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Differential item functioning (DIF) occurs when an item on a test or question-

naire has different measurement properties for 1 group of people versus another,

irrespective of mean differences on the construct. This study focuses on the use

of multiple-indicator multiple-cause (MIMIC) structural equation models for DIF

testing, parameterized as item response models. The accuracy of these methods,

and the sample size requirements, are not well established. This study examines

the accuracy of MIMIC methods for DIF testing when the focal group is small

and compares results with those obtained using 2-group item response theory

(IRT). Results support the utility of the MIMIC approach. With small focal-

group samples, tests of uniform DIF with binary or 5-category ordinal responses

were more accurate with MIMIC models than 2-group IRT. Recommendations are

offered for the application of MIMIC methods for DIF testing.

It is usually desirable for items on psychological tests or questionnaires to

measure the same construct and possess the same measurement properties for

all respondents. For example, persons with the same level of depression should

have the same probability of endorsing items on a depression symptom inventory

regardless of their sex, ethnicity, or other group memberships. Mean depression

levels may differ between groups, but in order to validly determine whether

they do, items must function the same way for individuals matched on the un-
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2 WOODS

derlying construct of depression. Substantive research findings based on invalid

measurement are, at best, misleading.

Differential item functioning (DIF) occurs when an item on a test or ques-

tionnaire has different measurement properties for one group of people versus

another, irrespective of mean differences on the construct. In methods for DIF

testing (see reviews by Camilli & Shepard, 1994; Holland & Wainer, 1993;

Millsap & Everson, 1993), the construct is approximated by observed scores

(e.g., sums of item scores) or a latent variable. Latent-variable methods are

likely to be more accurate because they account for measurement error in the

items.

Latent-variable methods for DIF testing use either multiple-group models

or multiple-indicator multiple-cause (MIMIC) models, which are both a type

of structural equation model (SEM). The distinguishing feature of a MIMIC

model (Jöreskog & Goldberger, 1975) is that at least one observed variable,

called a causal indicator, predicts a latent variable. For binary or ordinal data,

both MIMIC and multiple-group models may be parameterized either as an item

response model fitted to the data directly or as a confirmatory factor analysis

model fitted to polychoric (or tetrachoric) correlations. The equivalence between

item response theory (IRT) and categorical factor analysis is well established

(e.g., Takane & de Leeuw, 1987). The IRT parameterization is used in the present

article.

Multiple-group analysis is often preferable to the MIMIC approach because

more types of hypotheses can be tested (e.g., DIF with respect to item discrimi-

nation). However, the sample size requirement is probably greater for multiple-

group analysis because the latent-variable model is fitted to data for each group

separately (B. O. Muthén, 1989). Small samples are common in psychological

research, particularly for minority or focal groups. If MIMIC methods accurately

test DIF using latent variables when the focal group is small, then they are unique

and potentially quite valuable.

However, the accuracy of the MIMIC approach to DIF testing is incompletely

verified, and little is known about the sample size requirements. The present re-

search examines the accuracy of MIMIC methods for DIF testing when the focal

group is small and compares results with those obtained using two-group IRT.

DIFFERENTIAL ITEM FUNCTIONING

In an IRT context, an item with DIF has a different category response function

(CRF) for one group of people versus another. In other words, even when

members of two different groups are matched on the latent variable, ™, their

probability of giving the same response to the item is not the same. Groups

are defined by, for example, sex, ethnicity, or experimental condition, with one
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MIMIC for DIF 3

assigned to be the reference group and the other assigned to be the focal group.

The majority, or group with which a test was originally developed, is typically

treated as the reference group.

DIF may be uniform or nonuniform (Camilli & Shepard, 1994; Mellenbergh,

1989). Uniform DIF occurs when the CRFs for the two groups are different and

do not cross; one group is more or less likely to endorse a higher response over

the entire range of ™. If the CRFs cross, then the DIF is nonuniform. Multiple-

group models can test for both uniform and nonuniform DIF, but MIMIC models

are sensitive to uniform DIF only.

TWO-GROUP IRT FOR TESTING DIF: IRT-LR-DIF

Multiple-group approaches for testing DIF have been described in the context

of factor analysis (Jöreskog, 1971; Millsap & Yun-Tein, 2004; B. O. Muthén

& Christoffersson, 1981; Sörbom, 1974) or IRT (Thissen, Steinberg, & Ger-

rard, 1986; Thissen, Steinberg, & Wainer, 1988, 1993), and several authors

have addressed similarities and differences between the two contexts (Meade &

Lautenschlager, 2004; Raju, Laffitte, & Byrne, 2002; Reise, Widaman, & Pugh,

1993; Stark, Chernyshenko, & Drasgow, 2006). Here we focus on IRT-LR-DIF

(IRT-based likelihood-ratio testing for DIF), which can be carried out with most

IRT software but is particularly convenient using Thissen’s (2001) IRTLRDIF

program.

IRT-LR-DIF involves statistically comparing nested two-group item response

models with varying constraints to evaluate whether the response function(s)

for a particular item differs for the reference and focal groups. No explicit

estimation of ™ is needed; ™ is a random latent variable treated as missing using

Bock and Aitkin’s (1981) scheme for marginal maximum likelihood. The mean

and variance of ™ are fixed to 0 and 1 (respectively) for the reference group to

identify the scale and estimated for the focal group as part of the DIF analysis.

A subset of items called designated anchors are presumed invariant and used to

link the metric of ™ for the two groups.

Item parameters for designated anchors are constrained equal between groups

whereas each studied item (nonanchor) is tested individually for DIF. For a

particular studied item, an analysis begins with a test of the null hypothesis

that all parameters for studied item i are group invariant. A model with all

parameters for the studied item constrained equal between groups is compared

with a model with all parameters for the studied item permitted to vary between

groups. In both models, parameters for all anchors are constrained equal between

groups. The LR test statistic is �2 times the difference between the optimized log

likelihoods, which is approximately ¦2-distributed with df equal to the difference

in free parameters. Statistical significance indicates the presence of DIF. If this
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4 WOODS

general test is significant, follow-up tests are easily carried out to establish

whether the DIF is uniform or nonuniform.

It is also possible to perform IRT-LR-DIF tests using all other items as anchors

instead of a designated anchor set. However, Type I error is inflated when the

anchor set is contaminated by DIF (Stark et al., 2006; Wang & Yeh, 2003) so

it is better to designate anchors. Various strategies for empirically identifying

anchors have been applied or suggested (Bolt, Hare, Vitale, & Newman, 2004;

Edelen, Thissen, Teresi, Kleinman, & Ocepek-Welikson, 2006; Kim & Cohen,

1995; Rensvold & Cheung, 2001; Stark et al., 2006; Wang, 2004; Woods, in

press). Many of them are iterative purification procedures wherein the analysis is

repeated several times with apparently differentially functioning items removed

one by one. With invariant anchors, IRT-LR-DIF has performed well in simula-

tions with binary and ordinal data (Ankenmann, Witt, & Dunbar, 1999; Cohen,

Kim, & Wollack, 1996; Kim & Cohen, 1998; Wang & Yeh, 2003).

MIMIC MODELS FOR DIF TESTING

B. O. Muthén (e.g., 1985, 1988, 1989) popularized the use of MIMIC models to

test for DIF using estimation methods appropriate for categorical data (see also

MacIntosh & Hashim, 2003; B. O. Muthén, Kao, & Burstein, 1991). A simple

MIMIC model for DIF testing is illustrated in Figure 1. The corresponding

equations are readily available in print (MacIntosh & Hashim, 2003; B. O.

Muthén, 1985, 1988, 1989; B. O. Muthén et al., 1991). Figure 1 displays a

standard unidimensional item response model (or factor model) with ™ regressed

on an observed grouping variable to allow for a mean difference. Item responses

are regressed on the grouping variable to test for DIF. There is evidence of DIF

if group membership significantly predicts item response, controlling for any

mean differences on ™. Discrimination parameters are implicitly invariant; thus

this is a model of uniform DIF.

Details of the Testing Procedure

No consensus is apparent from the published literature concerning exactly how

MIMIC models should be used to test for DIF. Although it might seem initially

appealing to regress responses for all items on the grouping variable to test all

items for DIF (i.e., to include dashed-line paths as in Figure 1 for all items),

such a model would not be identified. Thus, a different approach is required.

The strategy described by B. O. Muthén (1988, 1989) and Oort (1992, 1998)

is to first fit a baseline model presuming no DIF in any item (i.e., Figure 1

without any dashed-line paths) and then to inspect modification indices (MIs),
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MIMIC for DIF 5

FIGURE 1 A basic MIMIC model for DIF testing; ” D regression coefficient showing

the mean difference on the latent variable, ™; “i D regression coefficient showing the group

difference in the threshold for item i and the grouping variable (i D 1; 2; : : : k); ai D

discrimination parameter; ©i D measurement error for item i ; — D residual for ™.

which reflect the expected improvement in model fit if a fixed parameter were

freely estimated. Items with a “large” MI for the “i parameter are flagged

and may be regressed on the grouping variable in a subsequent model. Some

practitioners have used similar MI-based approaches (Hagtvet & Sipos, 2004;

Mast & Lichtenberg, 2000).

MIs might produce misleading results. One dilemma is in judging when

to flag an item: The definition of a “large” index is unclear, and statistical

significance depends on sample size. B. O. Muthén (1988) recognized numerous

limitations of MIs: “The information from the various indexes for a certain

model can be misleading since they may be highly correlated, the information

really only pertains to freeing up one parameter at a time, the indexes are only

good approximations for models that are close to a well-fitting one, and we

may capitalize on chance in our data” (p. 228). Use of MIs does not seem

advisable.

A second approach is to test each item for DIF assuming all other items

are invariant (Chen & Anthony, 2003; Finch, 2005; Gelin, 2005; Oishi, 2006;

Schroeder & Moolchan, 2007). The DIF-free baseline model is statistically
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compared with each of k models (let k D total number of items), each with

a path from the grouping variable to one item. This procedure is analogous to

IRT-LR-DIF with all other items as anchors. The test statistic is treated as if

it is ¦2 distributed, but for that to be true, the baseline model should fit the

data (Maydeu-Olivares & Cai, 2006). Fit of the baseline model worsens as the

amount of DIF in the data increases. Simulations have shown that when some

items function differently, Type I error is inflated with this approach to MIMIC

modeling (Finch, 2005) as it is when IRT-LRT-DIF is used with all others as

anchors.

Better approaches use designated anchors (Christensen et al., 1999; Fleish-

man, Spector, & Altman, 2002; Grayson, Mackinnon, Jorm, Creasey, & Broe,

2000). Anchors may be chosen based on preliminary tests using all other items as

anchors; Woods (in press) proposes and tests a specific strategy that can produce

invariant anchor sets much of the time. In one model, all studied items can

be regressed on the grouping variable with individual tests of these regression

parameters interpreted as DIF tests (Christensen et al., 1999; Grayson et al.,

2000). Alternatively, each studied item can be tested individually by comparing

a full model that presumes DIF in all studied items with a model with the DIF

path removed for one studied item (Fleishman et al., 2002; Woods, Oltmanns,

& Turkheimer, 2008). This latter strategy (the free-baseline designated-anchor

approach) is followed in the present study. It is appealing because it is most

similar to the well-tested IRT-LR-DIF approach.

Previous Simulation Studies

Empirical evaluations of MIMIC methods for DIF are scant. Oort (1998) eval-

uated methods designed for continuous responses using MIs, Gelin (2005) ex-

amined DIF-free ordinal data using all other items as anchors, and Finch (2005)

focused on binary data (with and without DIF) using all others as anchors. Both

Gelin and Finch used the categorical factor analysis parameterization. None of

these studies evaluated estimates from a final model (defined later).

The Current Study

The primary aim of the present research is to empirically evaluate the MIMIC

approach for DIF testing using (a) the free-baseline designated-anchor model-

testing strategy, (b) items with both binary and ordinal responses, (c) the IRT

model parameterization, and (d) final models. A comparison to two-group IRT is

included to investigate the hypothesis that, with other study characteristics held

constant, the sample size needed for adequate power and reasonably accurate

parameter estimation is smaller for MIMIC models than two-group analysis.
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MIMIC for DIF 7

METHODS FOR STUDY 1: BINARY RESPONSES

One hundred sets of binary item data were generated under 60 independent

conditions, varying according to the focal-group sample size (NF D 25, 50,

100, 200, or 400), number of items (k D 6, 12, or 24), reference-group sample

size (NR D 500 or 1,000), and presence versus absence of DIF. A CCC program

generated the data and wrote command files for, executed, and processed output

from Mplus (L. K. Muthén & Muthén, 2007), IRTLRDIF (Thissen, 2001), and

MULTILOG (Thissen, Chen, & Bock, 2003).

Data Generation

Binary responses were generated from the two-parameter logistic model (2PL;

Birnbaum, 1968):

Tij D Pr.uij D 1j™j / D
1

1 C expŒ�ai .™j � bi/�
; (1)

where ai and bi are the discrimination and threshold parameters, respectively,

for item i , and ™j is the value of the latent variable for the j th simulee. In all

conditions, ™j was drawn from N(� D 0, ¢ D 1) for the reference group and

N(�0.4, 1) for the focal group.

Item parameters for the reference (R) group were randomly drawn from

certain distributions: N(� D 1:7, ¢ D 0:3) for aiR and N(� D 0, ¢ D 1)

for biR, chosen based on an empirical examination of item parameters estimated

from an assortment of psychological scales (Hill, 2004). To avoid unrealistic

extreme values, the distribution of aiR was truncated on the upper end at 4 and

on the lower end at 0.5 (items without nonuniform DIF) or 1.2 (items with

nonuniform DIF). The maximum amount of DIF was 0.7, so truncation at 1.2

ensured that aiF � 0:5 (F D focal group). The distribution of biR was truncated

at ˙ 2 to avoid items with all responses in a single category.

Parameters for the F group were defined in relation to R-group parameters. In

DIF-free conditions, aiF D aiR and biF D biR for all i , and k=3 items were used

as anchors. In conditions with DIF, 2k=3 items functioned differently in favor

of the R group (i.e., aiF < aiR and biF > biR), and k=3 items were DIF-free

anchors (not tested for DIF). Half of the differentially functioning (D-F) items

were variant in both ai and bi (nonuniform DIF) and the other half were variant

in just bi (uniform DIF). As an example, when k D 12, there were 4 items with

nonuniform DIF, 4 items with uniform DIF, and 4 DIF-free anchors.

In applications of IRT-LR-DIF, the amount of DIF usually varies over items

within a study, and typical differences jaiF � aiRj or jbiF � biRj are between .3

and .7. In this simulation, aiF D aiR � • and biF D biR C ”, where • and ” were
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equal to one of five equally likely values (.3, .4, .5, .6, or .7) and • ¤ ” (except

by chance). A random number from a uniform distribution determined • (or ”)

for a given item.

MIMIC Model DIF Tests

The MIMIC approach was applied using Mplus (Version 4.21; L. K. Muthén &

Muthén, 2007). For each data set, 2=3k C2 different MIMIC models were fitted.

In every model, ™ was regressed on the grouping variable and the variance of the

residual from this regression was fixed to 1 to identify the scale. All models were

parameterized as two-parameter logistic IRT models; however, the Mplus IRT

model differs from Birnbaum’s 2PL model given in Equation (1). The Mplus

parameterization is

Pr.uij D 1j™j / D
1

1 C expŒ£i � ai ™j �
; (2)

where £i is not equivalent to bi in Equation (1), but £i D ai bi .

Models were fitted to the data directly using the robust maximum likelihood

estimator “MLR.” With this estimator, the LR statistic must be divided by a term

that is a function of the number of estimated parameters (p) and the scaling

correction factor given by Mplus (c) for each model: ¦2
difference D LR

.p1c1�p0c0/
.p1�p0/

,

where 0 and 1 label the models being compared (it does not matter which

model is assigned 0 versus 1 for this formula as long as the assignment is kept

consistent for all calculations—¦2 is nonnegative). Further details are given on

the Mplus Web site (http://www.statmodel.com/chidiff.shtml).

The full model was fitted first, in which all studied items were regressed

on group. The log likelihood, df, and scaling correction factor from this model

were used to test each studied item for DIF. Next, 2k=3 constrained models

were fitted: one for each studied item. In these models, bi for studied item i

was constrained equal between groups (the item was not regressed on group).

The log likelihood, df, and scaling correction factor from each constrained model

were used for DIF testing. A significant (’ D :05) difference between the full

model and the constrained model for item i indicated that item i functioned

differently. Decisions about statistical significance were based on the adjusted

p value (described later) from the ¦2 nested model test, corrected to control the

false discovery rate (FDR).

In conditions with DIF, a final model was fitted in which only items with sig-

nificant DIF tests were regressed on group. Final estimates of £i were converted

to bi so they could be compared with the true parameters.
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MIMIC for DIF 9

FDR-Corrected p Values

The Benjamini-Hochberg (1995) procedure has been recommended for control-

ling the FDR for DIF testing (Thissen, Steinberg, & Kuang, 2002; Williams,

Jones, & Tukey, 1999). In the present study, all p values were adjusted using a

CCC implementation of the method described in the documentation for the SAS

MULTTEST procedure (Version 9.1). The adjusted, rather than raw, p values

were compared with ’ D :05 to determine statistical significance.

Two-Group Analysis

The two-group approach was applied using IRTLRDIF (Version 2.0b; Thissen,

2001) and for some conditions, MULTILOG (Version 7; Thissen et al., 2003).

The IRTLRDIF program permits designation of anchors and tests each studied

item for DIF as described earlier. The p value corresponding to the ¦2 statistic

from each of these tests, adjusted to control the FDR, determined statistical

significance. The IRTLRDIF program provides as many estimates of the item

parameters and the mean difference as there are studied items. In the present

study, parameter estimates from IRTLRDIF were not used.

In conditions with DIF and NF D 200 or 400, MULTILOG was used to fit

a final model, analogous to the final MIMIC model described previously. Pa-

rameters for items with nonsignificant DIF tests were constrained equal between

groups, and parameters for items with significant tests were estimated separately

for the two groups. The mean of ™ was fixed to 0 for the R group and estimated

for the F group; the SD of ™ was 1 for both groups. Final models were fitted

only for the larger values of NF because two-group IRT is not a small-sample

method and hit rates were so low with NF � 100 that it was clear that accuracy

would be poor for the final models.

Outcomes

DIF-free conditions. One outcome was computed for each of the 30 DIF-

free conditions: the false positive rate (i.e., proportion of studied items with

significant tests).

Conditions with DIF. One study-level outcome was used for conditions

with DIF: the mean difference from the final model, averaged over replications.

The mean difference is the coefficient for the regression of ™ on group with the

MIMIC approach and the absolute value of the focal-group mean with IRT-LR-

DIF.

Item-level outcomes differed for anchors versus D-F items. For anchors, the

absolute value of the mean bias was calculated for ai and for bi . For D-F items,
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the hit rate was computed as the proportion of items with significant tests. Hit

rates were calculated separately for items with uniform versus nonuniform DIF.

Six additional outcomes were used to judge how well item parameters were

estimated for D-F items when the significance tests were correct. Bias in aiR, aiF,

biR, and biF, and the absolute difference between the mean true and estimated

amount of DIF in ai and bi were computed using estimates from the final

model for only the items that were correctly identified as D-F. For example, if

k D 12 and 565 of the 800 D-F items were detected, bias was evaluated for

only those 565 items (800 D 8 D-F items per test times 100 replications). To

control outliers, estimates of aiR and aiF greater than 4 were recoded to 4, and

estimates of biR and biF more extreme than ˙ 4 were recoded to ˙ 4.

RESULTS FOR STUDY 1

DIF-Free Conditions

Type I error was well below 5% for both methods in all conditions. This was

not surprising given that all false positive rates were based on FDR-adjusted

p values. Over the 30 DIF-free conditions, the false positive rate ranged from

.002 to .035 (or 0.2% to 3.5%) for MIMIC models and from .000 to .015 (or

0% to 1.5%) for two-group models. The false positive rate tended to be higher

for MIMIC models than for two-group models, but differences between methods

diminished as NF or k increased. There was little difference between NR D 500

and 1,000. Figure 2 displays the false positive rates with NR D 500 and k D 6

(upper), 12 (middle), and 24 (lower).

Conditions With DIF

Hit rates. Consistent with what is known about statistical power, hit rates

improved as NF increased, but the improvement rate decreased so there was

little difference between NF D 200 and 400. This principle of diminishing

returns is probably why rates for NR D 1,000 and 500 were very similar. Hit

rates were nearly identical for all k but always greater for items with uniform

versus nonuniform DIF.

The left side of Figure 3 displays hit rates for binary items with NR D 1,000

and k D 6 (upper), 12 (middle), and 24 (lower). For both methods, power was

very low when NF � 100 but was in a more acceptable range when NF D 200

or 400. In all conditions (except k D 24, NF D 400), the MIMIC method

had greater power to detect uniform DIF. The MIMIC method also had greater

power to detect nonuniform DIF for short scales (k D 6) or very small NF (25
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MIMIC for DIF 11

FIGURE 2 The false positive rate is the proportion of group-invariant studied items with

significant DIF tests; k D number of items, NR D reference group sample size, NF D focal

group sample size. A dashed line is drawn at .05 because ’ D :05. These plots are for binary

responses but the pattern was nearly identical with five-category ordinal responses.
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FIGURE 3 The hit rate is the proportion of differentially functioning studied items with

significant DIF tests; k D number of items, NR D reference group sample size, NF D focal

group sample size.
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MIMIC for DIF 13

or 50). However, power to detect nonuniform DIF became greater for two-group

analysis as k and NF increased.

Mean difference. Estimates of the mean difference were minimally af-

fected by NR but clearly more accurate as NF increased. When k D 6 and

NF D 200 or 400, estimates from MIMIC models were more accurate than

those from two-group models. The two approaches produced nearly identical

results for k D 12 and 24. Plots showing results for NR D 1,000 and k D 6

(upper), k D 12 (middle), and k D 24 (lower) are displayed on the left side of

Figure 4.

Item parameters for anchors. For anchors, bias in ai and bi was small in

all conditions and similar for the two methods. For ai , the bias ranged (over the

30 conditions) from .000 to .027 for the MIMIC method and ranged (over the

12 conditions) from .001 to .024 for two-group analysis. For bi , the bias ranged

(over conditions) from .000 to .037 for the MIMIC method and from .003 to

.042 for two-group analysis.

Discrimination parameters for D-F items. The bias in aiR and aiF was

minimally affected by NR and k. For NR D 500, Figure 5 shows the bias in

aiR (left) and aiF (right). For items with uniform DIF, bias in aiR was small

for all NF and nearly identical for the MIMIC and two-group methods. Bias in

aiF was also small for all NF with the MIMIC method but a little elevated for

NF D 200 with the two-group approach.

For items with nonuniform DIF, bias in aiR was low for two-group analysis

but worsened as NF increased for MIMIC models. Bias in aiF was quite elevated

for all NF with the MIMIC method but small for two-group analysis. This makes

sense because the MIMIC method is insensitive to DIF with respect to ai .

For all conditions, bias in the amount of DIF in ai was elevated to about .5

for items with nonuniform DIF tested with the MIMIC approach because the

estimated DIF was always 0 and the true amount of DIF was about .5 (the mean

of .3, .4, .5, .6, and .7). For items with uniform DIF tested with the MIMIC

approach, bias in the amount of DIF was 0 because both the true and estimated

amount of DIF were always 0. With two-group analysis, the amount of DIF was

estimated fairly well for all items (range of bias in ai DIF, over conditions .012

to .173).

Threshold parameters for D-F items. Bias in biR was low and similar

to that observed for anchors. Bias was greatest for items with nonuniform DIF

tested with the MIMIC approach: Over the 30 conditions, bias ranged from .000

to .066. For items with uniform DIF tested with MIMIC models, and for all D-F

items tested with two-group analysis, bias in biR was less than .05.
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FIGURE 4 Estimates of the group-mean difference on ™, averaged over 100 replications

in each condition; k D number of items, NR D reference group sample size, NF D focal

group sample size. A dashed line is drawn at the true population value of 0.4.

Bias in biF from MIMIC models was quite large when NF < 100 but

improved dramatically when NF � 100. The bias was minimally affected by

NR and k. Figure 6 plots the bias in biF for NR D 500 and k D 6 (upper), 12

(middle), and 24 (lower). With NF D 200 or 400, estimation of biF for items

with uniform DIF was virtually identical for the two methods. However, for
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MIMIC for DIF 15

FIGURE 5 The absolute value of the mean bias in the discrimination parameter for the

reference group, aiR (left side) or the focal group, aiF (right side); k D number of items,

NR D reference group sample size, NF D focal group sample size. These plots are for

binary responses but the pattern was nearly identical for five-category ordinal responses.
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FIGURE 6 For binary responses, the absolute value of the mean bias in the reference

group threshold parameter (biR); k D the number of items, NR D reference group sample

size, NF D focal group sample size.
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MIMIC for DIF 17

items with nonuniform DIF, bias was a little greater with MIMIC models than

two-group analysis (k D 6 with NF D 200 is an exception). Because estimation

inaccuracy occurred for biF and not biR, the pattern of bias in the estimated

amount of DIF in bi was virtually identical to that for biF.

METHODS FOR STUDY 2: ORDINAL RESPONSES

One hundred sets of ordinal (five-point) item data were generated for Study 2.

The methodology used in Study 1 was replicated with a few differences in the

design and the data generation procedure, as described subsequently.

Design

There were 24 independent simulation conditions varying according to the focal-

group sample size (NF D 50, 100, 200, or 400), number of items (k D 6, 12,

or 24), and presence versus absence of DIF. No samples with NF D 25 were

generated because results with binary data were poor, and NR was not varied

because most outcomes for binary items were virtually identical with NR D 500

versus 1,000. In Study 2, NR D 1,000 for all conditions.

Data Generation

Five-category ordinal data were generated from Samejima’s (1997) graded model,

which is a generalization of Birnbaum’s 2PL model for more than two ordered

categories. There is one discrimination parameter per item (ai ) and one fewer

threshold parameter (bij ) than total number of response categories. Mplus pa-

rameterizes the graded model analogously to the 2PL such that £ij D ai bij . A

common parameterization of the graded model, for the probability of responding

in category v, is Pr.uij D vj™j / D 1
1CexpŒ�ai .™j �bi;v /�

� 1
1CexpŒ�ai .™j �bi;vC1/�

,

where 1
1CexpŒ�ai .™j �bi;0/�

D 1, 1
1CexpŒ�ai .™j �bi;cC1/�

D 0, and c D highest response

category. In Mplus, the parameterization is Pr.uij D vj™j / D 1
1CexpŒ£i;v�ai ™j �

�
1

1CexpŒ£i;vC1�ai ™j �
(with the analogous endpoints equal to 0 and 1).

For each item, aiR was drawn from N(� D 1:7, ¢ D 0:6) with truncation

on the upper end at 4.0 and on the lower end at 0.5 (items without nonuniform

DIF) or 1.2 (items with nonuniform DIF). As in Study 1, aiF was either equal

to aiR or aiR � •, depending whether nonuniform DIF was present.

The first R-group threshold, bi1R, was drawn from N(� D �0:4, ¢ D 0:9)

with truncation at �2.5 and 1.5. Subsequent thresholds were created by adding

a randomly drawn value, dimR, to the immediately previous threshold (m counts

differences between consecutive bihRs, where h D 1; 2; : : : c �1). The difference
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between adjacent bihRs was drawn from N(� D 0:9, ¢ D 0:4), with truncation at

0.1 and 1.5. To preserve ordering of the thresholds .bi1F < bi2F < bi3F < bi4F /,

the amount of DIF was held constant over thresholds for each item. F-group

thresholds were defined as bi1F D bi1R C ”, bi2F D bi2R C ”, bi3F D bi3R C ”,

and bi4F D bi4R C ”.

When an item was simulated with a 0 cell frequency for either the R or F

group (i.e., 0 simulees responded in one or more of the five categories), the

categories for this item were collapsed (for both groups).

RESULTS FOR STUDY 2

DIF-Free Conditions

False positive rates were well under .5 for all conditions and similar for the

two methods. The pattern of results was similar to that shown in Figure 2 for

binary data. Across the 12 conditions, false positive rates ranged from .0019 to

.0175 (0.19 to 1.75%) for the MIMIC method and from .0013 to .0200 (0.13%

to 2.00%) for two-group analysis.

Conditions With DIF

Hit rates. Hit rates for ordinal items are displayed on the right side of

Figure 3 for k D 6 (upper), 12 (middle), and 24 (lower). Power was somewhat

low with NF D 50, though not as low as with binary items. Power to detect

uniform DIF was always greater for the MIMIC method than two-group analysis,

but power to detect nonuniform DIF was either about the same for the two

methods (with k D 6) or better for two-group analysis.

Mean difference. Estimated mean differences are shown on the right side

of Figure 4. The MIMIC method was quite accurate, especially as NF increased.

As k increased, estimates from two-group analysis worsened, with rather large

overestimation apparent when k D 24.

Item parameters for anchors. Anchor item parameters were estimated

well from MIMIC models. Bias ranged (over conditions) from .001 to .016 for

ai , from .000 to .012 for bi1, from .002 to .032 for bi2, from .001 to .072 for

bi3, and from .000 to .021 for bi4.

Table 1 compares bias in anchor parameter estimates from MIMIC and two-

group models. Values for the two methods are comparable for ai with all k and

for bihs when k D 6. However, for the longer scales, accuracy in bihs estimated

using two-group analysis systematically declined as k and NF increased. The
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MIMIC for DIF 19

TABLE 1

Absolute Bias in Item Parameter Estimates for Ordinal Anchors

Condition ai bi1 bi2 bi3 bi4 Free Pars

k D 6 MIMIC Models

NF D 200 .004 .005 .008 .038 .019 33

NF D 400 .001 .009 .000 .006 .010 34

k D 12

NF D 200 .012 .001 .002 .001 .013 65

NF D 400 .003 .000 .004 .005 .004 66

k D 24

NF D 200 .009 .000 .011 .032 .020 128

NF D 400 .004 .003 .003 .014 .002 132

k D 6 Two-Group Analysis

NF D 200 .015 .036 .025 .012 .000 41

NF D 400 .015 .053 .039 .034 .026 46

k D 12

NF D 200 .018 .070 .091 .104 .092 89

NF D 400 .003 .132 .128 .126 .127 94

k D 24

NF D 200 .002 .261 .255 .246 .238 180

NF D 400 .005 .318 .317 .310 .305 188

Note. k D number of items; NF D focal group sample size; ai D discrimination parameter;

bi1–bi4 D threshold parameters; free pars D average (rounded to integer) number of free parameters

in the final model.

number of free parameters in the final models also grew with increases in k and

NF . Greater NF leads to more free parameters because power is higher, and

when more DIF is detected, the parameters of more studied items are estimated

separately for the two groups in the final model. The difference in the number

of free parameters used for MIMIC versus two-group final models is larger

for k D 12 or 24 than for k D 6; this may explain why bias was worse for

two-group models with the longer scales.

Discrimination parameters for D-F items. In Study 2, the pattern of

results for bias in aiR and aiF was the same as that observed in Study 1 (see

Figure 5 and the earlier narrative).

Threshold parameters for D-F items. Bias in thresholds is given in Ta-

ble 2 (nonuniform DIF) and Table 3 (uniform DIF) for estimates from MIMIC

models (regular type) and two-group analysis (bold type). In all cases, R-group

thresholds tended to be better estimated than F-group thresholds.
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TABLE 2

Absolute Bias in Threshold Estimates for Ordinal Studied Items With Nonuniform DIF

Reference Group Focal Group

Condition bi1R bi2R bi3R bi4R bi1F bi2F bi3F bi4F

MIMIC Models

k D 6

NF D 50 .012 .039 .092 .013 .024 .027 .087 .005

NF D 100 .018 .011 .033 .007 .080 .087 .068 .106

NF D 200 .004 .008 .001 .020 .078 .090 .080 .062

2 group .005 .013 .001 .005 .054 .022 .004 .077

NF D 400 .006 .008 .028 .039 .085 .082 .064 .047

2 group .031 .026 .016 .013 .085 .067 .061 .060

k D 12

NF D 50 .002 .036 .046 .033 .011 .022 .024 .016

NF D 100 .001 .010 .030 .012 .084 .072 .054 .075

NF D 200 .001 .001 .003 .008 .091 .093 .089 .083

2 group .083 .083 .080 .078 .114 .115 .138 .224

NF D 400 .007 .008 .025 .023 .105 .105 .089 .094

2 group .120 .123 .119 .131 .172 .173 .163 .195

k D 24

NF D 50 .004 .016 .057 .014 .062 .049 .008 .043

NF D 100 .003 .002 .019 .007 .090 .092 .073 .090

NF D 200 .006 .009 .028 .026 .099 .096 .079 .080

2 group .245 .245 .235 .243 .277 .256 .264 .293

NF D 400 .008 .011 .034 .036 .104 .102 .079 .081

2 group .300 .299 .289 .297 .351 .342 .335 .340

Note. k D number of items; NF D focal group sample size. All values are from the MIMIC

approach except those in bold type, which are from two-group analysis.

For items with nonuniform DIF (Table 2), the pattern of bias in R-group

thresholds was similar to that observed for anchor items. Bias was low for all

NF and both methods when k D 6 but increased with k and NF (thus the number

of free parameters) for two-group estimates. This pattern of increasing bias also

emerged for F-group thresholds estimated using two-group analysis. For a given

value of k (above 6), focal-group thresholds estimated using MIMIC models

were increasingly biased as NF increased, but accuracy was greater than with

two-group analysis. For items with uniform DIF (Table 3), bias was consistently

low for MIMIC-model estimates but tended to increase with increasing k and

NF for two-group estimates.

Because thresholds from two-group analysis were underestimated about the

same amount for both R and F groups, the amount of bias in the estimated DIF
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TABLE 3

Absolute Bias in Threshold Estimates for Ordinal Studied Items With Uniform DIF

Reference Group Focal Group

Condition bi1R bi2R bi3R bi4R bi1F bi2F bi3F bi4F

MIMIC Models

k D 6

NF D 50 .017 .012 .087 .011 .174 .169 .266 .169

NF D 100 .004 .021 .042 .005 .027 .027 .042 .017

NF D 200 .001 .012 .057 .025 .009 .001 .039 .012

2 group .010 .002 .041 .023 .015 .103 .071 .022

NF D 400 .006 .003 .004 .002 .000 .003 .004 .001

2 group .033 .033 .033 .025 .044 .038 .028 .037

k D 12

NF D 50 .004 .038 .081 .004 .035 .059 .096 .030

NF D 100 .003 .013 .035 .020 .008 .022 .035 .005

NF D 200 .009 .000 .020 .003 .008 .003 .014 .005

2 group .071 .083 .065 .083 .129 .119 .136 .172

NF D 400 .005 .010 .003 .002 .006 .010 .002 .015

2 group .113 .111 .122 .123 .158 .167 .175 .209

k D 24

NF D 50 .001 .006 .048 .010 .027 .023 .051 .008

NF D 100 .006 .004 .032 .003 .008 .014 .033 .002

NF D 200 .004 .004 .023 .016 .003 .010 .027 .012

2 group .250 .251 .235 .243 .275 .270 .275 .290

NF D 400 .005 .003 .016 .007 .005 .003 .014 .012

2 group .307 .305 .299 .305 .356 .341 .319 .333

Note. k D number of items; NF D focal group sample size. All values are from the MIMIC

approach except those in bold type, which are from two-group analysis.

tended to be low: it ranged, over conditions, from .002 to .151. For MIMIC

models, bias in the amount of DIF ranged from .000 to .121.

EMPIRICAL EXAMPLE OF MIMIC MODELS
FOR DIF TESTING

Data1 were item responses to the Loss of Control (LOC) subscale of the Ago-

raphobic Cognitions Questionnaire (ACQ; Chambless, Caputo, Bright, & Gal-

1The data for the empirical example were originally collected by Carol M. Woods as part of

a collaborative project with Jonathan S. Abramowitz and David F. Tolin. Participants constitute a

subsample of the samples published previously in research by Deacon, Abramowitz, Woods, & Tolin

(2003) and Woods (2006).
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lagher, 1984) given via the World Wide Web by undergraduates at the University

of North Carolina at Chapel Hill in exchange for course credit. The ACQ consists

of 14 items; here we used only the items that constitute the LOC subscale (Items

6, 8, 9, 11, 12, 13, and 14). Participants rated how often each of 7 thoughts

or ideas (e.g., “14. I am going to be paralyzed by fear”) typically occur to

them when they are nervous: never (1), rarely (2), half the time (3), usually

(4), or always (5). Participants who self-identified as Black/African American

(NF D 139) versus White (NR D 757) were compared. The majority of these

participants were women (n D 677), and the mean age was 19 (SD D 1.96).

Because NF is rather small, IRT-LR-DIF might not perform well for these

data, but the present simulations suggest that MIMIC models are a good alter-

native. First, preliminary testing was carried out to empirically select designated

anchor items. Second, DIF testing was carried out using the same procedures

described for the simulation study.

Following the rationale described by Woods (in press), anchor items were

selected empirically by testing each item for DIF with all other items treated as

anchors. Each item was tested individually in a separate MIMIC model in which

the item response was regressed on the grouping variable. Three items with the

smallest SS/SE ratios were selected as anchors: 8, 11, and 14. Thus, Items 6, 9,

12, and 13 were tested individually for DIF using a designated anchor.

Table 4 lists the ¦2 test results and the discrimination (a) and threshold (£j )

parameter estimates from the final model. Items 6, 9, 12, and 13 appear to

function significantly (’ D :05) differently between groups. These items are “6.

I am going to act foolish; 9. I will hurt someone; 12. I am going to scream;

13. I am going to babble or talk funny.” The estimated mean difference on the

latent variable (from the final model) was ” D �:52 (SE D .13), indicating that

loss of control was higher for the group coded zero (Whites).

TABLE 4

MIMIC-Model DIF Testing for Items on the Loss of Control Scale

(139 African Americans vs. 757 Whites)

Item ¦2(1) p a (SE) £1 (SE) £2 (SE) £3 (SE) £4 (SE) “ (SE)

9 6.41 .011 0.87 (.12) �1.42 (.11) �2.98 (.16) �4.27 (.26) — .59 (.23)

6 6.28 .012 1.49 (.15) �
�2.18 (.14) �

�0.38 (.10) �1.37 (.12) �3.55 (.21) �.58 (.23)

12 5.83 .016 1.42 (.13) ��0.43 (.10) �1.08 (.11) �2.49 (.14) �4.40 (.24) .61 (.26)

13 4.98 .026 1.40 (.14) �
�1.20 (.11) �0.23 (.10) �1.70 (.13) �3.50 (.20) .50 (.23)

8 anchor 2.10 (.19) �0.25 (.12) 2.15 (.16) 4.13 (.25) 6.50 (.45) n/a

11 anchor 1.61 (.18) 0.73 (.11) 2.33 (.15) 3.64 (.21) 5.29 (.34) n/a

14 anchor 1.39 (.14) 0.85 (.10) 2.52 (.15) 3.49 (.20) 4.67 (.29) n/a

Note. ’ D :05; a D estimated discrimination; SE D standard error; £j D estimated threshold; � D applies

to Whites only; “ D regression coefficient showing the group difference in £j s for this item; n/a D not applicable

because the item was an anchor; — D threshold not estimated because respondents did not use all available

response categories.
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For items with DIF, £j s given in Table 4 apply only to Whites. The estimates

for African Americans are equal to £j C “, where “ is the DIF effect, reflecting

the relation between group membership and item response. A positive “ indicates

that the £j s are larger for African Americans, whereas a negative “ means that

the £j s are smaller for African Americans. Thus, African Americans had to

possess more loss of control than Whites before endorsing a particular response

category for Items 9, 12, and 13, and Whites had to possess more loss of control

than African Americans before endorsing any category for Item 6.

CONCLUSIONS AND RECOMMENDATIONS

MIMIC models are useful for DIF testing because they use latent variables to

account for measurement error in the responses and offer the flexibility of an

SEM context; for example, it is easy to model multiple factors, more than two

groups, and categorical or continuous covariates. The present research provides

empirical support for an additional virtue: With other study characteristics held

constant, the sample size needed for adequate power and reasonably accurate

parameter estimation is smaller for MIMIC models than two-group analysis.

With small NF , tests of uniform DIF with binary or five-category ordinal

responses were more accurate with MIMIC models than IRT-LR-DIF. At all

values of NF , Type I error was well below the nominal ’ level and power was

greater for the MIMIC approach than for IRT-LR-DIF. With NF D 200 or 400,

MIMIC-model estimates of the mean difference on ™ were quite accurate and

closer to the true value than those from IRT-LR-DIF, and MIMIC estimates of

Birnbaum’s 2PL and graded model parameters were as accurate, or more so,

than those from IRT-LR-DIF.

Despite the advantages and favorable simulation findings, MIMIC methods

are not always preferable to IRT-LR-DIF. With larger NF , IRT-LR-DIF has

performed more accurately than in the present study (Ankenmann et al., 1999;

Cohen et al., 1996; Kim & Cohen, 1998; Wang & Yeh, 2003). Also, the present

simulation did not fully exploit the capabilities of IRT-LR-DIF because tests

for uniform and nonuniform DIF were not carried out. Final models were

constructed so that either all or no parameters for each item were permitted to

vary between groups. As a result, ai for items with uniform DIF was estimated

separately in each group in the final model, which is a potentially avoidable

misspecification. Obviously, free estimation of aiF and aiR permits them to

be equal, but it adds to the number of free parameters, and increases in free

parameters were associated with reductions in parameter accuracy for IRT-LR-

DIF.

An important limitation of MIMIC methods is that they cannot test for

nonuniform DIF. With k > 6 and NF > 25, IRT-LR-DIF always had greater

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
2
1
:
1
2
 
1
7
 
F
e
b
r
u
a
r
y
 
2
0
0
9



24 WOODS

power to detect nonuniform DIF than MIMIC models, and for all k and NF , bias

was elevated for MIMIC estimates of aiF and ordinal-item bihF for nonuniform

D-F items. In this study, nonuniform DIF was defined as differential functioning

of both ai and bih because this pattern is frequently observed in published

applications of IRT-LR-DIF. However, it is possible for items to have D-F ai

with invariant bih. MIMIC methods are not designed for such items and are

expected to perform poorly in this case.

Some recommendations are offered on the basis of this research. Consider

using MIMIC methods when it is substantively justifiable to hypothesize uniform

DIF and unlikely that items have D-F ai with invariant bih. Items hypothesized

to have D-F ai and bih (nonuniform DIF) may be included in the analysis as

long as F-group item parameters will not be interpreted. Power is likely to be

a little lower for nonuniform DIF, but if it is more important to detect as much

uniform DIF as possible than to guard against misclassifying some invariant

items as D-F, power may be increased by using raw rather than FDR-adjusted

p values, ’ > :05, or both.

For scales and data similar to those simulated here, NF should be at least

around 100 (with NR � 500) for reasonably powerful, accurate MIMIC results.

Because power is greater when item discrimination is larger (Ankenmann et al.,

1999), smaller NF may be acceptable for the highly discriminating items some-

times observed on psychopathology scales (e.g., Rodebaugh et al., 2004). Scale

length is unlikely to have much impact on statistical power or item parameter

accuracy because differences between k D 6, 12, or 24 were slight, but longer

scales may produce more accurate estimates of the mean difference.

In future research, it would be useful to evaluate the extent to which the

differences in hit rates and false positives between MIMIC models and IRT-

LR-DIF translate into practical consequences for score interpretation. Future

studies are also needed to determine how well these results and recommenda-

tions generalize when there are covariates, multiple factors, or more than two

groups.
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