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Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for
unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the
current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are
across latent classes) on GMM performance. Several estimation conditions were compared: maximum
likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing
diffuse priors, “accurate” informative priors, weakly informative priors, data-driven informative priors, priors
reflecting partial-knowledge of parameters, and “inaccurate” (but informative) priors. The main goal was to
provide insight about the optimal estimation condition under different degrees of latent class separation for
GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using
“accurate” informative priors, and partial-knowledge priors showed promise for the recovery of the growth
trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor
parameter recovery for the latent class proportions and the growth trajectories.

Keywords: growth mixture modeling, latent class separation, Markov chain Monte Carlo, Bayesian
estimation, priors

Many processes in the social and behavioral sciences are dy-
namic in that they change over time. As a result, we have seen an
increase in methodological tools available to model growth and
development for repeated measures data. Growth mixture model-
ing (GMM) represents a technique that is designed to capture
change over time for unobserved subgroups (or populations) that
exhibit qualitatively different patterns of growth. Specifically,
GMM is a tool used to model different growth trajectories (or
patterns of growth) by grouping individuals into a finite number of
latent classes based on observed data patterns. Each of these latent
classes is then characterized by a distinct growth trajectory, rep-
resenting differences in change or development over time across
the latent groups of individuals.

GMM has been implemented at an increasing rate in substantive
applications since it was first introduced into the applied literature
(see e.g., B. Muthén & Shedden, 1999; Nagin, 1999). For example,
Gueorguieva, Mallinckrodt, and Krystal (2011) examined changes
in depression patterns for patients with major depression and
reported a latent class of “responders” and another of “nonre-
sponders” to depression treatment. In a similar application, Morin
et al. (2011) used GMM to assess fluctuations in elevated levels of
anxiety for adolescents over time and reported five latent classes
representing different patterns of anxiety. Finally, Schaeffer et al.
(2006) used GMM to model patterns of aggression and disruptive

behavior in children throughout elementary school years; they
found three substantively different latent classes for boys and girls.

Despite the growing popularity and increased usage (see e.g.,
Bauer, 2007), there are still certain limitations and concerns sur-
rounding GMM that should be mentioned. Specifically, Bauer and
Curran (2003) found that multiple latent classes could appear
optimal when the population was only comprised of one group and
when the data were nonnormal. This finding is troubling in that
applied researchers may be inclined to retain a mixture solution
with multiple latent classes when in fact the underlying data
structure contains a single group or population. Alternative (abso-
lute) fit indices have been proposed to distinguish between the case
of multiple latent classes and a single-class scenario with nonnor-
mal data (see e.g., B. O. Muthén, 2003; Nylund, Asparouhov, &
Muthén, 2007; Rindskopf, 2003). However, these methods for
assessing fit may still lead to inappropriate model solutions that do
not accurately represent the population model.

Relevant to the current article, one additional issue that arises
when estimating mixture models deals with the separation of the
latent classes. Mixture class separation refers to the distance (or
differences) between two latent classes. In the case of GMM, the
separation between latent classes is often characterized by how
similar/different the growth trajectories are between the latent
classes. If separation between the growth trajectories is poor (i.e.,
the growth trajectories are similar), then individuals may be inac-
curately assigned into latent classes. Likewise, class assignment is
particularly impacted with relatively smaller sample sizes (e.g.,
n � 100) under poor class separation (see e.g., Tueller & Lubke,
2010). Therefore, it may be more difficult recovering relatively
smaller latent classes, especially under conditions of poor class
separation.

The aim of the current article is to further explore the impact of
class separation on model results. In particular, the current article
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assesses the potential for the Bayesian estimation framework via
the Markov chain Monte Carlo (MCMC) algorithm to improve the
performance of GMM under cases of poor class separation. It is
also of interest to examine the role that Bayesian methods play in
recovering relatively small latent classes, especially when class
separation is poor. The Bayesian estimation framework is com-
pared to a more conventional estimation procedure for mixture
models using maximum likelihood estimation via the expectation
maximization (EM) algorithm (ML/EM; see e.g., Enders & To-
fighi, 2008; Jedidi, Jagpal, & DeSarbo, 1997; Kaplan, 2002;
McLachlan & Peel, 2000; Tueller & Lubke, 2010).

This study is organized as follows. The next section defines class
separation in more detail and presents a summary of the recent
literature focused on mixture class separation in the context of finite
mixture models. Issues surrounding the estimation of mixture models
through ML/EM are briefly discussed. This section is followed by a
general discussion of Bayesian estimation, where key Bayesian ter-
minology is defined. The specification of GMM is presented next.
This section is followed by the specification of the prior distributions
used for GMM in the Bayesian framework, as well as the MCMC
convergence diagnostic implemented in this study.

Next, the simulation study design is presented which is followed by
a presentation of results. This article concludes with a summary of the
findings, a discussion of the benefits/risks of using the ML/EM and
MCMC estimation conditions under different levels of class separa-
tion, and implications for applied mixture model research.

Defining Class Separation

In GMM, class separation typically refers to the amount of
overlap between growth trajectories for the latent classes. Suppose
that individual growth trajectories were plotted for two latent
classes. Class separation would refer to how much (or little)
overlap there was between the trajectories for each of the classes.
In particular, separation refers to how much overlap there is
between the latent class distributions.

This issue of class separation in GMM can perhaps be best
illustrated through a contrived example highlighting the two ex-
treme versions of separation. To give this example a context,
suppose that reading level was assessed across four equally spaced
time points in first grade classrooms. Each student would then
have a trajectory that illustrated the growth (or change) rate in
reading level across the time points. Likewise, each latent class
could also be summarized by an estimated growth trajectory rep-
resenting the students comprising that latent class.

The most extreme example of poor class separation would be if two
latent classes perfectly overlapped. In this case, a plot of individual
growth trajectories for students sampled from both of the latent
classes might look like the plot presented on the top of Figure 1. In
this plot, growth trajectories from the two classes are perfectly over-
laid, and there is no clear visual separation between the classes. In
fact, if the estimated growth trajectories for these two classes were
plotted, they would be exactly the same. The plot on the bottom of
Figure 1 illustrates growth trajectories for the two latent classes that
have zero separation. For illustrative purposes, the growth trajectories
are slightly separated in the plot to visualize both trajectories; how-
ever, the trajectories actually overlap perfectly in this scenario. In this
case, correct class assignment for all individuals would be quite

improbable to obtain since the classes perfectly overlap and are
therefore indistinguishable from one another.1

On the other extreme, one could also imagine a scenario where
latent classes have a large amount of separation, meaning that there
is zero overlap between the distributions of the latent classes.
Using our same reading level example, this scenario would consist
of individual growth trajectories that remained separate across the

1 The purpose of this example was solely to illustrate the concept of poor
class separation. The model discussed here would actually result in the two
latent classes collapsing into a single class because they are identical. This
result would therefore yield a model that is not identified.
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Figure 1.. Contrived example illustrating no class separation. C1 �
Latent Class 1; C2 � Latent Class 2.
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two classes. For example, the top of Figure 2 depicts individual
growth trajectories from two extremely separated latent classes.
The separation between individuals is very clear to visualize here.
Notice how there is very little overlap among individual trajecto-
ries from each of the two classes.

The bottom of Figure 2 illustrates the estimated growth trajectories
for the two latent classes. It is clear that these trajectories represent
latent classes with very different beginning reading levels and very
different growth rates over time. In this case of extreme class sepa-
ration, class assignment for individuals is likely to be accurate due to
the high separation between the two latent classes.

Although these two extremes are helpful in illustrating the concept
of class separation in the context of GMM, the more realistic (and

potentially more interesting) middle ground is the focus of the current
study. Within this middle ground of class separation, individual
growth trajectories corresponding with each of the two latent classes
would represent separation somewhere in between that presented in
Figures 1 and 2. In particular, the individual growth trajectories across
the two latent classes would have some overlap, but there would still
be distinguishing features of growth across the classes.

As an example, the top plots in Figure 3 illustrate a scenario where
the two latent classes represent moderate separation in reading levels.
The two classes can be visually distinguished relatively well, but the
trajectories certainly overlap across classes, which makes the classes
more difficult to differentiate than the scenario presented in Figure 2.
The bottom plot in Figure 3 depicts the estimated growth trajectories
for these latent classes; note that the two classes differ substantively in
the initial reading level and growth rates.

Another issue of concern here that closely relates to class
separation is the size of the latent classes in the sample. For
instance, the top plots in Figure 3 show the same level of class
separation, but the plot on the right illustrates a relatively smaller
sample size comprising the second latent class (i.e., there are fewer
trajectories grouped together in the bottom half of the right plot).
As class separation worsens (i.e., as class trajectories become more
similar), higher sample sizes are required to properly recover the
latent classes and obtain accurate class assignment (Tueller &
Lubke, 2010). In other words, it may be more difficult to identify
the second class in the right plot compared to the left plot due to
the relatively smaller sample size within that second latent class.
Likewise, poor class separation can also create problems in con-
vergence (Tofighi & Enders, 2008; Tueller & Lubke, 2010).

A topic also tied indirectly to latent class separation is the issue
of class enumeration (i.e., the number of latent classes retained by
the investigator). Class enumeration may be defined in terms of
latent classes that are substantively different in some manner
(B. O. Muthén & Muthén, 2000). Substantive differences may be
determined in the context of latent class separation. For example,
higher separated classes may be retained as being substantively
different, whereas the investigator may allow poorly separated
classes to collapse because the trajectories are similar. However,
poorly separated classes may still contain substantive differences
that warrant the classes to be retained by the investigator as
separate classes. In this case, the substantive differences between
classes may be determined on how the classes differ substantively
on some covariate, regardless of the separation of the latent class
trajectories (B. O. Muthén, 2004). Here, the investigator may
choose to retain poorly separate classes since there is still a
substantive difference between them. The issue of class enumer-
ation is not directly addressed in the current study; for more
information, see for example, Henson, Reise, and Kim (2007),
B. O. Muthén (2004), and Nylund et al. (2007). However, the
current investigation presents a sensitivity-type analysis of class
separation in the context of different estimation conditions to
examine the optimal conditions for estimating GMM under differ-
ent research scenarios.

In order to properly recover the latent classes under conditions
of declining class separation and relatively lower sample sizes,
more data are required to obtain accurate results. However, it may
not always be a viable option to collect additional data—especially
with the resources required to collect longitudinal data. Another
option to collecting more data would be to embed additional
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Figure 2.. Contrived example illustrating high class separation. C1 �
Latent Class 1; C2 � Latent Class 2.
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knowledge or information about the latent classes and parameters
into the estimation process. The ability to include additional in-
formation in this manner is one of the main features of the
Bayesian estimation framework, which is discussed in detail be-
low.

Class Separation for Finite Mixture Models

It is important to have an understanding for the impact that class
separation can have on estimation within different modeling situ-
ations. Very few studies have examined class separation directly
within the context of structural equation modeling, but two such
studies will be briefly highlighted here. Tueller and Lubke (2010)
conducted a study that assessed estimates and class assignment

recovery using a structural equation mixture model. Factor means
were varied in order to create the four desired Mahalanobis dis-
tance (MD) values representing varying degrees of class separation
with MDs � 0.5, 1.0, 1.5, and 2.0.2 Findings indicated that there
was larger bias in the estimates when relatively smaller sample
sizes (e.g., n � 100) were used with a lower degree of class
separation (e.g., MD � 0.5); a study by Tolvanen (2008) found
comparable results. Correct class assignment improved as class
separation increased, indicating that class assignment becomes

2 The Mahalanobis distance is one type of measure that is used to
quantify/define separation between latent classes. The details of the cal-
culation implemented here are presented in the Design section.
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Figure 3.. Contrived example illustrating moderate class separation. C1 � Latent Class 1; C2 � Latent Class 2.
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easier to identify when separation is high (e.g., MD � 2.0).
However, the overall result was that class recovery was poor for
this study due to the complexity of the model being assessed. More
complex models appeared to create additional difficulties in proper
class recovery.

A study by Tofighi and Enders (2008) used an alternate method
of determining class separation in the context of GMM by manip-
ulating the variance components to create three different levels of
class separation. To decrease separation between classes, the mag-
nitude of the within-class variance parameters was increased—
increasing the variance parameters would thus increase the amount
of overlap between the latent classes. Growth factor means were
held constant throughout this process, but the spread of the within-
class trajectories increased as separation declined. Overall, this
study found that various likelihood ratio-based fit tests and infor-
mation criteria had a difficult time identifying the class structure
properly within the poor class separation levels of the study. The
Tueller and Lubke (2010) and Tofighi and Enders (2008) studies
both indicated that the accuracy of class recovery decreased when
only a small proportion of cases were in one of the classes (e.g.,
only 7% of the cases), regardless of total sample size.

Akin to Tueller and Lubke (2010) and Tolvanen (2008), the
current investigation specifically focuses on class separation as
defined through the latent growth factors (i.e., the growth trajec-
tory intercept and slope). However, separation can also be char-
acterized in terms of the repeated measures manifest (observed)
variables.3 Given that there is no consensus for the “best” method
of defining separation, the researcher should determine what def-
inition of separation best suits the particular research scenario in
question.

The previous work presented on class separation was all com-
pleted in the context of the ML/EM estimation framework. In
general, higher sample sizes are needed to ensure adequate esti-
mates are produced when working with this asymptotic theory-
based estimator. Similarly, higher class separation crossed with
higher sample sizes is optimal when using the ML/EM estimator.
However, these conditions may not be particularly realistic in
applied research settings. Large sample sizes are not always prac-
tical to obtain. Likewise, the magnitude of class separation is not
something that can easily be controlled or predetermined in an
applied setting. It is also the case that ML/EM can be sensitive to
starting values, particularly within the context of mixture models
(Bollen & Curran, 2006; McLachlan & Peel, 2000; B. O. Muthén,
2004). Specifically, Hipp and Bauer (2006) presented findings
which suggest that mixture models are particularly susceptible to
converging on local solutions, especially as the complexity of the
model increases (e.g., with more latent classes or the inclusion of
random effects). These issues have led researchers to consider
alternative estimation procedures in search of an estimator that can
be reliable under conditions more typical of real data (i.e., smaller
samples and less defined class separation). One such estimator is
the Bayesian estimation framework via the MCMC estimation
algorithm, which is used in the current study.

The Bayesian Estimation Framework and the Impact
of Priors

The Bayesian estimation framework has been used at an increas-
ing rate to estimate structural equation models (see e.g., Lee, 2007;

B. O. Muthén & Asparouhov, 2012; Yang & Dunson, 2010;
Zhang, Hamagami, Wang, Nesselroade, & Grimm, 2002). The
major distinction between the Bayesian and more conventional,
frequentist (e.g., ML/EM) frameworks is in the elicitation and
specification of prior distributions (or priors). Priors represent an
expectation or a prior belief about what a parameter value looks
like. Specifically, priors are characterized by probability distribu-
tions that are specified for each of the parameters in the model.
These distributions are then incorporated into the estimation pro-
cess, and they act as a means to include additional information
about the parameter values in the model.

To give an example of what a prior might look like in the
context of GMM, let us revisit the contrived example plotted in
Figure 3. Before even collecting any data, the investigator would
have some sort of prior beliefs about parameter values for the
model being estimated. For example, if the investigator wanted to
estimate a model with two latent classes, he or she might also have
an idea about what the trajectories look like for each latent class.
In this scenario, the investigator would specify prior distributions
for the intercepts and slopes for each trajectory. If the investigator
had very specific beliefs about what those trajectories looked like
in the population, then this certainty would be incorporated into the
prior.

A prior distribution that contains very specific knowledge about
the parameter value is often referred to as an informative prior
because the investigator is incorporating a lot of certainty about the
distribution of that parameter. For example, if the investigator had
strong prior knowledge about the initial reading levels for each of
the two latent classes in Figure 3, then informative priors might be
specified for the intercept parameters for each latent class. Specif-
ically, the investigator may assume that initial reading levels are
normally distributed and that Class 1 (i.e., the higher reading level
class) has an average reading level score about 40.

The degree of certainty surrounding this guess of an average
value of 40 can also be captured by the amount of variance
incorporated into the normal prior. So far, the investigator is
assuming (or making a guess) that the intercept for Class 1 follows
as distribution of �(40, �2), where 40 represents the mean of the
normal distribution and �2 represents the variance. If there is a lot
of certainty that 40 is the initial reading level, then the variance
may be fixed as a relatively low value (e.g., �2 � 5). This would
create a prior for the intercept that was �(40, 5). In this example,
the values comprising the normal distribution (i.e., 40 and 5)
represent hyperparameters. Hyperparameters are the parameters
comprising a probability distribution, and they are manipulated to
represent either more or less certainty about a parameter value
when specifying the corresponding prior.

If, on the other hand, the investigator was not very certain about
the guess of 40 representing the average reading level for Class 1,
then this uncertainty would be incorporated into the prior accord-
ingly. In this case, the variance hyperparameter for the normal
prior would be increased to incorporate more uncertainty in the
prior distribution. The prior might then be specified as �(40, 100)

3 The author would like to thank an anonymous reviewer for highlight-
ing the fact that separation among latent classes can be determined using
multiple techniques. The MD information based on the manifest variables
for the study conditions detailed below can be found in the Appendix.
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to reflect a great deal of variation surrounding the initial guess of
40 for the intercept. When there is a good deal of uncertainty in the
prior, then this is typically referred to as a noninformative prior (or
diffuse prior). The information (or lack of information) integrated
into the prior is then combined with the data during the estimation
process, and the combination of these two pieces of information
are then used to produce the posterior distribution, which can be
summarized (typically) by a measure of central tendency that
represents the final parameter estimate.

Tueller and Lubke (2010) found that the conventional frequen-
tist framework did not recover latent classes well when sample
sizes were smaller (e.g., n � 100) and class separation was poor
(e.g., MD � 0.5). The Bayesian estimation framework may show
improvement over frequentist estimation in modeling situations
akin to that presented in Tueller and Lubke (2010). In particular,
the specification of informative priors may aid in recovering
poorly separated classes, especially when only smaller sample
sizes are available. As an example, the two latent classes depicted
in Figure 3 may not be able to be properly recovered using ML/EM
since there is a moderate amount of trajectory overlap across the
classes; this conjecture has been corroborated by results presented
in Tolvanen (2008); Tofighi and Enders (2008); and Tueller and
Lubke (2010). However, informative priors on the growth trajec-
tories and latent class proportions (i.e., the proportion of cases in
each of the two classes) may aid in proper recovery of the latent
classes and the corresponding trajectories.

Theory indicates that with large amounts of data, the priors
specified in the model do not have a significant impact since the
data swamps the prior, thus making it irrelevant (Ghosh & Muk-
erjee, 1992). However, research has indicated that even noninfor-
mative priors can impact estimates using relatively large sample
sizes. One such study examining the impact of noninformative
priors on sample size was conducted by Natarajan and McCulloch
(1998) in the context of a probit model with a single random effect.
Findings indicated that diffuse priors impacted the posterior dis-
tribution even for relatively moderate/large sample sizes (e.g., n �
100) used for this regression model. Likewise, Lambert, Sutton,
Burton, Abrams, and Jones (2005) conducted a similar study that
addressed the impact of different forms prior distributions (all
noninformative) on a random effects meta analysis model. This
study found that the choice of the prior distribution had a large
impact on the estimated posterior distribution, especially when the
number of studies in the simulated meta-analysis data was rela-
tively small (e.g., 5, 10, and 30 studies in a meta-analysis, which
acts akin to a small sample size).

The current study aims at addressing the direct impact of both
informative and noninformative prior distributions in the context
of different sample sizes. This study is, in part, a replication of the
work by Natarajan and McCulloch (1998) and Lambert et al.
(2005) in that different levels of informativeness (noninformative
versus informative) of the priors will be directly assessed in
relation to varying levels of sample size. However, this study
extends the investigation to mixture models, as well as varying
degrees of mixture class separation. Note that conventional
ML/EM estimation is also presented.

Along this continuum of different forms of priors (noninforma-
tive/informative), a different amount of theory-based knowledge is
integrated into the model. When noninformative priors are imple-
mented (or even ML/EM—since no additional knowledge is in-

corporated into the model), the situation may be viewed as more
exploratory in nature because very little theory-based knowledge is
being integrated into the model. However, when informative priors
are used for model parameters, this may be viewed as more
“confirmatory” in the sense that knowledge is directly integrated
into the model through the priors.4 Specifically, informative priors
represent particular knowledge about the number (and size) of
latent classes, the shape of trajectories, and other parameter values.
The continuum of priors is in this sense linked to the model being
either more or less “confirmatory” in nature.

Growth Mixture Modeling Specification

For any mixture model, we first assume that the data are
generated from a mixture distribution (f(yi | �)) represented by the
following mixture density function for mixture class c such that

f�yi��� � �
c�1

C

�cfc�yi��c�, (1)

where yi is a vector of repeated measure outcomes for person i
across T time points, �c represents the unknown mixture class
proportion for the cth mixture class with c � (1, 2, . . ., C), and
fc are the densities across the C latent classes that are assumed to
be multivariate normal: y|c � ��(�c, �), where �c and � are
defined below. Further,

� � ��, ���� (2)

is a vector of unknown parameters that include the mixing proportions
� � (�1, �2, . . ., �C) and the model parameters � �

��1
� , �2, . . .,

� �c
���, where �c represents the model parameters for latent

class c.
The specification of GMM includes both a measurement model

and a structural model. The measurement model can be seen as

yi � �y�ic � �i (3)

where yi still represents a vector of repeated measure outcomes for
person i. The 	y term is essentially a matrix of factor loadings,
with T (number of time points) rows and K (number of latent
factors) columns. The first column is fixed as all 1s and the
remaining K 
 1 columns represent constant time values. The �ic

term is a vector of latent factors (growth parameters in this case)
that has K elements. Finally, εi represents a vector of normally
distributed residuals with a diagonal covariance matrix �ε. The
residual variances are typically assumed equal across time and
uncorrelated across time, but these restrictions can be relaxed if
desired. Note that the current investigation assumes that residual
variances are equal across time, and independence is also assumed
between the elements of structured error matrix �ε, which is
further illustrated through the specification of prior distributions
presented below.

4 The use of the word “confirmatory” here is meant to form an analogy
for using informative priors. In this case, informative priors are “confir-
matory” only in the sense that they reflect specific (theory-driven) knowl-
edge about parameters values. This knowledge is then used in the model
estimation process to inform results. Note that the use of the word “con-
firmatory” here differs from a confirmatory model, where a model contains
restrictions based on theory and those restrictions are then evaluated to see
if they are consistent with the data.
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The growth parameters can still be considered as random vari-
ables in this modeling perspective, and this is addressed in the
structural part of the model, which is as follows:

�ic � 	c � 
i, (4)

where �ic still represents a vector of the growth factors, 
c is a
vector of factor means, and �i is a vector of normally distributed
deviations of the parameters from their respective population
means with distribution � (0, ��), where �� is the variance/
covariance matrix. The c subscripts in this equation indicate that
the factors are allowed to vary across latent classes such that c �
(1, 2, . . ., C) represents the mixture class variable, and the i
subscripts allow the parameters to vary across individuals. Com-
bining Equations 3 and 4 produces a reduced form, where

yi � �y�	c � 
i� � �i. (5)

Further, the model-implied mean and covariance of this reduced
form can be written as

�c � �y	c (6)

� � �y�
�
�
y � ��, (7)

where �c represents the mean vector of the repeated measure ys
that varies across latent classes cs, and � represents the covariance
matrix of the ys. It should be noted here that covariance matrices
need not be held homogeneous across classes.

Bayesian GMM: Specification of Prior Distributions

As is true with any type of model, the key to specifying GMM
within a Bayesian estimation framework is properly setting up the
prior distributions on the model parameters. This section describes
the conjugate priors for each of the parameters estimated in GMM
as presented in Lee (2007) and Asparouhov and Muthén (2010).5

Although it is true that nonconjugate priors can be specified for
any model, this is typically not encouraged for mixture models (see
e.g., Diebolt & Robert, 1994; Lee, 2007). The use of fully nonin-
formative priors (e.g., uniform) can lead to improper posterior
distributions. As a result, it is common for mixture models to be
specified with conjugate priors to avoid this problem altogether.

Next, the prior distributions can be specified for the unknown
parameters in the model. The parameters estimated in this model
are the mixture class proportions (�c), the (growth) factor means
(	c), the variance of the residuals (�ε), and the factor variance/
covariance matrix (��). To begin, the process assigning individ-
uals to particular latent classes is assumed to follow a multinomial
distribution with a sample size parameter n and a class proportion
parameter �. The conjugate prior for this class proportion param-
eter �c is the Dirichlet distribution denoted as

�c � ���1 . . . �C�,

with the hyperparameter(s) �1 . . . �C, which control how uniform
the distribution will be. Specifically, these parameters represent
the proportion of cases in the C latent classes.

The next model parameters to receive prior distributions are the
(growth) factor means, which are distributed normally:

	c � ���	c
, �
�,

where �	c
represents the expectation for the factor means, and �


represents the factor variances and covariances.
The next prior to specify is for the variances of the residuals

denoted above as �ε. Note that in order to specify a prior for an
individual cell in the �ε matrix, the notation will be expanded out
to represent individual elements in the J � J matrix. Specifically,
let 
�jj

represent a single cell in the variance/covariance matrix
��ij

. The conjugate prior specified here for the residual variances
is the inverse gamma (IG) distribution and can be seen as


�jj
� ���a
�jj

, b
�jj
�,

where the hyperparameters a and b represent the shape and scale
parameters for the IG distribution, respectively.

The last prior distribution to be specified is for the matrix of
factor variances and covariances denoted as ��. Recall that from
Equation 5, �i represents a vector of deviations of the parameters
from their respective population means. The conjugate prior spec-
ified here for the factor variance/covariance matrix is the Inverse
Wishart (IW) distribution and is denoted as

�
 � ����, d�,

where � is a positive definite matrix of size p, and d is an integer
that can vary depending on the informativeness of the prior dis-
tribution. Note that for setting up an IW prior distribution, each
term in the variance/covariance matrix can receive a prior. As a
result, the � hyperparameter can actually be replaced with a
constant rather than a matrix.

Relevant MCMC Convergence Diagnostic

Although there are several different convergence diagnostics
used to assess parameter convergence within the MCMC estima-
tion algorithm, one of the most common diagnostics to employ is
the Brooks, Gelman, and Rubin diagnostic. This method of assess-
ing convergence originated with the work by Gelman and Rubin
(see e.g., Gelman, 1996; Gelman & Rubin, 1992a; Gelman &
Rubin, 1992b), who designed a diagnostic called the potential
scale reduction (PSR) factor, which is based on the theory of
analysis of variance. The PSR factor was intended to assess con-
vergence among several parallel chains with varying starting val-
ues. Note that this diagnostic can also be used to assess conver-
gence in a single MCMC chain by comparing the first portion of
the post burn-in iterations to the last portion of the chain; see L. K.
Muthén and Muthén (2012) for more details of how this can be
implemented.6 The current study employs this method of conver-
gence assessment on a single MCMC chain. Although the Brooks,
Gelman, and Rubin diagnostic is the only assessment used to
determine parameter convergence here, note that there are several

5 A conjugate prior is mathematically convenient in that it leads to a
posterior belonging to the same distributional family as the prior.

6 The burn-in phase of a chain refers to the first portion of the chain that
is often discarded due to chain fluctuations. The post-burn-in phase is the
portion of the chain that has presumably converged, and it is treated as the
posterior.
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other diagnostics commonly implemented in the MCMC literature
(see e.g., Sinharay, 2004).

Design

Data for this study were simulated using the Monte Carlo
framework within the Mplus Version 7 software program (L. K.
Muthén & Muthén, 2012). A 3-class GMM was specified across
four time points in order to study mixture class recovery under four
levels of class separation. This section begins with a description of
the individual mixture class trajectories generated in the model.
Next is a description of the factors included in the study, where all
of the levels of the following factors were fully crossed with one
another: mixture class separation (MD � 2.0, 1.5, 1.0, and 0.5),
trajectory shape (linear and quadratic), mixture class proportions
(0.33/0.33/0.33, 0.45/0.45/0.10, and 0.70/0.20/0.10), sample size
(n � 150, and n � 800), and estimator (ML/EM and Bayesian
estimation with diffuse, informative, data-driven informative,
weakly informative, partial informative, and inaccurate priors).

Growth trajectories were fixed within each latent class to rep-
resent four levels of mixture class separation. Mixture class sep-
aration was defined through a multivariate MD calculation be-
tween the growth parameters of the latent classes.7 To begin, the
trajectory of the first latent class (C1) was fixed to model substan-
tive results from Kaplan (2002) that presented a study of reading
development across four time points for kindergartners and first
graders. The “fast reading development” latent class obtained in
Kaplan’s analysis was used as the first latent class in the current
study. Class separation between the subsequent classes was then
determined in relation to this trajectory set for C1.

The second latent class (C2) represented a latent class with a
lower initial achievement level than C1. This class was fixed as
having high latent class separation from C1 in all conditions. High
separation was determined by setting the MD at 2.0, which is
commonly viewed as representing high class separation among
classes (see e.g., Lubke & Muthén, 2005; Tolvanen, 2008; Tueller
& Lubke, 2010).

Finally, the third latent class (C3) was generated to represent a
latent class with the relatively lowest initial achievement level
compared to C1 and C2. The separation between C2 and C3 was
varied to represent four different degrees of mixture class separa-
tion. Specifically, MD was fixed at 2.0, 1.5, 1.0, or 0.5 to represent
degrees that varied from high to very poor latent class separation.
The population values used to form these latent classes can be
found in Table 1.

The trajectory shape of C3 was also varied across the cells of
this design. Specifically, C3 was either fixed as having a linear
trajectory or a quadratic trajectory. When C3 represented a qua-
dratic trajectory, C1 and C2 were both set as linear trajectories.
The covariance structures remained the same across classes with
the addition of the quadratic term. The purpose of adding a
quadratic trajectory for C3 was to vary how similar (or different)
the shape of the C3 trajectory was from C2, regardless of mixture
class separation. If separation is relatively poor (e.g., MD � 1.0),
parameter recovery for a linear trajectory of C3 may be different
from parameter recovery for a quadratic trajectory. Not only do the
latent classes vary by MD separation, but under the quadratic level,
the classes now also vary in growth shape. Note, however, that the
addition of the quadratic term altered the MD values for the

quadratic conditions to be 2.57, 1.50, 1.00, and 0.50. Separation
based on MD calculated on the manifest variables is presented in
the Appendix. Population values for the quadratic conditions are
presented in Table 1. A depiction of the four levels of linear
trajectories can be found in Figure 4, and a depiction of the four
quadratic trajectory levels can be found in Figure 5.

The relative size of the three latent classes is also of concern
here. Specifically, latent class size was manipulated such that C1,
C2, and C3 had sample size proportions of 0.33/0.33/0.33, 0.45/
0.45/0.10, or 0.70/0.20/0.10, respectively. The mixture proportion
level of 0.33/0.33/0.33 was used to assess the impact of equal
sample sizes across all classes, 0.45/0.45/0.10 was chosen to assess
the impact of a clear minority class (C3), and 0.70/0.20/0.10 was
used to examine the impact of a clear majority latent class (C1).
Likewise, total sample sizes typical of applied research of n � 150
and n � 800 were used to examine whether there would be an
impact of the latent class sample size on parameter recovery under
different levels of mixture class separation.

Seven different estimation levels were compared within each
level of mixture class separation: ML/EM using multiple starting
values, Bayesian estimation via the MCMC algorithm using Mplus
default diffuse priors (MCMC-diffuse), MCMC using informative
and “accurate” priors (MCMC-informative), MCMC using data-
driven informative priors (MCMC-data-driven), MCMC using
modified-diffuse (or weak) priors (MCMC-weak), MCMC using
informative and “accurate” priors on a partial subset of parameters
and default diffuse priors on the remaining parameters (MCMC-
partial), and MCMC using informative and “inaccurate” priors
(MCMC-wrong); specifics of the priors used in this study are
detailed below. There were 1,000 replications requested for each
cell of this design. Likewise, each MCMC analysis consisted of a
single chain with the first 25,000 iterations discarded as the burn-in
phase and the last 25,000 iterations used as the post burn-in
iterations.

For the MCMC-diffuse level, the default noninformative priors
provided by Mplus (see, L. K. Muthén & Muthén, 2012) were used
for all of the parameters. For example, a normally distributed
parameter would contain a mean hyperparameter set arbitrarily at
zero and a variance hyperparameter specified as 1,010 to indicate
no precision in the prior. Likewise, the default Dirichlet prior
placed on mixture class proportions assumed equal sample sizes
with a prior of �(10,10,10) for three respective latent classes.

For the MCMC-informative level, informative priors were
placed on the growth parameters. The mean hyperparameter for
each prior was fixed as the corresponding growth parameter pop-
ulation value, whereas, the variance hyperparameter was deter-
mined in a systematic way for each growth parameter. Specifi-
cally, each variance hyperparameter was fixed at 5.00% of the
corresponding population value. For example, if the population

7 The multivariate Mahalanobis distance is used to compute the distance
between two latent classes. Specifically, the equation to compute this
distance is MD � � � {(�1 
 �2)=�
1(�1 
 �2)}½, where �
1 represents
the inverse of the common covariance matrix, and the �1 and �2 terms
represent the means for the first and second latent classes, respectively
(McLachlan & Peel, 2000). In this case, the means would be the intercept
and slope growth parameters for each trajectory. For ease of computation,
the variance/covariance matrix was the same for all three classes in this
study. Note that the Mahalanobis distance can also be computed for
manifest variables, if desired.
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value for a slope parameter is 3.00, the variance hyperparameter
would be fixed at 0.05 � 3 � 0.15, which produces a prior of �(3,
0.15) for this slope parameter. This method of determining the
priors provided both a systematic way of computing the variance
hyperparameter as well as a presumably reasonable, informative
prior for each growth parameter. The prior distributions for all
growth parameters were determined in a similar fashion under the
MCMC-informative level. Likewise, informative priors were also
placed on the mixture class proportions, indicating accurate knowl-
edge of class sizes. A Dirichlet prior was placed on mixture class
proportions such that for n � 150 with equal latent class sizes the
prior would be �(50,50,50), with 0.45/0.45/0.10 the prior would
be �(67, 67,15), and with 0.70/0.20/0.10 the prior would be
�(105,30,15).8 It should be noted here that the MCMC-
informative level is likely not indicative of an applied research
scenario since population parameters, which are typically not

known, were utilized to define the priors. However, this level
should be viewed as representing the upper bound performance of
Bayesian GMM that might be expected in an empirical study.

Given that the MCMC-informative level represents the upper
bound performance of Bayesian GMM, another (perhaps more
applicable) level of informative priors was included here. Specif-
ically, these informative priors were data-driven in that they were
defined based on results obtained from ML/EM and did not di-
rectly contain information from population values since population

8 The Dirichlet priors are handled in a slightly different manner in
Mplus. That is, an informative Dirichlet prior is specified on each mixture
class threshold [c#i] as �(
i, 
K), where i � 1, . . ., K 
 1. For example,
for n � 150 and 0.70/0.20/0.10 mixture class proportions, we would have
[c#1 � 1.9459] � �(105,15) and [c#2 � 0.6931] � �(30,15).

Table 1
Population Model Values

Parameter
High

separation
Moderate
separation

Poor
separation

Very poor
separation

Linear conditions
Growth parameters: C1

Intercept 48.000 48.000 48.000 48.000
Slope 3.000 3.000 3.000 3.000

Growth parameters: C2
Intercept 42.802 42.802 42.802 42.802
Slope 4.000 4.000 4.000 4.000

Growth parameters: C3
Intercept 37.600 38.558 39.790 42.530
Slope 3.000 3.000 3.000 3.000

Variances: All classes
Intercept variance 18.000 18.000 18.000 18.000
Slope variance 2.000 2.000 2.000 2.000
All time-specific residuals 15.000 15.000 15.000 15.000

Fixed covariances: All classes
Slope with intercept 1.200 1.200 1.200 1.200

Quadratic conditions
Growth parameters: C1

Intercept 48.000 48.000 48.000 48.000
Slope 3.000 3.000 3.000 3.000

Growth parameters: C2
Intercept 42.802 42.802 42.802 42.802
Slope 4.000 4.000 4.000 4.000

Growth parameters: C3
Intercept 37.600 38.558 39.790 42.530
Slope 3.000 3.000 3.000 3.000
Quadratic 0.900 0.900 0.900 0.900

Variances: All classes
Intercept variance 18.000 18.000 18.000 18.000
Slope variance 2.000 2.000 2.000 2.000
Quadratic variance 0.000 0.000 0.000 0.000
All time-specific residuals 15.000 15.000 15.000 15.000

Fixed covariances: All classes
Slope with intercept 1.200 1.200 1.200 1.200
Slope with quadratic 0.000 0.000 0.000 0.000
Intercept with quadratic 0.000 0.000 0.000 0.000

Note. All levels of trajectory shape were fully crossed with the three mixture class proportion levels (0.33/0.33/0.33,
0.70/0.20/0.10, and 0.45/0.45/0.10), the two levels of sample size (150 and 800 cases), and the seven levels of
estimation (maximum likelihood via the EM algorithm, MCMC using informative priors, MCMC using data-driven
priors, MCMC using partial-knowledge priors, MCMC using Mplus default-diffuse prior, MCMC using weak priors,
and MCMC using weak but wrong [“inaccurate”] priors). EM � expectation maximization; MCMC � Markov chain
Monte Carlo; C1 � Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3.
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values are rarely known in applied settings. In particular, the
ML/EM average parameter estimate across 1,000 replications was
used as the mean hyperparameter for the intercept and slope
parameters. Likewise, the average variance of the estimates across
the 1,000 replications was used as the variance hyperparameter.
There were four ML/EM analyses that informed the priors for this
estimation level representing each of the four levels of class
separation in the population. Each of the ML/EM analyses driving
these priors were based on n � 800 cases, 0.33/0.33/0.33 class
proportions, and 1,000 replications (as mentioned). Prior distribu-
tions for this level are presented in Table 2. The aim of using
ML/EM results to define priors was to mimic the research scenario
where previous GMM results are used to help define informative
priors for Bayesian GMM. Class proportions received �(1,1,1)
priors to indicate no knowledge of class sizes. This data-driven
prior level is referred to as MCMC-data-driven.

The default diffuse priors in Mplus that were implemented in the
MCMC-diffuse level are not necessarily indicative of diffuse (or
weakly informative) priors typically specified in the Bayesian
literature. Specifically, there are potential problems with
�(10,10,10) acting as an informative prior—especially when la-
tent class sample sizes are smaller. Likewise, �(0,1010) may in
some cases act akin to an improper prior (which is not a known
probability density) since the variance hyperparameter is quite
large. As a result, a modified-diffuse level that specifies weakly
informative priors (MCMC-weak) was also implemented here. In
particular, a prior of �(1,1,1) was used for the latent class pro-
portions, and a normal prior was used for the intercepts and slopes,
where the population value was used as the mean hyperparameter
and the variance hyperparameter was set as representing 50% of
the population value. Both of these priors are weakly informative,
and they represent priors that are perhaps more reasonable and
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Figure 4.. Linear growth trajectories for different mixture class separation levels. C1 � Latent Class 1; C2 �
Latent Class 2; C3 � Latent Class 3; MD � Mahalanobis distance.
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indicative of the applied Bayesian literature than the default dif-
fuse priors in Mplus.9

For the MCMC-partial level, informative priors were placed
only on the intercept growth parameters for the three latent classes.
Priors for the intercepts were specified in the same manner as in
the MCMC-informative level described above. The mixture class
proportions and slopes for each class were given default diffuse
priors. This Bayesian estimation level was designed to reflect prior
knowledge of initial starting levels only, with no prior knowledge
of latent class size or growth rate.

For the MCMC-wrong level, the prior distributions on the
growth parameters were identified in a systematic manner and
were included to assess the impact of “inaccurate” mean hyperpa-
rameters and weaker variance hyperparameters. Specifically, the
variance hyperparameter term was fixed as 50% of the correspond-
ing population value. Additionally, for each of the growth param-

eters, the mean hyperparameter was decreased by 3 standard
deviations based on this fixed variance hyperparameter. As an
example, take the intercept parameter for C1, which is 48. The
variance hyperparameter would represent 50% of this value, which
is 48 � 0.50 � 24. Under this variance hyperparameter, the mean
hyperparameter would be (population 
 3�standard deviation) �

48 � �3*�24� � 33.30, producing a prior distribution of

9 Another level of modified-diffuse priors was preliminarily examined
where a �(1,1,1) prior was used for class proportions and a �(0,100) prior
was used for the intercepts and slopes. Bias levels produced from this
condition were incredibly high for all model parameters (e.g., bias levels
consistently greater than 100%). It was therefore determined that a more
informative prior should be specified for the intercepts and slopes. The
MCMC-weak estimation condition presented here reflects this modifica-
tion.
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Figure 5.. Quadratic growth trajectories for different mixture class separation levels. C1 � Latent Class 1;
C2 � Latent Class 2; C3 � Latent Class 3; MD � Mahalanobis distance.
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�(33.30, 24) for the intercept parameter for C1 containing a true
population value of 48. Class proportions received default diffuse
Dirichlet priors.

The current investigation defined the simulations such that the
number of K latent factors estimated was prespecified in the
population and analysis models. Further, the number of C latent
classes was also prespecified.

The purpose of including all of these factors was to assess
parameter recovery under very specific trajectory conditions in
order to uncover the ability of latent classes to be properly recov-
ered in different modeling situations. Latent class recovery was
assessed through the computation of parameter bias. Specifically,
bias was computed for each parameter based on the average
estimate produced by the simulations.10 Bias values less than
10.00% were deemed as representing low or negligible parameter
bias, whereas anything greater than or equal to 10.00% was con-
sidered to be exhibiting high and therefore problematic parameter
bias. However, all levels of bias rates are presented in the tables so
that the full pattern of results can be interpreted by the reader.

Results

Only parameter bias results for n � 150 are presented in tables
here. Specific results for n � 800 are summarized here, and tables
can be made available upon request. All problematic bias levels
greater than 10.00% are presented in bold in the following tables;
mean squared error (MSE) values are also presented for each
parameter estimated, as well as the estimated proportion of cases
in each class.

Label Switching and Convergence Rates

One issue that can arise when estimating mixture models via
MCMC sampling is referred to as label switching. It occurs when

the ordering of latent classes arbitrarily changes during the MCMC
chain. Not only can this affect the final estimates produced, but
label switching can also complicate the assessment of conver-
gence. One common method used for preventing label switching is
to specify identifiability constraints within the model. In the cur-
rent study, identifiability constraints were specified within Mplus
based on the intercept growth factors such that C1 � C2 � C3.
Each iteration of the Gibbs sampler was computed such that the
specified constraint was satisfied, and thus results were free from
label switching. This method can help prevent the chain from
arbitrarily sampling an alternative latent class midchain (see e.g.,
Diebolt & Robert, 1994; Frühwirth-Schnatter, 2001). This type of
constraint is typical to use in preventing within-chain label switch-
ing from occurring. To prevent between-chain label switching (i.e.,
when two or more MCMC chains are requested and between-chain
convergence is of concern), only one chain was used to assess
convergence in the current study. However, if multiple chains had
been used, the PSR factor can aid in identifying between-chain
label switching. That is, convergence will not be obtained via the
PSR factor if two chains do not converge with each other even if
they show within-chain convergence.

Likewise, the PSR factor can also capture within-chain label
switching since dramatic fluctuations within the chain would result
in nonconvergence according to the PSR factor. Employing iden-
tifiability constraints is just one method for preventing label
switching. For a more comprehensive review see Celeux, Hurn,

10 Percent of bias is computed by using the following equation: 100�([es-
timate 
 population value]/population value).

Table 2
Prior Distributions for the MCMC-Data-Driven Level

Parameter High separation Moderate separation Poor separation Very poor separation

Linear conditions
Growth parameters: C1

Intercept N(48.2118,10.9773) N(48.2553,12.4920) N(48.5667,14.8025) N(49.6126,17.8481)
Slope N(2.7811,2.6830) N(2.7415,3.8255) N(2.7111,4.1031) N(2.8431,4.3072)

Growth parameters: C2
Intercept N(42.4359,5.6136) N(42.7795,4.4823) N(43.2457,4.1408) N(44.4104,3.2141)
Slope N(3.7960,3.7022) N(3.8210,3.7149) N(3.5951,4.3322) N(3.2727,4.6924)

Growth parameters: C3
Intercept N(37.1984,9.4274) N(38.1169,11.5254) N(39.0328,12.2920) N(40.3106,14.4354)
Slope N(3.0510,3.0199) N(3.1228,4.2750) N(3.4936,5.2997) N(3.8362,5.4452)

Quadratic conditions
Growth parameters: C1

Intercept N(47.8868,12.5770) N(48.0601,13.8302) N(48.4626,15.8356) N(49.1358,27.8130)
Slope N(2.8234,18.9199) N(2.8950,22.0336) N(2.7798,24.2025) N(2.6979,23.3540)

Growth Parameters: C2
Intercept N(42.3945,6.9981) N(42.9233,5.3453) N(43.4317,4.17222) N(44.4341,2.9388)
Slope N(3.7859,10.0927) N(3.6163,11.2923) N(3.5757,9.7919) N(3.5131,10.7965)

Growth Parameters: C3
Intercept N(37.6675,8.1465) N(38.6984,7.8865) N(39.5838,8.5656) N(41.2719,8.5416)
Slope N(2.9678,17.4164) N(3.1492,16.0769) N(3.3248,16.8650) N(3.6289,16.3928)
Quadratic N(0.9141,1.8217) N(0.7915,1.6750) N(0.6979,1.8082) N(0.5489,1.9687)

Note. MCMC � Markov chain Monte Carlo; C1 � Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; N � normally distributed prior distribution.
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and Robert (2000); Jasra, Holmes, and Stephens (2005), and Ste-
phens (2000).11

As mentioned above, Mplus examines chain convergence within
the MCMC estimation algorithm using the Brooks, Gelman, and
Rubin diagnostic. This diagnostic produces a PSR factor to assess
convergence within a given chain. Note that a PSR factor of 1.0
would indicate perfect convergence between the first portion of the
post burn-in iterations and the last portion of the chain. The
convergence criterion implemented in the current study required
the PSR factor to fall within �.05 of 1.0. In other words, conver-
gence was obtained if the PSR factor fell within the bound of 0.95
and 1.05. If this criterion was not met for a particular chain, then
convergence for that replication was not obtained. Note that only
replications where convergence was obtained were included in the
parameter estimates.

For the ML/EM estimator, the number of starts for the models
specified in this study was 100, which follows general guidelines
presented in Hipp and Bauer (2006). To prevent across-replication
label switching from occurring across Monte Carlo replications, it
is common to implement user-specified starting values for all
parameters to ensure that the class labeling will be consistent
across replications.12 User-specified starting values that matched
the population values were implemented here. Potential issues
arising from across-replication label switching were prevented
with the use of these user-specified starting values as well as the
identifiability constraints described above. The 100 starts that
Mplus generated were perturbations of these user-specified start-
ing values.13 The number of final stage optimization steps was 10.
These settings were used to ensure that estimates were not the
result of problems with local maxima.

One issue that can arise when estimating complex models (e.g.,
finite mixture models) is that of nonconvergence. In an empirical
setting, nonconvergence can be a result of several different issues
that include incorrectly specifying the model, multivariate outliers,
and model nonidentification (Tueller & Lubke, 2010). Of partic-
ular note here, nonconvergence can be a consequence of empirical
nonidentification where an insufficient number of cases comprise
a latent class. In this situation, there are too few cases in a latent
class to estimate the parameters that are specified in the model.
Empirical nonidentification may occur particularly under condi-
tions containing a very small number of cases in a latent class. In
a Monte Carlo setting, convergence rates are typically reported
alongside results in order to provide information about the confi-
dence one should have in the simulation findings, and results
should always be interpreted in the context of these convergence
rates. In a simulation study, if convergence is not obtained for a
particular replication, then that replication is not incorporated into
the parameter estimates that are reported. Convergence rates
were combined for all class separation cells and are presented in
Table 3. All results that are presented in the following section
should be interpreted in the context of convergence rates. In
particular, there is less confidence in results from conditions with
relatively low convergence rates (e.g., MCMC-weak) compared to
conditions with higher convergence rates (e.g., ML/EM).

Parameter Estimate Bias

Tables 4–5 present parameter bias percentages for the condition
of the linear growth trajectory and latent class proportions of

0.33/0.33/0.33. Latent class proportions were properly recovered
for MCMC-informative, MCMC-diffuse, and MCMC-partial. For
growth trajectory parameters, MCMC-informative and MCMC-
data-driven produced the lowest bias levels under all class sepa-
ration levels, thus indicating the trajectory shapes were well re-
covered. MCMC-informative only produced problematic bias for
the growth parameter variances (which received diffuse priors).
Likewise, MCMC-data driven only produced higher bias for the
growth parameter variances and the C2 slope term. In contrast,
MCMC-diffuse and ML/EM produced the highest bias for the
model parameters. Specifically, the trajectory shapes under these
diffuse conditions were not recovered properly, even under high
mixture class separation (i.e., MD � 2.0). This general finding was
also the case to an extent under MCMC-wrong, where higher bias
was exhibited for many of the model parameters. Notice also that
none of the estimation conditions properly recovered the intercept

11 It should also be mentioned that if label switching does occur, the
researcher can use a relabeling algorithm to reassign the class labels across
the latent classes by performing a k-means type clustering of the MCMC
samples (see e.g., Farrar, 2006; Stephens, 2000).

12 Across-replication label switching occurs when latent classes are
arbitrarily ordered across Monte Carlo replications such that estimates
averaged across replication are meaningless for the latent classes. For
example, the first replication may have ordered “Class 1” first and “Class
2” second, and the second replication may have reversed this ordering with
“Class 2” appearing first and “Class 1” appearing second. Averages across
these two replications would be meaningless without first reordering the
latent classes to be consistent.

13 It is important not to use random starts in Monte Carlo studies since
this may result in across-replication label switching (Nylund et al., 2007).
Note that the same user-specified starting values were used for ML/EM and
MCMC conditions for consistency across estimation levels.

Table 3
Convergence Rates (out of 1,000 Replications) Collapsed Across
Class Separation Levels

Linear Quadratic

Estimation
level n � 150 n � 800 n � 150 n � 800

ML/EM �999 �999 �999 �999
Info �964 �962 �842a �690b

Default–diffuse �739 �700 76–156 81–229
Partial �947 �855 �502c �350d

Wrong �867 �826 195–415 119–332
Weak �31 �216 �10 �16
Data-driven �191 132–551 �16 �49

Note. ML/EM � maximum likelihood via the EM algorithm; EM �
expectation maximization; Info � Bayesian estimation using informative
priors; Default–diffuse � Bayesian estimation using default Mplus default
diffuse priors; Partial � Bayesian estimation using informative priors on a
partial subset of parameters; Wrong � Bayesian estimation using weak and
wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak
priors; Data-driven � Bayesian estimation using data-driven priors; MD �
Mahalanobis distance.
a Except for the cell of very poor separation (MD � 0.5) under 0.33/0.33/
0.33, which had a convergence rate of 611. b Except for three cells under
very poor separation (MD � 0.5), which had convergence rates of 371,
494, and 506. c Except for three cells under very poor separation (MD �
0.5), which had convergence rates of 298, 335, and 338. d Except for
three cells under very poor separation (MD � 0.5), which had convergence
rates of 162, 168, and 248.
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and slope covariance; this result largely held in all subsequent
conditions discussed below.

Tables 4–5 include superscripts denoted to indicate bias levels
that decreased below 10.00% when sample sizes were increased to

n � 800. Notice that several of the high bias levels decreased when
a larger total sample size was used. However, note that latent class
proportions still remained quite biased under ML/EM, MCMC-
data-driven, MCMC-weak, and MCMC-wrong. Overall, under this

Table 4
Parameter Estimate Bias: 0.33/0.33/0.33 Mixture Class Proportions, Linear Conditions, 150 Cases

High separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion 7.28 (0.36) 
0.32 (0.33) 0.13 (0.33) 
0.76 (0.33) 23.63 (0.43) 15.00a (0.38) 0.59 (0.34)
C2 proportion 11.20 (0.37) 1.03 (0.34) 2.39 (0.34) 4.43 (0.35) 12.16a (0.38) 32.78 (0.44) 27.17 (0.42)
C3 proportion �18.45 (0.27) 
0.67 (0.33) 
2.49 (0.33) 
3.65 (0.32) �35.76 (0.19) �47.75 (0.17) �27.72 (0.24)
C1

Intercept (MSE) 
0.80 (14.65) 
0.57 (0.50) 
2.56 (2.78) 
0.96 (0.53) 
3.79 (4.25) 
2.33 (3.53) 
1.60 (1.85)
Slope (MSE) 
0.89 (4.76) 0.75 (0.02) 6.80 (0.38) 5.25 (0.36) 
1.25 (0.24) 
2.12 (0.22) 
1.71 (0.40)

C2
Intercept (MSE) 
1.38 (6.72) 0.04 (0.34) 0.02 (0.81) 0.05 (0.22) 
3.73 (3.44) 
2.15 (3.12) 
1.02 (0.43)
Slope (MSE) �16.95a (7.12) 
0.36 (0.03) �11.49a (0.62) �10.43 (0.56) �11.29a (0.43) 
2.50 (0.17) 
8.65 (0.38)

C3
Intercept (MSE) 
1.37 (19.07) 0.67 (0.39) 3.03 (2.48) 0.88 (0.35) 
3.67 (3.55) 
8.73 (56.31) 
0.19 (0.76)
Slope (MSE) 14.53a (6.84) 0.33 (0.02) 8.73 (0.42) 8.79 (0.45) �27.61 (0.97) 
1.29 (0.16) 1.79 (0.25)

Variances
I with S (MSE) 49.30 (9.30) �43.29a (2.12) �43.00a (2.35) �36.23a (2.28) �74.68 (2.70) �37.69 (2.43) �69.88 (3.09)
Intercept (MSE) 15.78a (130.69) 20.44 (45.57) 46.44 (111.03) 29.70 (58.88) 37.98 (83.68) 48.82 (152.73) 72.73 (226.24)
Slope (MSE) �86.30 (4.61) 14.02a (0.61) 
7.45 (0.42) 
3.01 (0.42) 
1.05 (0.49) 18.18a (0.43) 2.96 (0.39)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.

Table 5
Parameter Estimate Bias: 0.33/0.33/0.33 Mixture Class Proportions, Linear Conditions, 150 Cases

Poor separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion 0.23 (0.33) 0.48 (0.33) 
0.98 (0.33) 
0.27 (0.33) 22.28 (0.40) 25.23a (0.41) 1.62 (0.34)
C2 proportion 19.32 (0.39) 1.72 (0.34) 4.40 (0.34) 4.19 (0.34) 18.01 (0.39) 35.62 (0.45) 37.01 (0.45)
C3 proportion �16.51 (0.28) 0.83 (0.33) 
0.39 (0.33) 
0.90 (0.33) �37.26 (0.21) �57.82 (0.14) �35.60 (0.21)
C1

Intercept (MSE) 0.50 (15.45) 
0.49 (0.46) 
1.70 (1.84) 
0.82 (0.45) 
3.02 (2.96) 
0.60 (2.56) 0.56 (2.83)
Slope (MSE) 
1.88 (5.16) 0.92 (0.02) 6.43 (0.37) 5.15 (0.34) 
3.56 (0.25) 4.47 (0.28) 
1.86 (0.82)

C2
Intercept (MSE) 0.72 (4.94) 0.42 (0.30) 1.48 (0.96) 0.48 (0.22) 
1.26 (0.92) 
1.81 (1.99) 0.23 (0.52)
Slope (MSE) �22.47 (7.59) 
0.45 (0.03) �14.22a (0.63) �12.67a (0.65) 
9.84 (0.37) 
3.87 (0.80) �18.64a (0.95)

C3
Intercept (MSE) 
2.99 (18.74) 0.20 (0.26) 0.74 (0.88) 0.48 (0.22) 
3.72 (3.84) 
20.22a (135.26) 
8.46 (52.19)
Slope (MSE) 24.41 (7.77) 0.36 (0.02) 12.67a (0.52) 12.41a (0.54) �25.42 (0.89) �10.12a (0.91) 2.65 (0.98)

Variances
I with S (MSE) 51.78 (8.62) �49.38a (2.06) �47.85a (1.95) �41.24a (1.96) �75.94 (2.53) �99.70a (4.09) �86.92 (3.56)
Intercept (MSE) 
0.17 (89.08) 14.01a (31.70) 24.20 (47.30) 21.07 (37.08) 22.01 (43.27) 19.15 (73.76) 42.57 (114.89)
Slope (MSE) �92.16 (5.00) 14.53a (0.60) 
5.86 (0.38) 
7.39 (0.41) 
2.87 (0.46) 4.86 (0.72) 5.23 (0.51)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.
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0.33/0.33/0.33 latent class proportion, ML/EM, MCMC-weak, and
MCMC-wrong appeared to have the most difficulty properly re-
covering class proportions and growth parameters. The MCMC-
informative condition performed the best, with high bias presented

only in the within-class (co)variance parameters (which received
diffuse priors). MCMC-data-driven performed well under higher
class separation (e.g., MD � 2.0 and 1.5) with the exception of the
parameter (co)variances.

Moderate separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

5.10 (0.35) 
0.41 (0.33) 
1.31 (0.33) 
1.14 (0.33) 23.79 (0.41) 5.28 (0.35) 
2.02 (0.33)
11.46 (0.37) 0.94 (0.34) 2.93 (0.34) 4.16 (0.35) 16.67a (0.39) 35.33 (0.45) 34.80 (0.45)

�16.53 (0.28) 
0.50 (0.33) 
1.59 (0.33) 
2.99 (0.32) �40.43 (0.20) �40.58 (0.20) �32.76 (0.22)


0.27 (15.00) 
0.54 (0.48) 
2.17 (2.34) 
0.88 (0.52) 
3.42 (3.66) 1.16 (3.29) 
0.78 (2.24)

2.12 (6.61) 0.85 (0.02) 5.80 (0.33) 4.81 (0.33) 
3.33 (0.27) 
5.58 (0.37) 
2.56 (0.41)


0.47 (5.61) 0.14 (0.31) 0.64 (0.78) 0.15 (0.21) 
2.56 (1.94) 
0.72 (3.77) 
0.42 (0.39)
�18.84 (7.64) 
0.38 (0.03) �12.70a (0.61) �11.51 (0.59) �10.25a (0.39) 
1.57 (0.57) �12.60a (0.46)


1.92 (18.68) 0.55 (0.34) 2.09 (1.62) 0.81 (0.31) 
3.61 (4.21) �20.06a (194.79) 
3.60 (21.13)
18.37a (7.08) 0.23 (0.02) 10.37a (0.47) 10.33 (0.45) �26.49 (0.95) 
7.98 (0.35) 5.96 (0.67)

52.71 (9.16) �45.35a (2.02) �42.47a (2.13) �36.65 (1.96) �70.68 (2.63) �43.92 (2.80) �61.58 (3.06)
7.85 (109.24) 17.84 (37.59) 36.40 (76.20) 25.87 (48.99) 30.76 (64.12) 12.36 (77.71) 62.24 (191.64)

�88.54 (4.78) 14.00a (0.60) 
7.68 (0.41) 
4.48 (0.39) 
3.19 (0.45) 17.10 (0.92) 14.81a (0.59)

Very poor separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven


6.48 (0.31) 0.60 (0.33) 
1.11 (0.33) 
0.25 (0.33) 17.45a (0.39) 56.31a (0.52) 22.52a (0.40)
24.85 (0.41) 1.32 (0.33) 4.62 (0.35) 2.93 (0.34) 18.09 (0.39) 18.06 (0.39) 19.65 (0.39)

�15.34 (0.28) 1.11 (0.33) 
0.48 (0.33) 0.36 (0.33) �32.50 (0.22) �71.34 (0.09) �39.14 (0.20)

2.45 (17.58) 
0.29 (0.36) 
0.64 (1.16) 
0.61 (0.35) 
1.89 (1.43) 
0.87 (3.62) 0.23 (6.69)

1.22 (5.26) 0.95 (0.02) 7.32 (0.35) 6.83 (0.38) 
5.84 (0.29) 5.17 (0.14) 1.94 (0.55)

3.27 (6.31) 1.85 (0.81) 3.57 (2.77) 1.97 (0.86) 1.47 (0.90) 
2.10 (5.38) 2.51 (1.34)
�25.21 (7.46) 
0.49 (0.03) �15.56 (0.70) �14.29 (0.67) 
9.51 (0.36) 
5.85 (0.33) �21.91 (1.51)


6.62 (24.81) 
1.45 (0.56) 
2.80 (2.09) 
1.25 (0.42) 
5.52 (8.24) 
36.88a (383.76) 3.17 (30.85)
31.87 (7.93) 0.45 (0.02) 15.02 (0.57) 13.20 (0.54) �21.65a (0.72) �13.70a (0.36) 4.12 (3.64)

45.54 (7.72) �61.88 (2.08) �67.14 (2.11) �74.93 (2.34) �91.45 (2.71) �96.45 (3.81) �73.26 (6.94)
�19.40a (76.33) 7.33 (21.33) 4.96 (21.75) 12.64a (23.84) 6.53 (21.81) 
0.99 (52.67) 29.68a (48.43)
�92.37 (4.98) 13.56a (0.60) 
7.76 (0.40) 
8.96 (0.39) 
4.17 (0.45) 17.14a (1.03) �12.62a (0.19)
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Tables 6–7 include bias results for the condition using 0.33/
0.33/0.33 latent class proportions and a quadratic growth tra-
jectory for C3. Results appear largely comparable to the linear
conditions presented in Tables 4 –5, with one notable differ-
ence. Namely, ML/EM appeared to have less difficulty recov-

ering the latent class proportions with the addition of the
quadratic trajectory for C3. In general, MCMC-wrong, MCMC-
weak, and MCMC-data-driven all showed higher bias levels for
the class proportions and the intercept and slope parameters.
The other estimation conditions produced lower bias results in

Table 6
Parameter Estimate Bias: 0.33/0.33/0.33 Mixture Class Proportions, Quadratic Conditions, 150 Cases

High separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion 7.27 (0.36) 
0.25 (0.33) 0.46 (0.33) 
1.54 (0.33) 22.02 (0.41) 31.78 (0.44) �26.40 (0.25)
C2 proportion 5.52 (0.35) 0.79 (0.34) 1.48 (0.34) 4.69 (0.35) 10.61a (0.37) 68.00 (0.56) 81.52a (0.61)
C3 proportion �12.76 (0.29) 
0.51 (0.33) 
1.91 (0.33) 
3.13 (0.32) �32.61 (0.22) �99.74 (0.00) �55.09 (0.15)
C1

Intercept (MSE) 
0.91 (16.14) 
0.67 (0.45) 
2.33 (2.67) 
1.07 (0.57) 
2.83 (2.60) 
0.07 (0.00) 
1.23 (1.70)
Slope (MSE) �18.52 (17.77) 0.74 (0.02) 15.75a (2.33) 8.97 (2.95) �23.85a (1.10) 
2.35 (0.01) 0.14 (1.99)

C2
Intercept (MSE) 
0.49 (9.62) 0.08 (0.33) 
0.05 (0.75) 
0.04 (0.26) 
2.61 (2.52) �11.09a (22.52) 
1.63 (1.17)
Slope (MSE) 
9.08 (25.34) 
0.16 (0.03) 5.04 (1.69) 
0.71 (2.63) �22.46a (1.76) 40.52a (2.63) �14.94a (0.76)

C3
Intercept (MSE) 
0.40 (14.44) 0.65 (0.38) 2.57 (2.36) 1.24 (0.48) 
2.36 (5.65) �59.34a (497.89) 
5.62 (14.63)
Slope (MSE) 16.48a (18.27) 
2.09 (0.02) �24.88a (2.22) 
7.31 (2.11) �33.59 (1.39) 18.86a (0.32) �40.46 (10.85)
Quadratic (MSE) �35.74 (2.10) 
4.52 (0.02) 3.02 (0.17) �10.31a (0.25) �20.19a (0.16) �99.61a (0.80) �85.33a (0.68)

Variances
I with S (MSE) �163.18 (19.18) �142.77 (5.97) �286.24 (15.84) �246.35 (12.01) �320.22 (19.40) 180.23 (4.68) �474.84 (35.58)
Intercept (MSE) 32.43 (189.42) 27.11 (57.27) 53.50 (143.56) 42.23 (94.42) 49.71 (131.63) �22.71 (16.70) 127.79 (609.78)
Slope (MSE) �26.55 (2.61) 17.27a (0.77) 22.04a (0.79) 21.91a (0.77) 34.25 (1.24) 0.62 (0.00) 68.48a (3.37)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.

Table 7
Parameter Estimate Bias: 0.33/0.33/0.33 Mixture Class Proportions, Quadratic Conditions, 150 Cases

Poor separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion 2.73 (0.34) 0.62 (0.33) 0.55 (0.33) 
1.05 (0.33) 17.92a (0.39) 
5.12 (0.31) �21.05 (0.26)
C2 proportion 7.71 (0.36) 1.48 (0.33) 5.39 (0.35) 5.33 (0.35) 13.22a (0.37) 6.74 (0.35) 110.42a (0.69)
C3 proportion 
7.41 (0.31) 0.93 (0.33) 
2.91 (0.32) 
1.25 (0.33) �28.11 (0.24) 1.41 (0.33) �86.34 (0.05)
C1

Intercept (MSE) 0.32 (24.95) 
0.59 (0.43) 
1.77 (1.68) 
0.96 (0.52) 
2.40 (2.04) 
8.05 (19.14) 4.69 (12.12)
Slope (MSE) �17.84 (18.49) 0.64 (0.02) 14.61 (1.49) 8.67 (2.51) �24.94a (1.06) 3.79 (0.12) 29.51a (1.25)

C2
Intercept (MSE) 1.72 (9.02) 0.46 (0.30) 1.23 (0.86) 0.39 (0.21) 
0.54 (0.68) 
4.42 (10.36) 1.11 (1.58)
Slope (MSE) �15.54 (22.46) 0.31 (0.03) 6.66 (1.66) 1.10 (2.42) �20.12a (1.35) 
4.26 (0.24) 
6.24 (0.08)

C3
Intercept (MSE) 
1.72 (13.35) 0.22 (0.27) 0.38 (1.21) 0.75 (0.29) 
2.96 (7.56) 
2.07 (12.73) �18.13a (78.10)
Slope (MSE) 23.87 (18.83) 
2.24 (0.02) �23.96 (2.35) �14.58 (2.26) �34.39 (1.49) 2.27 (0.27) �90.42a (8.86)
Quadratic (MSE) �47.52 (2.25) 
6.50 (0.02) 0.32 (0.21) �10.78a (0.29) �25.68a (0.21) �77.80 (0.55) �99.80 (0.81)

Variances
I with S (MSE) �137.78 (15.88) �134.87 (5.47) �228.64 (10.12) �228.38 (10.54) �266.37 (13.43) �317.91 (17.39) �368.18 (20.98)
Intercept (MSE) 16.33a (115.58) 20.33 (40.84) 29.93 (65.46) 31.41 (62.97) 32.54 (69.34) 55.55a (130.78) 37.87 (105.88)
Slope (MSE) �31.59 (2.90) 17.70a (0.81) 22.63 (0.75) 18.94 (0.69) 27.55 (0.97) 41.90a (1.41) 73.03 (2.19)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.
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comparison. Most of the latent class proportions were recovered
properly when sample sizes increased to n � 800 under the
quadratic conditions, with the exception of conditions under
MCMC-weak. Likewise, trajectory recovery appeared to im-
prove for all estimation conditions when the sample size was

increased. However, there was still poor recovery for some
growth parameters in all estimation conditions, with the excep-
tion of MCMC-informative.

Tables 8–9 present results from the condition with 0.70/0.20/
0.10 class proportions where C3 had a linear trajectory shape.

Moderate separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

1.80 (0.34) 
0.26 (0.33) 0.23 (0.33) 
1.63 (0.33) 19.70 (0.40) 30.87a (0.44) 111.90 (0.71)
9.92 (0.37) 0.69 (0.34) 4.45 (0.35) 4.38 (0.35) 12.68a (0.38) 52.41 (0.51) �26.22a (0.25)

�11.69a (0.29) 
0.41 (0.33) 
4.65 (0.32) 
2.72 (0.32) �32.36 (0.23) �83.25 (0.06) �85.65 (0.05)


0.03 (20.09) 
0.65 (0.43) 
2.13 (1.97) 
0.98 (0.52) 
2.57 (2.41) 
0.72 (0.94) 
6.74 (11.82)
�20.28 (19.75) 0.73 (0.02) 17.34 (1.84) 2.54 (2.33) �24.51a (1.10) 24.95a (0.66) 25.79a (1.64)

0.55 (9.18) 0.20 (0.31) 0.68 (0.68) 0.04 (0.22) 
1.89 (1.56) 
4.81 (6.00) 
3.54 (3.17)

9.43 (23.05) 0.02 (0.04) 1.46 (1.44) 2.64 (2.10) �21.86a (1.61) 0.06 (0.60) �36.70a (4.27)


1.15 (14.09) 0.52 (0.33) 1.70 (1.65) 1.07 (0.40) 
3.11 (10.30) �38.62a (293.44) �14.05a (37.83)
23.45a (18.21) 
2.07 (0.02) �28.07 (2.37) 
8.80 (2.27) �34.00 (1.48) �45.26 (3.97) �163.90 (35.19)

�42.80 (2.22) 
5.94 (0.02) 4.16 (0.17) �12.07a (0.27) �26.29a (0.20) �93.37 (0.71) �102.54a (0.85)

�145.14 (17.17) �143.33 (5.89) �272.26 (13.63) �245.92 (11.64) �304.32 (17.29) �334.32 (23.24) �568.37 (46.82)
24.31 (147.66) 24.33 (50.23) 42.37 (90.77) 39.27 (86.22) 45.28 (116.93) 51.33a (208.15) 114.74 (467.50)
29.00 (2.79) 19.09a (0.81) 24.44a (1.00) 21.82 (0.74) 34.60 (1.22) 35.08a (0.76) 65.02a (2.06)

Very poor separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

2.37 (0.34) 0.56 (0.33) 
0.89 (0.33) 
0.07 (0.33) 15.91a (0.38) 54.21 (0.51) �53.04a (0.15)
6.79 (0.35) 1.54 (0.34) 5.09 (0.35) 3.61 (0.34) 15.64 (0.38) 39.83 (0.46) 61.56a (0.53)


6.13 (0.31) 0.93 (0.33) 
1.17 (0.33) 
0.51 (0.33) �28.52 (0.24) �91.02 (0.03) 
5.49 (0.31)

1.15 (17.75) 
0.48 (0.36) 
0.27 (0.87) 
0.76 (0.41) 
1.04 (1.07) 
4.06 (4.05) �22.98a (168.36)
�21.59 (20.76) 0.80 (0.02) 6.03 (1.40) 11.85a (1.91) �23.85 (1.08) 12.54 (0.23) �50.15 (4.72)

3.99 (9.61) 1.87 (0.82) 3.56 (2.67) 1.96 (0.83) 1.86 (1.23) 0.29 (0.26) 3.87 (2.91)
�17.77 (21.38) 0.13 (0.03) 4.76 (1.35) 0.76 (2.05) �18.03a (1.18) 11.58a (0.31) 
9.62 (0.48)


5.19 (19.97) 
1.32 (0.49) 
2.44 (1.95) 
1.12 (0.38) 
6.54 (25.21) �40.97a (321.84) 
2.88 (3.84)
32.54 (18.65) 
2.38 (0.02) �23.88a (2.72) �12.70 (2.24) �38.86 (1.91) �55.48 (3.97) 10.69a (1.03)

�64.17 (2.38) 
6.41 (0.02) 
8.21 (0.25) �20.40a (0.31) �28.62 (0.22) �97.64a (0.77) �87.52 (0.67)

�75.55 (11.55) �85.42 (3.11) �171.56 (6.51) �184.60 (7.07) �193.47 (8.02) �383.90 (22.75) �232.63 (10.01)

1.18 (72.92) 13.23a (25.95) 13.05a (29.82) 20.99a (36.73) 12.04a (31.15) 40.59 (68.27) 38.61 (69.66)

�39.68 (3.27) 18.23a (0.76) 19.61a (0.71) 20.69a (0.75) 25.81 (0.86) 77.80 (2.95) 31.64 (1.06)
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With the addition of a clear majority latent class (C1), the
recovery of latent class proportions was very poor overall with
the exception of MCMC-informative. The latent class propor-
tion for C3 was consistently overestimated under ML/EM,
MCMC-diffuse, MCMC-partial, and MCMC-wrong. The oppo-

site effect occurred for the other estimation conditions in that
C3 was consistently underestimated in the MCMC-weak and
MCMC-data-driven conditions. Tables 8 –9 also indicated that
MCMC-informative produced the lowest bias levels for the
growth trajectory parameters across all latent class separation

Table 8
Parameter Estimate Bias: 0.70/0.20/0.10 Mixture Class Proportions, Linear Conditions, 150 Cases

High separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �33.14 (0.47) 0.37 (0.70) �50.16 (0.35) �32.71 (0.47) �37.52 (0.44) �21.37 (0.55) �14.20a (0.60)
C2 proportion 67.98 (0.34) 0.36 (0.20) 76.97 (0.35) 70.52 (0.34) 110.04 (0.42) 88.16 (0.38) 58.36 (0.32)
C3 proportion 95.99 (0.20) 
3.33 (0.10) 197.16 (0.30) 87.95 (0.19) 42.58 (0.14) �26.73a (0.07) �17.34a (0.08)
C1

Intercept (MSE) 2.40 (10.32) 
0.30 (0.30) 2.02 (1.48) 2.00 (1.19) 
1.12 (1.36) 1.20 (0.99) 0.36 (0.78)
Slope (MSE) 0.51 (3.55) 0.83 (0.03) 
1.00 (0.28) 0.84 (0.21) 
9.47 (0.26) 1.49 (0.20) 0.95 (0.19)

C2
Intercept (MSE) 4.46 (12.56) 0.38 (0.22) 7.84 (11.75) 3.98 (3.13) 5.17 (7.18) 1.42 (3.99) 1.52 (1.05)
Slope (MSE) �27.48 (8.23) 
0.56 (0.01) �15.99 (0.72) �12.59a (0.65) �14.27 (0.49) 
9.64 (0.37) �12.12a (0.68)

C3
Intercept (MSE) 0.84 (28.33) 14.27a (0.27) 10.70a (20.61) 2.96 (1.60) 
4.34 (39.07) �18.52a (136.21) 
4.03 (9.07)
Slope (MSE) 13.62a (6.07) 32.59a (0.01) 8.53 (0.50) 13.04a (0.76) �36.33a (1.78) �13.55a (0.81) 
7.51 (0.71)

Variances
I with S (MSE) 19.24a (6.57) �49.42 (2.10) �72.18 (2.57) �53.93a (2.04) �116.73 (3.66) �96.70 (3.32) �99.40 (3.66)
Intercept (MSE) 
6.43 (88.04) 16.16a (33.30) 27.20 (53.14) 2.52 (22.11) 16.53a (33.63) 11.85 (40.96) 36.96 (76.55)
Slope (MSE) �79.03 (4.08) 16.04a (0.61) 
8.16 (0.39) 
2.22 (0.39) 
1.10 (0.46) 24.40a (0.93) 9.02 (0.59)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual mixture
class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. Dashes (—) represent estimates that were
unreasonably out of bounds (e.g., �10,000) and therefore were not presented in the output. ML/EM � maximum likelihood via the EM algorithm; EM � expectation
maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation using default Mplus default diffuse priors; Partial � Bayesian
estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation using weak and wrong (“inaccurate”) priors; Weak � Bayesian
estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 � Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S �
correlation between intercept and slope; MSE � mean squared error: The variance of the estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.

Table 9
Parameter Estimate Bias: 0.70/0.20/0.10 Mixture Class Proportions, Linear Conditions, 150 Cases

Poor separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �39.77 (0.42) 0.10 (0.70) �51.31 (0.34) �35.74 (0.45) �41.89 (0.41) �13.05 (0.61) �14.80 (0.60)
C2 proportion 74.06 (0.35) 0.38 (0.20) 73.50 (0.35) 60.28 (0.32) 96.38 (0.39) 65.47 (0.33) 57.96 (0.32)
C3 proportion 130.31 (0.23) 
1.50 (0.10) 212.17 (0.31) 129.64 (0.23) 100.44 (0.20) �39.55 (0.06) �12.33a (0.09)
C1

Intercept (MSE) 3.18 (12.67) 
0.26 (0.30) 2.48 (2.07) 2.17 (1.33) 
1.07 (1.45) 0.50 (1.45) 0.62 (0.75)
Slope (MSE) 1.10 (3.97) 0.81 (0.03) 0.31 (0.31) 1.78 (0.23) 
9.44 (0.26) 1.76 (0.29) 3.61 (0.19)

C2
Intercept (MSE) 5.90 (13.19) 0.64 (0.23) 8.06 (12.37) 4.00 (3.12) 4.99 (8.57) 
2.73 (29.13) 2.72 (1.81)
Slope (MSE) �29.31 (8.37) 
0.60 (0.01) �17.45 (0.85) �14.85 (0.78) �14.14 (0.50) �14.05 (0.66) �17.80 (0.87)

C3
Intercept (MSE) 
0.14 (25.73) 0.06 (0.20) 6.84 (8.66) 2.88 (1.58) 0.50 (25.78) �33.24 (262.23) �10.23a (39.49)
Slope (MSE) — (—) 
0.02 (0.01) 10.24 (0.51) 15.11 (0.71) �29.11a (1.21) �20.08 (0.77) �12.25 (1.76)

Variances
I with S (MSE) 28.04a (6.66) �49.18 (2.04) �74.17 (2.36) �60.96a (2.16) �115.37 (3.49) �75.67 (2.64) �123.56 (4.41)
Intercept (MSE) �10.55a (81.52) 13.45a (28.80) 14.87 (29.49) 3.27 (20.51) 11.70 (25.28) 9.99 (31.72) 30.22 (50.67)
Slope (MSE) �89.70 (4.76) 15.83a (0.64) 
8.77 (0.40) 
5.88 (0.40) 
3.93 (0.43) 12.48 (0.70) 9.01 (0.52)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual mixture
class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. Dashes (—) represent estimates that were
unreasonably out of bounds (e.g., �10,000) and therefore were not presented in the output. ML/EM � maximum likelihood via the EM algorithm; EM � expectation
maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation using default Mplus default diffuse priors; Partial � Bayesian
estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation using weak and wrong (“inaccurate”) priors; Weak � Bayesian
estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 � Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S �
correlation between intercept and slope; MSE � mean squared error: The variance of the estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.
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conditions. Note, however, that all seven estimation conditions
were able to properly recover the trajectory for the majority
latent class C1. For all estimation conditions except for
MCMC-informative, the slope for C2 was poorly recovered,
and C3 showed patterns of problematic bias levels for the

intercept and slope. Further, these bias levels under C3 in-
creased as class separation decreased, especially for ML/EM.
Increasing the sample size to n � 800 only decreased bias levels
for select parameters, but several parameters exhibited high bias
levels even with this higher sample size.

Moderate separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�35.63 (0.45) 0.25 (0.70) �50.95 (0.34) �33.92 (0.46) �34.04 (0.46) �19.51 (0.56) �17.29a (0.58)
71.76 (0.34) 0.43 (0.20) 75.58 (0.35) 66.28 (0.33) 97.48 (0.39) 70.79 (0.34) 65.75 (0.33)

105.87 (0.21) 
2.63 (0.10) 205.49 (0.31) 104.90 (0.20) 43.35 (0.14) 
5.00 (0.10) �10.45a (0.09)

2.78 (11.66) 
0.29 (0.31) 2.30 (1.78) 2.09 (1.26) 1.19 (0.83) 0.57 (1.11) 0.66 (1.06)
1.72 (3.39) 0.82 (0.03) 
0.25 (0.30) 1.20 (0.21) 
6.62 (0.25) 4.52 (0.12) 0.83 (0.24)

5.00 (12.21) 0.46 (0.21) 8.02 (12.24) 3.97 (3.10) 4.10 (4.05) 
0.59 (30.61) 2.15 (1.34)
�26.64 (8.45) 
0.61 (0.01) �17.39 (0.81) �13.37 (0.69) �14.78 (0.54) �29.24 (4.90) �13.10a (0.66)

0.22 (28.29) 0.31 (0.25) 9.12 (14.22) 2.99 (1.66) 
5.26 (39.28) �17.13a (112.87) 
5.11 (13.06)
— (—) 0.07 (0.01) 10.37a (0.51) 14.24 (0.75) �35.76a (1.72) 
9.39 (0.71) 
8.78 (0.91)

18.63a (6.42) �47.23 (2.05) �70.95 (2.32) �55.22a (2.05) �100.30 (3.16) �107.32 (3.40) �107.80 (3.75)

8.87 (82.73) 14.82a (30.93) 21.47 (40.58) 2.45 (21.39) 10.70a (27.57) 22.56 (34.15) 33.13 (59.91)

0.83 (4.37) 15.63a (0.64) 
8.92 (0.40) 
3.60 (0.39) 
0.93 (0.47) 
4.39 (0.22) 11.14a (0.55)

Very poor separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�47.23 (0.37) 
0.19 (0.70) �52.43 (0.33) �41.33 (0.41) �40.19 (0.42) �12.79 (0.61) �24.05 (0.53)
84.99 (0.37) 0.51 (0.20) 72.71 (0.35) 57.30 (0.31) 90.16 (0.38) 65.81 (0.33) 104.53 (0.41)

160.64 (0.26) 0.28 (0.10) 221.58 (0.32) 174.70 (0.27) 101.00 (0.20) �42.08 (0.06) �40.70 (0.06)

4.49 (17.59) 
0.30 (0.29) 3.00 (2.76) 2.07 (1.23) 1.83 (1.28) 0.71 (2.00) 1.81 (2.12)
4.76 (4.28) 0.70 (0.03) 1.22 (0.28) 3.47 (0.26) 
7.23 (0.26) 0.83 (0.19) 3.76 (0.24)

7.38 (14.79) 1.91 (0.77) 8.55 (13.85) 4.73 (4.25) 5.74 (6.59) 
3.52 (58.67) 4.49 (3.98)
�32.93 (8.66) 
0.4 (0.01) �19.81 (0.95) �16.60 (0.83) �14.26 (0.51) �17.89 (1.03) �20.97 (1.08)


3.43 (23.59) 
1.50 (0.58) 1.59 (1.32) 1.22 (0.42) 
3.97 (23.93) �36.80a (332.54) �26.92a (192.06)
242.80 (—) 0.07 (0.01) 12.49 (0.50) 13.19 (0.53) �26.35a (1.05) �20.53a (1.29) �25.22 (2.87)

27.74a (6.67) �55.53 (2.03) �77.80 (2.23) �82.38 (2.43) �105.82 (3.08) �87.26 (3.52) �102.13 (3.59)
�18.92a (76.12) 12.89a (25.41) 4.74 (20.23) 7.33 (20.71) 1.82 (19.36) 7.93 (36.21) 14.11a (35.61)
�94.88 (5.11) 15.48a (0.61) 
8.66 (0.39) 
9.30 (0.40) 
3.64 (0.44) 15.03a (0.52) 4.27 (0.39)
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Tables 10–11 present results for the 0.70/0.20/0.10 latent
class proportions but with a quadratic trajectory shape for C3.
Latent class proportion recovery is relatively comparable to that
presented in Tables 8 –9 with linear trajectory shapes. All of the

estimation conditions with the exception of MCMC-informative
were unable to properly recover latent class proportions under
any level of class separation. The one main exception to this
statement was with MCMC-weak, where the class proportion

Table 10
Parameter Estimate Bias: 0.70/0.20/0.10 Mixture Class Proportions, Quadratic Conditions, 150 Cases

High separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �35.23 (0.45) 0.72 (0.71) �47.95 (0.36) �32.63 (0.47) �30.14 (0.49) 
6.48 (0.65) �11.34 (0.62)
C2 proportion 83.42 (0.37) 
0.66 (0.20) 87.57 (0.38) 72.73 (0.35) 90.92 (0.38) 55.04 (0.31) 67.64 (0.34)
C3 proportion 79.77 (0.18) 
3.75 (0.10) 160.49 (0.26) 82.93 (0.18) 29.15 (0.13) �64.70a (0.04) �55.87a (0.04)
C1

Intercept (MSE) 2.50 (11.43) 
0.36 (0.31) 2.18 (1.78) 1.88 (1.12) 1.46 (1.04) 
0.10 (2.35) 0.37 (1.37)
Slope (MSE) �26.92 (15.13) 0.63 (0.05) 5.16 (1.14) 1.53 (1.59) �28.34a (1.33) 6.73 (0.30) 9.34 (0.69)

C2
Intercept (MSE) 4.89 (13.03) 0.44 (0.23) 7.77 (11.67) 3.75 (2.86) 3.54 (4.46) �10.20a (80.75) 0.72 (1.23)
Slope (MSE) �11.79 (21.51) 
0.32 (0.02) �12.23 (1.69) 
4.71 (2.58) �30.13 (2.30) �23.19a (1.75) �19.92 (1.29)

C3
Intercept (MSE) 0.78 (25.51) 0.28 (0.26) 9.40 (16.18) 2.92 (1.60) �13.61a (111.05) �38.26a (293.72) �10.50a (27.84)
Slope (MSE) 18.83 (19.12) 
0.98 (0.01) �34.39a (3.36) 3.12 (3.95) �53.59 (3.52) �52.22a (3.85) �75.79 (11.90)
Quadratic (MSE) �33.83 (2.24) 
3.47 (0.02) �10.99 (0.23) �34.76 (0.58) �56.14 (0.42) �75.28 (0.60) �100.38 (0.82)

Variances
I with S (MSE) �40.40a (9.45) �88.02 (3.33) �172.18 (6.84) �133.80 (4.69) �196.50 (8.70) �267.78 (15.02) �320.26 (18.00)
Intercept (MSE) 5.16 (87.21) 19.54a (37.25) 21.12a (46.14) 8.11 (28.32) 19.56a (49.77) 24.89a (72.33) 66.07 (174.01)
Slope (MSE) �43.75 (2.76) 11.58a (0.58) 9.26 (0.50) 11.15a (0.51) 18.66a (0.68) 18.44a (0.66) 34.27a (1.11)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.

Table 11
Parameter Estimate Bias: 0.70/0.20/0.10 Mixture Class Proportions, Quadratic Conditions, 150 Cases

Poor separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �40.14 (0.42) 0.55 (0.70) �49.20 (0.36) �35.74 (0.45) �34.48 (0.46) 
4.38 (0.67) �14.55a (0.60)
C2 proportion 83.63 (0.37) 
0.35 (0.20) 84.53 (0.37) 65.84 (0.33) 85.73 (0.37) 58.16 (0.32) 85.79 (0.37)
C3 proportion 113.74 (0.21) 
3.16 (0.10) 175.36 (0.28) 118.52 (0.22) 69.90 (0.17) �85.63 (0.01) �69.68a (0.03)
C1

Intercept (MSE) 2.85 (12.56) 
0.33 (0.30) 2.47 (2.08) 2.01 (1.22) 1.93 (1.42) 
0.23 (2.75) 0.27 (0.77)
Slope (MSE) �29.97 (17.40) 
0.05 (0.06) 0.71 (1.65) 1.92 (1.59) �23.63a (1.06) 15.91a (0.30) 5.28 (0.85)

C2
Intercept (MSE) 6.40 (14.38) 0.71 (0.27) 7.77 (11.41) 3.91 (3.03) 4.70 (5.22) �13.59a (109.42) 2.21 (1.47)
Slope (MSE) �17.14 (21.33) 
0.30 (0.02) 
6.04 (0.96) 
2.10 (2.45) �28.66 (1.97) �29.55a (2.97) �11.44 (1.30)

C3
Intercept (MSE) 
0.12 (22.10) 
0.01 (0.19) 6.04 (7.88) 2.84 (1.62) 
6.80 (72.01) �49.22 (446.27) �18.23a (64.31)
Slope (MSE) 26.89 (21.19) 
1.14 (0.01) �35.71a (3.32) 
8.20 (3.45) �47.17 (2.67) �52.73a (3.83) �136.98 (23.71)
Quadratic (MSE) �52.46 (2.54) 
5.34 (0.02) �12.20 (0.22) �35.83 (0.52) �53.83 (0.40) �98.94 (0.79) �98.29 (0.78)

Variances
I with S (MSE) �56.69a (9.78) �87.68 (3.21) �152.68 (5.51) �146.49 (5.04) �186.58 (7.32) �258.00 (12.97) �343.57 (21.34)
Intercept (MSE) 2.21 (76.30) 17.02a (32.00) 13.53a (32.88) 9.23 (27.31) 9.19 (30.44) 18.17a (57.49) 47.25 (85.76)
Slope (MSE) �45.47 (2.95) 12.50a (0.61) 7.01 (0.44) 10.44a (0.50) 18.31a (0.66) 24.03a (1.03) 14.63a (0.77)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.
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for C1 (the majority class) was properly recovered under high
and moderate class separation. Again, ML/EM, MCMC-diffuse,
MCMC-partial, and MCMC-wrong consistently overestimated
the class size for the minority class C3. In contrast, MCMC-

weak and MCMC-data-driven consistently underestimated the
size of C3. With respect to the intercept and slope parameters,
MCMC-wrong, MCMC-weak, and MCMC-data-driven pro-
duced the highest bias levels. Results indicated that when a

Moderate separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�37.28 (0.44) 0.73 (0.71) �48.40 (0.36) �33.98 (0.46) �33.06 (0.47) 
2.43 (0.68) 
8.34 (0.64)
81.99 (0.36) 
0.61 (0.20) 82.40 (0.36) 69.77 (0.34) 91.16 (0.38) 50.53 (0.30) 57.77 (0.32)
96.96 (0.20) 
3.87 (0.10) 174.04 (0.27) 98.35 (0.20) 49.08 (0.15) �84.05 (0.02) �57.16 (0.04)

2.59 (12.09) 
0.34 (0.31) 2.29 (2.00) 2.01 (1.21) 1.73 (1.34) 1.02 (0.51) 0.23 (0.93)
�23.34 (16.45) 0.58 (0.05) 7.57 (1.35) 3.69 (1.59) �27.68a (1.28) �15.85a (0.28) 13.75a (0.96)

5.57 (13.54) 0.50 (0.23) 7.40 (10.70) 3.82 (2.92) 4.33 (4.64) 
6.36 (17.05) 0.55 (2.47)
�17.45 (21.90) 
0.42 (0.02) 
8.11 (2.02) 
4.73 (2.50) �27.76 (2.04) �10.43a (0.79) �23.91 (3.33)

0.98 (23.70) 0.23 (0.23) 8.62 (13.15) 3.04 (1.75) 
9.17 (82.54) �50.04a (421.73) �12.44a (34.98)
20.74 (20.06) 
1.11 (0.01) �32.70 (3.20) 
1.62 (3.69) �50.95 (3.11) �27.87a (2.22) �98.85 (16.29)

�43.56 (2.45) 
4.31 (0.02) �16.17 (0.24) �35.57 (0.54) �51.91 (0.40) �100.73 (0.82) �98.02 (0.78)

�52.24a (9.66) �85.80 (3.29) �171.43 (6.64) �136.75 (4.86) �191.34 (7.93) �49.10 (4.51) �347.46 (19.31)
5.68 (85.08) 18.37a (35.19) 18.73a (40.07) 7.60 (29.98) 13.71a (38.67) 
3.55 (80.48) 50.91 (99.21)

�44.51 (2.82) 10.99a (0.57) 8.81 (0.56) 9.10 (0.48) 19.69a (0.70) �12.49a (0.12) 47.93a (1.79)

Very poor separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�43.79 (0.39) 0.41 (0.70) �50.99 (0.34) �40.29 (0.42) �38.28 (0.43) 17.37 (0.82) �20.57a (0.56)
76.92 (0.35) 
0.27 (0.20) 77.69 (0.36) 63.88 (0.33) 83.42 (0.37) �11.07 (0.18) 80.65 (0.36)

152.72 (0.25) 
2.35 (0.10) 201.58 (0.30) 154.28 (0.25) 101.15 (0.20) �99.48 (0.00) �17.29 (0.08)

3.81 (16.18) 
0.41 (0.30) 3.18 (3.19) 1.93 (1.16) 2.46 (1.93) 
1.07 (2.21) 2.46 (5.44)
�32.27 (19.03) 0.61 (0.05) 
0.03 (1.34) 8.10 (1.52) �24.71 (1.01) 3.80 (0.20) 9.35 (0.54)

7.61 (16.57) 2.05 (0.87) 8.22 (13.00) 4.71 (4.24) 6.09 (7.53) �23.85a (184.70) 5.02 (4.77)
�15.35 (21.60) 
0.28 (0.02) 
3.47 (1.73) 
0.58 (2.19) �28.63 (1.95) �11.84a (2.51) �22.78 (1.38)


2.96 (19.35) 
1.37 (0.44) 1.77 (1.72) 1.22 (0.47) 
5.48 (41.95) �59.83 (657.87) �12.83a (48.41)
32.92 (20.04) 
1.20 (0.01) �42.55 (3.29) �27.96 (3.80) �46.03 (2.42) �35.59a (1.44) �55.09 (7.41)

�74.91 (2.69) 
5.06 (0.02) �20.07 (0.18) �26.29 (0.41) �48.94 (0.36) �99.57 (0.80) �99.08 (0.80)

�43.48 (8.95) �75.29 (2.85) �143.13 (5.08) �139.62 (4.93) �143.93 (4.80) �142.30 (4.95) �214.13 (7.41)

6.33 (67.08) 17.57 (30.20) 6.81 (23.40) 11.04a (27.93) 0.61 (20.74) 
4.59 (17.17) 22.09 (22.24)

�47.81 (3.21) 11.02 (0.61) 9.81 (0.47) 8.37 (0.54) 17.93a (0.69) 48.83a (2.98) 23.04a (0.74)
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clear majority latent class was present, recovery appeared to be
best when an informative prior was used. By increasing the total
sample size to n � 800, some of the high bias levels decreased
in the trajectory parameters. However, high bias in the latent

class proportions tended to remain even with the increased
sample size.

Finally, results for the 0.45/0.45/0.10 latent class proportions
are presented in Tables 12–13 for the linear trajectory condi-

Table 12
Parameter Estimate Bias: 0.45/0.45/0.10 Mixture Class Proportions, Linear Conditions, 150 Cases

High separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �12.34a (0.39) 
0.11 (0.45) �24.45 (0.34) 
9.93 (0.41) 
1.66 (0.44) �16.82a (0.37) 6.02 (0.48)
C2 proportion �16.11a (0.38) 0.22 (0.45) �22.63 (0.35) �20.86 (0.36) 
9.51 (0.41) 13.89 (0.51) 
9.80 (0.41)
C3 proportion 128.03 (0.23) 
0.51 (0.10) 211.86 (0.31) 138.54 (0.24) 50.25 (0.15) 13.16 (0.11) 17.01 (0.12)
C1

Intercept (MSE) 1.33 (14.62) 
0.45 (0.41) 
0.32 (0.74) 0.42 (0.31) 
1.32 (0.98) 1.16 (3.80) 
0.70 (1.32)
Slope (MSE) 
0.39 (4.57) 1.36 (0.02) 6.32 (0.33) 6.73 (0.27) 
0.93 (0.23) 0.31 (0.51) 4.37 (0.39)

C2
Intercept (MSE) 2.13 (7.40) 0.41 (0.36) 4.37 (4.02) 2.26 (1.15) 0.97 (1.06) 0.95 (1.66) 0.96 (0.82)
Slope (MSE) �21.06a (7.48) 
0.70 (0.03) 
9.45 (0.50) 
7.10 (0.46) 
7.11 (0.31) 
3.27 (0.29) 
8.05 (0.51)

C3
Intercept (MSE) 1.16 (26.39) 0.26 (0.21) 8.79 (12.23) 2.99 (1.55) 
4.04 (27.11) �18.41a (129.76) 
2.92 (11.88)
Slope (MSE) 25.34 (7.39) 0.02 (0.01) 16.65 (0.72) 20.22 (0.92) �31.73a (1.45) 
6.41 (0.62) 
2.71 (0.72)

Variances
I with S (MSE) 26.50 (7.68) �55.83 (2.14) �79.03 (2.67) �59.81 (2.32) �114.58 (3.69) �64.98 (3.35) �121.93 (4.73)
Intercept (MSE) 
1.71 (81.19) 14.46a (32.79) 28.09 (53.07) 4.08 (21.72) 17.99 (34.34) 13.84 (44.95) 36.02 (75.86)
Slope (MSE) �84.79 (4.55) 15.27a (0.61) 
7.58 (0.41) 
1.92 (0.41) 
2.36 (0.48) 22.42a (0.85) 10.00a (0.58)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.

Table 13
Parameter Estimate Bias: 0.45/0.45/0.10 Mixture Class Proportions, Linear Conditions, 150 Cases

Poor separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �22.98 (0.35) 
0.43 (0.45) �26.33 (0.33) �14.80 (0.38) 
7.87 (0.41) �10.49 (0.40) 
1.84 (0.44)
C2 proportion �13.51a (0.39) 0.21 (0.45) �23.45 (0.34) �24.85 (0.34) �11.06 (0.40) 6.23 (0.48) 
0.42 (0.45)
C3 proportion 164.24 (0.26) 0.99 (0.10) 224.01 (0.32) 178.44 (0.28) 85.21 (0.19) 19.17 (0.12) 10.16 (0.11)
C1

Intercept (MSE) 2.68 (18.26) 
0.46 (0.39) 0.23 (0.88) 0.50 (0.33) 
0.91 (0.85) 0.38 (2.09) 0.26 (1.93)
Slope (MSE) 
2.22 (4.96) 1.35 (0.02) 6.68 (0.35) 8.53 (0.32) 
2.20 (0.24) 6.58 (0.45) 5.18 (0.69)

C2
Intercept (MSE) 3.47 (7.49) 0.60 (0.35) 4.68 (4.52) 2.31 (1.16) 1.91 (1.31) 1.66 (1.76) 2.12 (1.29)
Slope (MSE) �22.19 (7.55) 
0.69 (0.03) �10.71a (0.52) 
9.30 (0.54) 
6.26 (0.25) 
5.58 (0.31) 
9.82 (0.38)

C3
Intercept (MSE) 
1.09 (22.64) 
0.09 (0.15) 4.25 (3.68) 2.08 (0.89) 
3.16 (18.12) �21.82a (164.63) 
9.32 (37.74)
Slope (MSE) 35.76 (8.17) 
0.02 (0.01) 18.69 (0.65) 20.62 (0.81) �24.98a (1.02) �12.46a (0.83) 
3.71 (1.39)

Variances
I with S (MSE) 34.18a (7.50) �55.65 (2.12) �82.58 (2.55) �77.98 (2.44) �117.10 (3.58) �101.85 (3.66) �123.85 (4.75)
Intercept (MSE) �10.10a (82.04) 12.83a (27.90) 16.84 (31.80 7.13 (22.23) 12.01 (26.78) 18.04 (44.05) 25.79 (51.09)
Slope (MSE) �90.05 (4.89) 14.68a (0.60) 
7.00 (0.38) 
5.10 (0.41) 
2.08 (0.46) 9.86 (0.58) 12.96a (0.54)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.
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tions and in Tables 14–15 for the quadratic conditions. Tables
12–13 indicate that there was a problem in recovering latent
class proportions since each class exhibited high bias under
six of the seven estimation conditions, with the exception

being MCMC-informative where latent class proportions were
well recovered. Note that MCMC-weak and MCMC-data-
driven both unexpectedly showed lower bias levels under the
very poor class separation level (MD � 0.5), however, these

Moderate separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�17.75 (0.37) 
0.16 (0.45) �25.34 (0.34) �11.94 (0.40) 
4.65 (0.43) 2.44 (0.46) 13.25a (0.51)
�14.20a (0.39) 0.17 (0.45) �23.17 (0.35) �22.98 (0.35) �10.16 (0.40) 
4.94 (0.43) �16.67 (0.37)

143.81 (0.24) 
0.04 (0.10) 218.29 (0.32) 157.17 (0.26) 66.65 (0.17) 11.26 (0.11) 15.15 (0.12)

2.02 (16.55) 
0.43 (0.38) 
0.08 (0.78) 0.46 (0.34) 
1.13 (0.94) 
0.73 (2.20) 
1.19 (1.50)

0.36 (4.93) 1.40 (0.02) 7.71 (0.32) 7.08 (0.28) 
1.10 (0.23) 3.26 (0.17) 7.58 (0.29)

2.95 (7.34) 0.43 (0.35) 4.53 (4.32) 2.26 (1.14) 1.42 (1.09) 0.39 (3.14) 0.99 (0.66)
�21.20 (7.73) 
0.65 (0.03) �10.51a (0.58) 
8.01 (0.47) 
6.78 (0.27) 3.05 (0.33) 
8.59 (0.34)

0.14 (24.26) 0.18 (0.18) 6.77 (7.91) 2.72 (1.34) 
3.13 (20.22) �15.22a (114.88) 
5.13 (14.06)
27.53a (7.42) 
0.07 (0.01) 17.52 (0.69) 21.15 (0.91) �28.50a (1.23) 
8.45 (0.49) 
2.29 (0.98)

28.10a (7.56) �53.26 (2.13) �82.46 (2.62) �66.79 (2.36) �117.18 (3.68) �110.88 (3.36) �112.21 (4.22)

5.05 (81.00) 12.99a (30.32) 22.22 (40.32) 5.73 (21.52) 15.50 (31.38) 17.44 (44.90) 31.49 (66.08)

�87.73 (4.76) 14.93a (0.61) 
7.00 (0.40) 
3.51 (0.40) 
1.25 (0.46) 21.10a (0.47) 8.83 (0.57)

Very poor separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�29.93 (0.32) 
1.07 (0.45) �27.32 (0.33) �21.08 (0.36) �12.51 (0.39) 
6.27 (0.42) 
0.90 (0.45)

9.13 (0.41) 0.53 (0.45) �23.09 (0.35) �25.99 (0.33) �12.58 (0.39) 4.20 (0.47) 1.66 (0.46)
175.76 (0.28) 2.40 (0.10) 226.85 (0.33) 211.82 (0.31) 112.93 (0.21) 9.32 (0.11) 
3.42 (0.10)

3.70 (19.53) 
0.68 (0.42) 0.70 (1.01) 0.24 (0.27) 
0.46 (0.71) 0.07 (1.88) 0.52 (3.79)

0.25 (5.37) 1.16 (0.02) 7.86 (0.40) 9.54 (0.37) 
3.34 (0.24) 7.49 (0.18) 11.82a (1.11)

4.80 (8.61) 1.51 (0.60) 5.22 (5.49) 2.93 (1.71) 2.88 (2.08) 
0.19 (20.79) 2.94 (2.16)
�21.58 (6.97) 
0.78 (0.03) �12.59 (0.56) �10.17 (0.51) 
5.93 (0.25) 
6.64 (0.23) �19.09 (0.91)


5.82 (25.32) 
1.75 (0.65) 
1.50 (3.12) 
0.34 (0.16) 
5.02 (13.86) �28.95a (250.83) �22.34 (144.48)
38.54 (7.90) 0.08 (0.00) 21.52 (0.78) 18.50 (0.68) �19.68a (0.77) �17.94a (0.79) �24.39 (3.61)

28.06a (7.41) �66.35 (2.28) �96.41 (2.79) �101.71 (3.03) �118.68 (3.58) �142.31 (4.36) �165.35 (6.73)
�18.90a (77.52) 15.07a (28.01) 7.40 (21.49) 13.98a (25.30) 6.96 (22.86) 15.29 (42.20) 18.51 (34.22)
�90.84 (4.95) 14.84a (0.64) 
7.07 (0.41) 
8.84 (0.41) 
3.90 (0.44) 22.07a (0.85) 8.32 (0.58)
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results should be interpreted along with the fact that conver-
gence rates were very low for these cells. Overall, the highest
bias by far was found in the C3 proportion, which represents
the minority latent class. ML/EM, MCMC-diffuse, and

MCMC-partial exhibited the most difficulty in accurately re-
covering the trajectory shapes. Not surprisingly, MCMC-
informative was still largely able to properly recover latent
class trajectories.

Table 14
Parameter Estimate Bias: 0.45/0.45/0.10 Mixture Class Proportions, Quadratic Conditions, 150 Cases

High separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 proportion �13.84a (0.39) 0.14 (0.45) �22.59 (0.35) 
9.41 (0.41) 
1.08 (0.45) �10.52a (0.40) 6.33 (0.48)
C2 proportion �12.65a (0.39) 0.28 (0.45) �20.92 (0.36) �19.66 (0.36) �13.46 (0.39) �18.13 (0.37) 2.47 (0.46)
C3 proportion 119.19 (0.22) 
1.88 (0.10) 195.80 (0.30) 130.83 (0.23) 65.44 (0.17) 128.93 (0.23) �39.60a (0.06)
C1

Intercept (MSE) 0.69 (13.42) 
0.60 (0.40) 0.09 (0.83) 0.24 (0.34) 
0.77 (0.79) 
5.80 (10.96) 
0.27 (1.52)
Slope (MSE) �18.52 (18.26) 0.67 (0.03) 9.79 (2.50) 7.66 (1.89) �24.21a (1.15) 4.90 (0.12) 30.35 (1.17)

C2
Intercept (MSE) 2.97 (8.71) 0.43 (0.33) 4.25 (3.98) 2.09 (1.07) 1.27 (1.47) 
1.78 (8.84) 
0.27 (0.98)
Slope (MSE) �11.08a (20.23) 
0.31 (0.05) 
2.46 (2.20) 1.24 (2.51) �22.70a (1.59) 
6.31 (0.22) �25.16a (1.67)

C3:
Intercept (MSE) 2.50 (21.97) 0.34 (0.21) 8.32 (11.71) 3.16 (1.72) 
7.73 (60.37) 
1.38 (13.02) �12.87a (54.44)
Slope (MSE) 20.54 (20.90) 
0.99 (0.01) �22.75 (2.45) 2.94 (3.26) �43.67 (2.52) 
0.42 (0.23) �67.16 (7.29)
Quadratic (MSE) �46.10 (2.60) 
3.39 (0.02) �27.12 (0.26) �42.31 (0.53) �58.78 (0.43) �92.67 (0.71) �99.17 (0.80)

Variances
I with S (MSE) �77.74 (11.37) 104.81 (4.04) �198.79 (7.51) �152.02 (5.53) �218.52 (9.73) �245.11 (10.93) �258.03 (12.92)
Intercept (MSE) 14.81 (98.59) 20.75 (40.73) 26.54 (51.93) 13.38a (36.33) 23.80 (56.89) 48.16a (104.68) 35.37 (105.13)
Slope (MSE) �46.49 (2.94) 11.99a (0.60) 10.41a (0.45) 9.60 (0.53) 19.34a (0.73) 23.11a (0.81) 15.15a (0.42)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.

Table 15
Parameter Estimate Bias: 0.45/0.45/0.10 Mixture Class Proportions, Quadratic Conditions, and 150 Cases

Poor separation

Parameter ML/EM Info Default diffuse Partial Wrong Weak Data driven

C1 Proportion �18.68 (0.37) 
0.13 (0.45) �23.60 (0.34) �14.30 (0.39) 
7.46 (0.42) 29.33a (0.58) �67.26a (0.15)
C2 Proportion �16.64a (0.38) 0.30 (0.45) �20.97 (0.36) �22.96 (0.35) �13.65 (0.39) �12.59a (0.39) 79.75a (0.81)
C3 Proportion 158.94 (0.26) 
0.75 (0.10) 200.56 (0.30) 167.65 (0.27) 95.00 (0.20) �75.34a (0.02) �56.23a (0.04)
C1

Intercept (MSE) 1.37 (14.20) 
0.60 (0.38) 0.10 (0.96) 0.34 (0.33) 
0.46 (0.74) 
0.58 (38.81) 9.52 (20.89)
Slope (MSE) �25.27 (18.36) 0.39 (0.03) 14.25 (1.72) 10.03 (2.21) �23.69a (1.06) 18.96 (3.12) 88.69 (7.08)

C2
Intercept (MSE) 4.09 (10.06) 0.60 (0.33) 4.44 (4.20) 2.17 (1.09) 2.28 (1.85) �54.48a (65.30) 2.82 (1.46)
Slope (MSE) �12.47 (19.67) 
0.58 (0.05) 
3.64 (2.08) 2.90 (2.47) �20.46a (1.50) �64.51a (1.81) �18.53 (0.55)

C3
Intercept (MSE) 0.18 (17.22) 
0.01 (0.12) 4.39 (4.12) 2.33 (40.72) 
5.11 (48.88) �99.99 (439.44) �10.36a (16.99)
Slope (MSE) 29.48 (21.38) 
1.00 (0.01) �29.61 (2.28) 
7.54 (2.77) �43.44 (2.43) �157.06 (2.88) �61.10a (3.36)
Quadratic (MSE) �68.23 (2.71) 
3.89 (0.02) �19.01 (0.19) �38.32 (0.56) �52.48 (0.38) 
 (0.80) �87.47 (0.62)

Variances
I with S (MSE) �78.01 (10.67) �97.36 (3.86) �162.58 (5.27) �158.17 (5.60) �186.19 (7.27) 113.65 (9.89) �286.73 (11.84)
Intercept (MSE) 6.94 (84.69) 17.96a (34.20) 17.81 (43.23) 15.17a (34.20) 15.41 (36.68) 1.44 (24.98) 26.26 (22.33)
Slope (MSE) �48.35 (3.16) 11.58a (0.61) 6.84 (0.39) 8.36 (0.45) 14.40a (0.55) 813.00 (1.25) 21.42 (0.18)

Note. Bold values indicate problematic bias levels greater than 10.00% for n � 150 cases. Numbers in parentheses under C1–C3 class proportions represent actual
mixture class proportions. Numbers in parentheses for growth parameters and variances represent mean squared error (MSE) values. ML/EM � maximum
likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using informative priors; Default diffuse � Bayesian estimation
using default Mplus default diffuse priors; Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; Data driven � Bayesian estimation using data-driven priors; C1 �
Latent Class 1; C2 � Latent Class 2; C3 � Latent Class 3; I with S � correlation between intercept and slope; MSE � mean squared error: The variance of the
estimates across the replications plus the square of the bias.
a Indicates that percentage bias decreased below 10.00% when sample sizes were increased to n � 800.
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Results were relatively comparable for the quadratic trajectory
conditions presented in Tables 14–15. Specifically, MCMC-
informative was the only estimation level that did not exhibit
problematic bias in latent class proportions. MCMC-wrong was

able to properly recover the majority class C1 under the two higher
class separation levels. ML/EM, MCMC-weak, and MCMC-data-
driven all still appeared to have the most difficulty in recovering
the trajectory shapes, regardless of class separation. MCMC-

Moderate separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�16.86 (0.37) 0.07 (0.45) �21.98 (0.35) �12.25a (0.39) 
4.28 (0.43) �13.39 (0.39) 4.20 (0.47)
�13.92 (0.39) 0.27 (0.45) �19.68 (0.36) �21.14 (0.35) �15.60 (0.38) 27.99a (0.58) 1.40 (0.46)
138.53 (0.24) 
1.51 (0.10) 187.48 (0.29) 150.27 (0.25) 89.46 (0.19) �65.70 (0.03) �25.19a (0.07)

1.21 (15.15) 
0.61 (0.38) 
0.19 (0.96) 0.34 (0.32) 
0.53 (0.78) 1.80 (1.83) 1.23 (1.63)
�26.31 (19.00) 0.60 (0.03) 13.50 (1.67) 8.85 (1.91) �21.79a (1.01) 20.87a (0.47) 24.88a (0.97)

3.68 (9.54) 0.48 (0.33) 4.10 (3.67) 2.09 (1.04) 1.82 (1.44) 
1.45 (1.20) 
0.39 (1.08)
�13.59 (20.21) 
0.48 (0.05) 
5.28 (1.81) 0.23 (2.42) �23.42a (1.82) 
9.82 (0.30) �18.94a (1.45)

2.04 (19.31) 0.29 (0.17) 6.19 (7.44) 2.90 (1.51) 
2.62 (27.05) �47.28 (413.92) �17.66a (106.56)
26.83 (21.39) 
0.96 (0.01) �25.53 (1.96) 1.34 (2.98) �39.94 (2.05) �47.66 (3.60) �106.37 (20.03)

�56.69 (2.80) 
4.48 (0.02) �18.12 (0.17) �43.53 (0.51) �52.37 (0.39) �100.63 (0.82) �87.57 (0.68)

�83.07 (11.15) �103.90 (4.16) �184.54 (7.07) �149.44 (5.06) �213.27 (9.01) �291.88 (17.93) �369.68 (24.93)
12.15 (94.07) 19.69 (37.00) 25.20 (50.98) 11.73a (32.96) 20.76 (47.68) 8.18 (65.67) 33.47 (136.04)

�45.47 (3.09) 12.09a (0.62) 8.44 (0.47) 8.24 (0.49) 15.83a (0.69) 41.81 (0.79) 39.52a (1.15)

Very poor separation

ML/EM Info Default diffuse Partial Wrong Weak Data driven

�22.52 (0.35) 
0.80 (0.45) �26.57 (0.33) �20.05 (0.36) �11.48 (0.40) 34.57a (0.61) 37.69a (0.62)
�17.92 (0.37) 0.82 (0.45) �19.90 (0.36) �23.71 (0.34) �16.70 (0.37) �15.14a (0.38) �35.66 (0.29)
181.97 (0.28) 
0.06 (0.10) 209.10 (0.31) 196.91 (0.30) 126.81 (0.23) �87.47 (0.01) 
9.12 (0.09)

2.26 (16.23) 
0.82 (0.44) 0.57 (1.13) 0.18 (0.22) 0.06 (0.52) 0.03 (3.72) 
1.80 (1.89)
�28.57 (19.76) 0.22 (0.03) 14.95 (1.72) 14.53 (1.76) �24.50a (1.09) 33.03 (1.18) 44.93 (2.22)

5.45 (12.94) 1.61 (0.65) 5.15 (5.47) 3.04 (1.84) 3.30 (2.52) �17.57a (151.03) 1.53 (1.03)
�15.96 (21.18) 
0.71 (0.05) 
1.06 (1.14) 0.84 (2.03) �22.20a (1.49) �26.97a (2.27) �41.85 (4.55)


4.36 (18.93) 
1.62 (0.56) 
1.31 (1.19) 
0.12 (0.15) 
4.23 (7.39) �58.55 (673.72) �16.13a (87.16)
38.60 (19.76) 
1.06 (0.01) �25.13 (2.20) �16.09 (2.84) �38.33 (1.72) �53.73a (3.55) �107.14 (30.03)

�80.51 (2.62) 
3.64 (0.02) �27.91 (0.26) �39.57 (0.45) �47.50 (0.31) �100.29 (0.81) �100.62 (0.82)

�40.76 (9.22) �80.61 (3.19) �122.93 (4.20) �144.83 (4.79) �146.05 (4.92) �237.71 (10.98) �320.01 (17.17)

3.58 (69.31) 19.38a (33.44) 2.62 (23.89) 17.53a (35.07) 3.45 (22.85) 
4.15 (35.43) 22.27 (23.80)

�50.76 (3.38) 8.76 (0.58) 9.90 (0.48) 6.32 (0.49) 7.14 (0.45) 29.14a (0.90) 
0.49 (0.29)
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diffuse, MCMC-partial, and MCMC-wrong also showed some prob-
lematic bias levels in latent class proportions and trajectory shapes;
however, the prevalence and degree of bias was still less than some of
the other estimation conditions. With respect to total sample size, it is
important to note that many of the problematic bias levels remained
even under the larger sample size (i.e., n � 800).

Overall Bias Levels for Estimation Conditions

Tables 4–15 detailed information about the recovery of individual
parameters within each estimation level. However, it is also of interest
to examine how well the estimation levels compare to one another
overall. Figures 6, 7, 8, 9, 10, and 11 present a visual depiction of the
overall performance of each estimation level with respect to combined
bias rates across all parameters in the model. The overall mean and
median of the absolute-value bias percent rates are illustrated here for
each estimation level under n � 150 cases; similar plots for n � 800
can be made available upon request.14

Findings from Figures 6 –11 indicate that there is better
overall performance when a linear trajectory is present versus a

quadratic trajectory. Under the linear trajectory conditions,
ML/EM and MCMC-diffuse produced the higher overall abso-
lute bias levels when there was a true minority or majority
latent class. When class sizes were equivalent, MCMC-weak
showed the highest overall absolute bias levels under the linear
trajectory conditions. When a quadratic trajectory was intro-
duced, only MCMC-informative produced overall bias levels
that were within a reasonable range; the other conditions all
yielded much higher overall bias rates.

14 Absolute values of percentage bias were used here to compute overall
mean and median bias rates. This was done to prevent two parameters with
bias rates of 100% and 
100% from canceling each other out in a
misleading manner by averaging as if there was no bias present in that
estimation level at all. As a result, the direction of bias is not depicted in
the figures; however, the figures present the magnitude of overall bias for
each estimation level. The mean and median are both reported here as to
depict the patterns of outlier bias influence, where the mean bias level
would be skewed upward when one or more parameters had extreme bias
levels compared to the other parameters in the model.
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Figure 6.. Absolute overall bias levels for 0.33/0.33/0.33 latent class proportions, high and moderate separation. ML/
EM � maximum likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian estimation using
informative priors; Diffuse � Bayesian estimation using Mplus default diffuse priors; Partial � Bayesian estimation using
informative priors on a partial subset of parameters; Wrong � Bayesian estimation using weak and wrong (“inaccurate”)
priors; Weak � Bayesian estimation using weak priors; DD � data-driven priors; Quad � quadratic.
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Mean Squared Error

As mentioned, Tables 4–15 also include MSE values for each of
the parameter estimates. There are some notable patterns of MSE
that will be highlighted here. Overall, ML/EM, MCMC-weak, and
MCMC-data-driven produced the highest MSE values across all
cells of the study. In contrast, MCMC-informative produced no-
ticeably lower MSE value across the different cells of the study.
One additional pattern worthy of mention is that MSE values were
typically larger for the variance parameters compared to the
growth trajectory parameters across all estimation conditions; this
was especially the case for the variance of the intercept.

Concluding Remarks

The goal of this study was to assess the ability for growth
trajectories and latent class proportions to be properly recovered
under various estimation conditions. It was of particular interest to
examine the recovery of trajectories and latent class proportions

under the four levels of latent class separation, as well as different
relative class proportions across classes.

Discussion and Summary of Main Findings

MCMC-informative performed quite well overall in that it
was largely able to uncover small but substantively different
trajectories. As expected, the trajectory shapes were accurately
recovered across conditions when informative priors were
placed on the growth parameters. Latent class proportions were
also well recovered with the use of informative Dirichlet priors
on the class proportions. Overall, the parameter recovery results
indicated that this estimation level was optimal for identifying
small but real latent classes. These results are not too surprising
since the use of informative priors is akin to combining data
from the current study with the data from the previous studies
that are driving the informative prior (Gelman, Carlin, Stern, &
Rubin, 2004). This combination of information from previous
and current data effectively increases the sample size for the

0

10

20

30

40

50
ML/EM Info Diffuse Par�al Wrong Weak DD

A
bs

ol
ut

e 
Pe

rc
en

t B
ia

s 

Es�ma�on Levels 

Poor Separa�on, 0.33/0.33/0.33, Linear 

Mean

Median

0

10

20

30

40

50
ML/EM Info Diffuse Par�al Wrong Weak DD

A
bs

ol
ut

e 
Pe

rc
en

t B
ia

s 

Es�ma�on Levels 

Poor Separa�on, 0.33/0.33/0.33, Quad 

Mean

Median

0

10

20

30

40

50
ML/EM Info Diffuse Par�al Wrong Weak DD

A
bs

ol
ut

e 
Pe

rc
en

t B
ia

s 

Es�ma�on Levels 

Very Poor Separa�on, 0.33/0.33/0.33, Linear 

Mean

Median

0

10

20

30

40

50
ML/EM Info Diffuse Par�al Wrong Weak DD

A
bs

ol
ut

e 
Pe

rc
en

t B
ia

s 

Es�ma�on Levels 

Very Poor Separa�on, 0.33/0.33/0.33, Quad 

Mean

Median

Figure 7.. Absolute overall bias levels for 0.33/0.33/0.33 latent class proportions, poor and very poor
separation. ML/EM � maximum likelihood via the EM algorithm; EM � expectation maximization; Info �
Bayesian estimation using informative priors; Diffuse � Bayesian estimation using Mplus default diffuse priors;
Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian
estimation using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; DD �
data-driven priors; Quad � quadratic.
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analysis. This theoretical increase in sample size increases
power, hence, producing more accurate estimates that exhibit
less bias. Overall, these findings speak to the upper bound
performance of Bayesian GMM when “accurate” informative
priors are used.

Even in conditions where the mean hyperparameter was not
specified as the true growth parameter value, the Bayesian esti-
mation method resulted in reasonably good performance under
some higher class separation levels. In general, this performance
would depend on how different the prior mean is from the true
value and how much variability is allowed in the prior. This
finding indicates that there may be a range of “acceptable” levels
of informative priors that can still produce accurate recovery of
trajectories. In order to examine this topic further and assess the
degree to which (in)accurate priors can affect estimates, results
from a sensitivity-type analysis for the accuracy of priors would
potentially provide insight to the impact of priors on trajectory
recovery.

The poor performance of MCMC-diffuse is in line with Rich-
ardson and Green (1997). Specifically, MCMC-diffuse was spec-

ified as a prior of � (0, 1010) for normally distributed parameters.
With such a large variance component, the priors were acting as
almost improper noninformative priors. Richardson and Green
(1997) discuss the notion that the use of fully noninformative
priors will not lead to obtaining proper posterior distributions in
the univariate mixture modeling context (see also: Diebolt &
Robert, 1994; Roeder & Wasserman, 1997). As a result, it is not
surprising to find such high bias levels in the MCMC-diffuse
conditions in the current study. Richardson and Green (1997)
suggest the use of weakly informative priors as a more appropriate
solution. The findings of the current investigation suggest that
more informative priors are necessary in the context of mixture
modeling.

Limitations of the Study Design and Conclusions

It should be noted here that there are several limitations to the
design and conclusions that can be drawn from the current study.
First, the informative and diffuse (as well as ML/EM) conditions are
not necessarily directly comparable conceptually speaking. Given that
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Figure 8.. Absolute overall bias levels for 0.70/0.20/0.10 latent class proportions, high and moderate separa-
tion. ML/EM � maximum likelihood via the EM algorithm; EM � expectation maximization; Info � Bayesian
estimation using informative priors; Diffuse � Bayesian estimation using Mplus default diffuse priors; Partial �
Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian estimation
using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; DD � data-driven
priors; Quad � quadratic.
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the informative prior conditions are more “confirmatory” in nature (as
discussed above), the results are conceptually different compared to
the more exploratory conditions that did not implement theory-based
knowledge into the model. The difference in conceptualizing these
methods may also in part help inform why results between informa-
tive and diffuse conditions (and ML/EM) were not comparable. In
fact, these two extremes may be representing different types of mod-
eling, with MCMC-diffuse being more exploratory and MCMC-
informative being more “confirmatory” in nature. Despite the con-
ceptual differences between the different forms of priors, the main
focus of this study was to assess the impact of different forms of priors
on the performance of GMM.

In addition, some of the conditions within this fully crossed
design might not reflect conditions found in the existing mixture
class literature. Specifically, within the 0.70/0.20/0.10 proportion
level, a sample size of 150 cases would yield only 15 cases in the
smallest class. This particular condition was included to help
provide a full picture of parameter recovery in relation to the other
conditions included here. Although some empirical mixture model

investigations have used comparable sample sizes (see e.g.,
Chung, Maisto, Cornelius, & Martin, 2004; Szapocznik et al.,
2004), working with latent class sample sizes this small may create
doubt for the substantive existence of such a small latent class and
also potentially increase problems related to empirical underiden-
tification in some cases (Kenny, 1979).

In order to prevent the size of the current simulation study from
becoming unwieldy, several potentially interesting conditions were
not examined in this investigation. For example, the MCMC-partial
estimation level only specified informative priors on a single subset of
parameters. A different result may be obtained if, for example, the
informative priors were specified for the slopes instead of the inter-
cepts (i.e., there was a priori knowledge about growth rates and not
initial performance levels). Likewise, it would also be interesting to
assess the performance of Bayesian GMM using different levels of
informativeness. Particularly, this study implemented variance hyper-
parameters for growth trajectory parameters that were 5% of the
population value to assess the upper bound of Bayesian GMM per-
formance. However, it may also be interesting to conduct a sensitivity
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Figure 9.. Absolute overall bias levels for 0.70/0.20/0.10 latent class proportions, poor and very poor
separation. ML/EM � maximum likelihood via the EM algorithm; EM � expectation maximization; Info �
Bayesian estimation using informative priors; Diffuse � Bayesian estimation using Mplus default diffuse priors;
Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian
estimation using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; DD �
data-driven priors; Quad � quadratic.
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analysis where various levels of hyperparameters are examined (e.g.,
10%, 20% of the population value) to assess at what point the
accuracy of the estimates declines as the variance hyperparameter
increases. Depaoli (in press) looked at a similar issue where hyper-
parameter values for “inaccurate” priors were examined in a similar
sensitivity-type analysis; however, it would also be of interest to asses
this issue in terms of latent class separation and “accurate” priors.

Defining Priors

Finally, the elicitation and defining process of priors is a
topic that has experienced a prolific presence in the Bayesian
literature (see e.g., Kass & Wasserman, 1996; O’Hagan, 1998).
There are arguably many different ways of eliciting and defin-
ing priors, and each of these methods likely carry different
degrees of accuracy/effectiveness within the estimation process.
The current investigation employed two main methods for
defining priors in the simulations. The first method used the
population value to inform the hyperparameter values. Al-
though this method is likely not indicative of an applied re-

search setting, it was included to examine an upper bound to the
performance of Bayesian GMM. The second method used a
data-driven prior in that estimates from ML/EM were used to
inform hyperparameter values. This method using results from
another estimation process (e.g., maximum likelihood) is per-
haps one of the more common forms of specifying data-driven
priors in the applied Bayesian literature (see e.g., Berger, 2006;
Brown, 2008; Candel & Winkens, 2003; van der Linden, 2008).
However, there are also other methods for defining priors that
were not assessed in the current study but that are worth briefly
discussing here.

There are several different methods for defining hyperparam-
eter values that are data-driven but that do not rely on initial
parameter estimation via maximum likelihood or akin. For
example, Raftery and Lewis (1996); Richardson and Green
(1997), and Wasserman (2000) have all constructed methods of
defining data-driven priors based on summary statistics (e.g.,
median, mean, variance, range of data) rather than parameter
estimates; for an extensive discussion of current data-driven
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Figure 10.. Absolute overall bias levels for 0.45/0.45/0.10 latent class proportions, high and moderate
separation. ML/EM � maximum likelihood via the EM algorithm; EM � expectation maximization; Info �
Bayesian estimation using informative priors; Diffuse � Bayesian estimation using Mplus default diffuse priors;
Partial � Bayesian estimation using informative priors on a partial subset of parameters; Wrong � Bayesian
estimation using weak and wrong (“inaccurate”) priors; Weak � Bayesian estimation using weak priors; DD �
data-driven priors; Quad � quadratic.
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methods, see Darniede (2011). These data-driven methods
all show promise for applied Bayesian research, but the
accuracy of the estimates produced through the various methods
has yet to be examined within latent variable models; this is
potentially an interesting area for future methodological re-
search.

Another method for defining priors and hyperparameter values
is typically referred to as prior elicitation. The elicitation of priors
is a process in which experts provide knowledge about an un-
known parameter and that knowledge is converted into a prior
(probability) distribution. O’Hagan et al. (2006) indicated that
elicitation is an important method for defining priors when expert
knowledge is the only viable source of information (e.g., assessing
the risk of terrorist attacks). Skrondal and Rabe-Hesketh (2004)
stated that one of the main reasons for adopting a Bayesian
approach using priors would be to specify prior distributions that
reflect elicited prior knowledge. They argued that this approach of
defining priors is “truly Bayesian” since priors are defined through
information gathered from previous research or elicited from con-
tent experts.

Regardless of the estimation process or the method used to
define priors, the important issue is whether or not the model is
useful and able to provide good predictions. In the case of the
current study, the Bayesian estimation framework showed promise
in accurately estimating GMMs under various conditions. The
intention is that these findings prove to be useful for applied
researchers assessing growth or change over time.
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Appendix

Class Separation via Manifest Variables Using Mahalanobis Distance

Mahalanobis distance (MD) using the manifest variables can be computed using the same equation
presented in footnote 7 if the implied manifest variable covariance matrix is homogeneous across classes,
which was the case here. In the current investigation, the implied (linear-trajectory) manifest variable values
for C2 were y1 
 y4 � 42.802, 46.802, 50.802, and 54.802, respectively. The implied manifest variable values
for C3 are presented in Table A1 for each of the four separation conditions named in the study (MD � 2.0,
1.5, 1.0, and 0.5, respectively).

The diagonal covariance matrix for the residuals was Diag[15,15,15,15] or

�
15 0 0 0

0 15 0 0

0 0 15 0

0 0 0 15
	.

Using the above values, the MD values based on the manifest variables were produced for each of the four
separation conditions named in the study; these MD values based on manifest variables can be found in Table
A2.

Note that relatively smaller residual variances will increase the separation between classes based on the
manifest variables and relatively larger residual variances will decrease separation (Lubke & Muthén, 2007).
For example, Table A3 illustrates how MD varies through changing only the residual variances—the manifest
values for y1–y4 remain constant in this example. Note that MD as implemented here requires the covariance
matrix be homogenous across classes, whereas other distance measures do not make this assumption (e.g., the
Kullback-Leibler divergence measure).

(Appendix continues)
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Table A1
Implied Manifest Values for the C3 Trajectory Under Four Class Separation Levels

Separation: Linear C3 Separation: Quadratic C3

Time High Moderate Poor Very poor High Moderate Poor Very poor

1 37.6 38.558 39.79 42.53 37.6 38.558 39.79 42.53
2 40.6 41.558 42.79 45.53 41.5 42.458 43.69 46.43
3 43.6 44.558 45.79 48.53 47.2 48.158 49.39 52.13
4 46.6 47.558 48.79 51.53 54.7 55.658 56.89 59.63

Note. C3 � Latent Class 3.

Table A2
Mahalanobis Distance Values Based on Manifest Variables for Four Separation Conditions

Separation: Linear C3 Separation: Quadratic C3

MD High Moderate Poor Very poor High Moderate Poor Very poor

MD 12.31 9.13 5.76 1.17 4.54 2.97 1.67 1.68
Sqrt(MD) 3.51 3.02 2.40 1.08 2.13 1.72 1.29 1.30

Note. C3 � Latent Class 3; Sqrt � square root; MD � Mahalanobis distance.

Table A3
Illustration of the Impact of Residual Variances on Mahalanobis Distance Values

First class: y1–y4 Second class: y1–y4
Diagonal residual

variance Mahalanobis distance

48,51,54,57 47,49,51,53 Diag[15,15,15,15] 2.0
48,51,54,57 47,49,51,53 Diag[20,20,20,20] 1.5
48,51,54,57 47,49,51,53 Diag[30,30,30,30] 1.0
48,51,54,57 47,49,51,53 Diag[60,60,60,60] 0.5

Note. Diag � diagonal.
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