with the measurement model specified in Equation 2 allow-

ing for adjacent time-specific errors for the same observed measure to correlate

over time. Growth in latent vocabulary depth followed the model specified

in Equation 7. The residuals in Equation 4 were taken to be homogeneous

and independent across time (i.e., ¢2Ini
8j D 1; : : : ; 8/. Through some initial

exploration, it was determined that only the intercept of the first phase varied

across students whereas the slopes of the first and the second phases were

determined to be nonstochastic. This latter point suggests that although students

begin at different initial levels of vocabulary depth, they progress at the same rate

(albeit different rates in each phase) through fifth grade. Maximum likelihood

estimates for the structural model are given in Table 4.

All of the growth parameters were statistically significant at the .05 signif-

icance level. Although the growth parameters in Table 4 are on a transformed

scale, at first glance it may appear that these are not directly related to the

underlying growth of reading depth. Upon closer inspection, the significance

test of “3 is intuitively appealing. Recall that “3 D .’4 � ’2/=2, and thus a test

of the null hypothesis .H0 W “3 D 0/ answers the question of whether or not a

TABLE 4

Maximum Likelihood Estimates of the Linear-Linear Growth Model

of Latent Reading Depth

Parameter Estimate SE

Change characteristicsa

“1 27.73 0.72

“2 5.77 0.47

“3 �2.05 0.49

” 1.41 0.15

Change characteristics variances and covariance matrixb

var.“1i / D 62:2

aThe parameter estimates are of the transformed model described in

Equation 7. bThe variance of the random effect for “2 and “3 was determined

to be zero. A subsequent model was fitted that allowed only variance

components of random effects for “1 to be estimated. The lone variance

parameter was statistically significant at the .05 level.
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PIECEWISE GROWTH MODELS 389

two-segmented process is operating or simply a single linear process (Seber &

Wild, 1989). The parameter estimate compared with its standard error revealed

that a second segment may very well be functioning in the population. Any

further interpretation with the transformed coefficients is not essential.

Making sense of the original coefficients requires that we back transform

to the original parameters (and their standard errors), which represent growth

characteristics that are more interpretable in terms of summarizing the develop-

mental trajectory of vocabulary depth. As was mentioned before, this requires

the multivariate delta method (see Appendix B for details).

The knot, signaling the transition from one phase to the other, was estimated

to occur at t D 1:41. Time was scaled so that the initial value .t D 0/ occurred

at the fall of second grade. Approximately one and a half years later, in the

spring of third grade, students’ growth in vocabulary depth slows down. This

finding aligns with the theoretical notion that most growth in vocabulary depth

occurs in the early grades and decreases as schoolchildren move through the

upper primary grades. Following Harring et al. (2006), the coefficients from the

original spline can be reconstructed from “1, “2, “3, and ” as follows:

’1 D “1 C “3” ’2 D “2 � “3 ’3 D “1 � “3” ’4 D “2 C “3:

These back-transformed coefficients and their corresponding standard errors

are provided in Table 5. The intercept and slope of the first phase were computed

to be 24.84 and 7.82, respectively. This means that on average, students grow

approximately 5 raw scale score points (on the ETB scale) for each half-year

increment until the spring of the third grade at which time they progress at a

slower rate of 3.72 raw scale score points per half-year until the spring of fifth

grade. It is interesting to note that although the intercept of the second phase

(e.g., ’3) was originally eliminated to force the segments to join at the knot, it

is still possible to get an estimate for this value . O’3 D 30:62/.

TABLE 5

The Back-Transformed Original Coefficients in Equation 6

Computed From the Multivariate Delta Transformation

Parameter Estimate SE

Change

characteristic

’1 24.84 1.08

’2 7.82 0.89

’4 3.72 0.36
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390 KOHLI AND HARRING

DISCUSSION

This research study considers a second-order PLGC model with unknown knot

location for describing segmented change in a latent construct across time, where

the latent construct is measured by a set of observed variables at each time

occasion. Formulation of this model requires specifying a measurement model

that directly connects the observed variables to the latent factors is augmented

to the structural portion of the model. Both the measurement and the structural

portion of the model in Equation 2 and Equation 6, respectively, cannot be

directly estimated within SEM software, however. Hence, to fit this segment

model, the original model in Equation 6 needs to be reparameterized. An obvious

limitation of reparameterization is that the fit of the model may be affected by

the transformation from one version of a model into another form. Harring et al.

(2006) mentioned that generally the difference in fit is not great, and any slight

loss in fit would seem to be offset by the ease with which the reparameterized

model can be estimated.

A small simulation study was conducted to determine if a second-order PLGC

model could be fit and if population parameters, especially those associated

with the latent growth process, could be recovered. Unsurprisingly, the location

of knot affected the accuracy, in terms of bias, of the mean slope of the

second phase. When the shift from one transition to the other occurs at later

measurement occasions, the slope of the second phase was negatively biased.

The location of knot also affected the variability of the first-phase intercepts. The

results showed that the bias (positive) in variability increased as the knot moved

farther away from the intercept. Of course, we examined only a few conditions

with a finite number of levels of factors thought to impact the precise and

accurate estimation of model parameters. The simulation size notwithstanding,

the results were encouraging overall.

To further demonstrate the efficacy of the method, reading data collected

from a cohort-sequential longitudinal design was analyzed. For this sample,

latent reading depth developed in two phases from second grade to fifth grade.

The first phase was characterized by faster straight-line growth until the latter

half of third grade at which time growth in reading depth slowed but remained

constant until the end of the fifth grade.

Overall, second-order PLGC models can be very useful in the area of ed-

ucational research where most often the interest of researchers is centered on

student academic progress or changes in attitude and affect. Second-order PLGC

models enable researchers to summarize individual behavior that exhibits distinct

phases of development in each segment and thereby allow researchers to address

key questions such as developmental studies or studies seeking to measure the

effect of treatment/ intervention, and so forth, such as when individuals may

need to seek professional services at the timing when mental ability decreases.
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PIECEWISE GROWTH MODELS 391

Additionally, a second-order PLGC model can estimate the unknown location

of the knot, which can enhance the ability of researchers to estimate when a

treatment/intervention should be introduced so as to maximize its effects.
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APPENDIX A

The Procedure of Reparameterization

When the mean of the slope of the first phase is greater than the mean of slope

of the second phase, the reparameterized model can be written as the minimum

of the two segments. That is,

g D min.l1.t/; l2.t//:

Harring, Cudeck, and du Toit (2006) demonstrated that the min function could

be conveniently written as follows:

min.l1; l2/ D 1

2
.l1 C l2 �

p

.l1 � l2/2/:

Substituting the segments from Equation 6 into the aforementioned expression

gives the following:

g D min.l1.t/; l2.t//

D 1

2
.l1 C l2 �

p

.l1 � l2/2/

D 1

2
.’i1 C ’i2tj C ’i3 C ’i4tj �

q

.’i1 C ’i2tj � .’i3 C ’i4tj //2/

D 1

2
.’i1 C ’i3 C .’i2 C ’i4/tj �

q

.’i1 � ’i3 C .’i2 C ’i4/tj //2/:

When tj D ”, then ’i1 C ’i2” D ’i3 C ’i4”. Thus, ’i1 � ’i3 D .’i4 � ’i2/”.

Through substitution, we see that

g D min.l1.t/; l2.t//

D 1

2
.’i1 C ’i3 C .’i2 C ’i4/tj �

q

..’i4 � ’i2/” C .’i2 � ’i4/tj //2/

D 1

2
.’i1 C ’i3 C .’i2 C ’i4/tj �

q

..’i2 � ’i4/.tj � ”//2/

D 1

2
.’i1 C ’i3 C .’i2 C ’i4/tj C .’i4 � ’i2/

q

.tj � ”/2/:

Therefore, “i1 D .’i1 C ’i3/=2, “i2 D .’i2 C ’i4/=2, and “i3 D .’i4 � ’i2/=2,

and the reparameterization is like that in Equation 7. Unlike the functional form
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in Equation 6, it is the function form in Equation 7 that will be fitted using

standard SEM software.

APPENDIX B

The Multivariate Delta Method

The multivariate delta method transforms the estimated variances of “1, “2, and

“3 (i.e., O¢2
“1

, O¢2
“2

, and O¢2
“3

) back to the respective variances of ’1, ’2, and ’4

(i.e., O¢2
’1

, O¢2
’2

, and O¢2
’4

) in the following way:

O’1 D O“1 C O“3 O” D g1

O’2 D O“2 � O“3 D g2

O’4 D O“2 C O“3 D g3:

Thus, O’1 D O“1 C O“3 O” D 27:73 � 2:05.1:41/ D 24:84.

The variance of the back-transformed parameter, O’1, can be computed as

Var.O¢2
’1

/ D d0†d, where d is a vector of partial derivatives of g1 with respect

to “1, “2, and “3, respectively, and † is the matrix of variance and covariance

terms of “.

Var.O¢2
’1

/ D d0†d

D
�

@g1

@“1

@g1

@“2

@g1

@“3

�

�

2

4

O¢2
“1

O¢“2;“1
O¢2

“2

O¢“3;“1
O¢“3 ;“2

O¢2
“3

3

5 �

2

6

6

6

6

6

4

@g1

@“1
@g1

@“2
@g1

@“3

3

7

7

7

7

7

5

D

2

4

1

0

O”

3

5 �

2

4

O¢2
“1

O¢“2;“1
O¢2

“2

O¢“3;“1
O¢“3;“2

O¢2
“3

3

5 �

2

4

1

0

O”

3

5

D

2

4

1

0

1:41

3

5 �

2

4

0:524

�0:220 0:221

�0:060 �0:164 0:238

3

5 �

2

4

1

0

1:41

3

5 D 1:166:

Thus, the standard error of ’1 is SE.’1/ �
p

1:166 D 1:08. Standard errors of

the other transformed regression coefficients, ’2, and ’4, could be computed in
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a similar fashion. It should be noted that † can be obtained in Mplus by using

the TECH3 option in the output statement.

APPENDIX C

Annotated Mplus Input for Generic Second-Order Latent

Piecewise Model

TITLE: 2nd-order piecewise model

DATA: FILE IS data.dat;

VARIABLE: NAMES ARE y1-y27;

ANALYSIS: ESTIMATOR = ML;

ITERATIONS = 10000;

SDITERATIONS = 500;

H1ITERATIONS = 10000;

CONVERGENCE = .001;

H1CONVERGENCE = .001;

MODEL:

!Measurement Portion of the PLGM

t1 BY

y1

y2*.7(1)

y3*.7(2);

t2 BY

y4

y5*.7(1)

y6*.7(2);

t3 BY

y7

y8*.7(1)

y9*.7(2);

t4 BY

y10

y11*.7(1)

y12*.7(2);

t5 BY

y13

y14*.7(1)

y15*.7(2);

t6 BY

y16
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y17*.7(1)

y18*.7(2);

t7 BY

y19

y20*.7(1)

y21*.7(2);

t8 BY

y22

y23*.7(1)

y24*.7(2);

t9 BY

y25

y26*.7(1)

y27*.7(2);

y1-y27*;

[y1@0 y4@0 y7@0 y10@0 y13@0 y16@0 y19@0 y22@0 y25@0];

[y2 y5 y8 y11 y14 y17 y20 y23 y26](2);

[y3 y6 y9 y12 y15 y18 y21 y24 y27](3);

!Structural Portion of the PLGM

w1 BY t1-t9@1;

w2 BY t1@0 t2@1 t3@2 t4@3 t5@4 t6@5 t7@6 t8@7 t9@8;

w3 BY t1* (p1); !Column 3 of design matrix

w3 BY t2-t9* (p2-p9);

w1*10(v1);

w2*1(v2);

w3*.5(v3);

w1 WITH w2*0;

w1 WITH w3*0;

w2 WITH w3*0;

[w1* w2* w3*];

[t1-t9@0];

t1-t9*(vard);

MODEL CONSTRAINT:

NEW (gam*);

v1 > 0;

v2 > 0;

v3 > 0;

vard > 0;
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p1 = (sqrt((gam)^2));

p2 = (sqrt((1-gam)^2));

p3 = (sqrt((2-gam)^2));

p4 = (sqrt((3-gam)^2));

p5 = (sqrt((4-gam)^2));

p6 = (sqrt((5-gam)^2));

p7 = (sqrt((6-gam)^2));

p8 = (sqrt((7-gam)^2));

p9 = (sqrt((8-gam)^2));

OUTPUT: SAMPSTAT;
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