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Abstract 

Structural equation model trees (SEM Trees) allow for the construction of decision trees with 

structural equation models fit in each of the nodes (Brandmaier, von Oertzen, McArdle, & 

Lindenberger, 2013). Based on covariate information, SEM Trees can be used to create distinct 

subgroups containing individuals with similar parameter estimates. Currently, the structural 

equation modeling component of SEM Trees is implemented in the R packages OpenMx and 

lavaan. We extend SEM Trees so that the models can be fit in Mplus, in the hopes that its 

efficiency and accessibility allow a broader group of researchers to fit a wider range of models. 

We discuss the Mplus Trees algorithm, its implementation, and its position among the growing 

number of tree-based methods in psychological research. We also provide several examples 

using publicly available data to illustrate how Mplus Trees can be implemented in practice with 

the R package MplusTrees. 
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Mplus Trees: Structural Equation Model Trees Using Mplus 

Understanding heterogeneity within a population is an important endeavor in the social 

sciences. As more intricate methods for modeling subpopulations develop, so too do our 

approaches for modeling the heterogeneity within them. With the introduction of multiple-group 

structural equation modeling (SEM) by Jöreskog (1971), we became better able to formally 

describe and understand differences between observable groups of people within a population. 

Multiple-group models, however, require that the groups be explicitly defined in advance of 

analysis. An alternative approach is that of decision trees, popularized by the seminal work of 

Breiman, Friedman, Olshen, and Stone (1984), but with roots in the automatic interaction 

detection framework of Sonquist and Morgan (1964). Unlike multiple-group models where the 

groups are constructed by a theory-driven choice, decision trees use a data-driven approach to 

empirically construct groups based on patterns in one or more covariates. 

Decision trees use recursive partitioning to repeatedly divide a covariate space into non-

overlapping regions orthogonal to the axes of the covariate space, such that individuals within 

the resulting regions are as similar as possible with regard to the outcome of interest while the 

difference between individuals from different regions is maximized. Since finding the optimal 

tree is a combinatorial hard problem, trees are typically grown by applying heuristics. This is 

usually done by testing all possible binary splits of all predictors in the covariate set and 

choosing the split that makes the outcome(s) in each of the two nodes (groups) resulting from 

that split as homogeneous as possible. These two daughter nodes are then subjected to this same 

splitting procedure, and so on, until a full tree is grown.  

 An example of a decision tree is provided in the left portion of Figure 1, while the right 

portion depicts a visualization of the recursively partitioned covariate space. The first split is 
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made on X1 such that values of X1 ≤ 1 are in the left branch and values of X1 > 1 are in the right 

branch. The left branch is then split on X2, such that X2 ≤ 3 leads to a new left branch and X2 > 3 

forms a new right branch. For those in the original right branch (those with values X1 > 1), this 

region is split such that those with X1 ≤ 2 form the new left branch of this subtree and those with 

X1 > 2 form the new right branch. In this way, the region R1 contains individuals who have 

values of X1 ≤ 1 and X2 ≤ 3, R2 has those with X1 ≤ 1 and X2 > 3, R3 has those with values of 1 < 

X1 ≤ 2, and R4 contains individuals with X1 > 2. Decision trees can be read as a set of rules that 

group together people who are similar on some outcome measure. Figure 1 illustrates two key 

points: (1) once a partition is created it can only be further subdivided, and (2) a variable can be 

reused to create additional partitions further down the tree (as in the case of X1). For further 

resources regarding decision trees, we refer readers to Strobl, Malley, and Tutz (2009), King and 

Resick (2014), and for a more comprehensive introduction, to James, Witten, Hastie, and 

Tibshirani (2013).    

Tree-based Methods in Psychological Research 

 Tree-based methods have become an increasingly popular approach for addressing 

longstanding problems in psychological research. One such problem is differential item 

functioning (DIF). DIF occurs when items have different characteristics when presented to some 

groups of people relative to others. For example, if an item is more difficult for females than 

males when accounting for the level of the construct, the item would be considered to exhibit 

DIF. It is clearly of great importance to be able to identify items that exhibit DIF, as most 

situations call for items that assess individuals in the same way irrespective of group 

membership. One popular way to identify DIF is to specify groups beforehand and test whether 

items perform differently for each group. In practice DIF is typically evaluated based on 
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demographics such as gender and ethnicity, but combinations of variables and groups based on 

continuous variables are not usually considered. Furthermore, conventional approaches to DIF 

require a priori knowledge of the optimal way to specify the grouping structure, despite this not 

being possible to know in practice as there are a near infinite number of ways to define groups 

such that items may perform differently in one group relative to another.  

 Decision trees provide a solution to DIF by testing various grouping structures based on 

combinations of variables. Several methods have recently been developed to apply decision trees 

in search of DIF. The Rasch tree method (Strobl, Kopf, & Zeileis, 2015), which allows decision 

trees to be applied to Rasch models, proceeds as follows. First, item parameters are estimated for 

the full sample. Next, the stability of item parameters is assessed with respect to each covariate 

via structural change tests (see e.g. Zeileis & Hornick, 2007). If there is significant instability in 

item parameters (indicating DIF), a split is made in the tree at the value of the covariate that 

improves model fit most. This procedure is repeated until no further significant splits can be 

made or the sample size in the nodes becomes too small to split.  

 One limitation of Rasch trees is that the recursive partitioning algorithm is applied at a 

global level, treating all items simultaneously. To address this, Tutz and Berger (2016) proposed 

item-focussed trees, which evaluate DIF in Rasch models at the item level. This method 

identifies the items responsible for the observed DIF and grows a decision tree for each of these 

items to better understand the grouping structure behind the DIF. Trees are grown in a manner 

similar to Rasch trees, except that permutation tests are used in lieu of structural change tests to 

determine whether a split should be made. Extensions have been developed to accommodate 

models for polytomous items such as the partial credit model for both Rasch trees (Komboz, 

Strobl, & Zeileis, 2018) and item-focussed trees (Bollman, Berger, & Tutz, 2018).  
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 Tree-based methods have also been used in the context of longitudinal models. For 

example, nonlinear longitudinal recursive partitioning (Stegmann, Jacobucci, Serang, & Grimm, 

2018) applies recursive partitioning to longitudinal mixed-effects models. Person-level 

covariates are used to grow trees based on growth trajectories, which can take on linear or 

nonlinear functional forms. In this approach, the user specifies the functional form of a 

longitudinal model and a set of covariates. The algorithm then uses recursive partitioning to split 

the data into nodes based on a function of the log-likelihood and the number of nodes. The 

resulting nodes then represent the expected growth trajectory for individuals within that node. 

This allows for the comparison of parameter estimates for different subgroups within the data.  

SEM Trees 

 The tree-based approaches discussed thus far have some limitations. Rasch trees, item-

focussed trees, and nonlinear longitudinal recursive partitioning are all designed for a specific 

type of model, whether it be an item response model or longitudinal model. A more general 

approach can be found in structural equation model trees (SEM Trees; Brandmaier, von Oertzen, 

McArdle, & Lindenberger, 2013). SEM Trees represents a fusion of SEM and decision trees, 

blending theory-based and data-driven modeling approaches. Essentially, the user specifies a 

structural equation model and a set of covariates, and a decision tree is generated with that model 

fit at each node. This allows for the comparison of parameter estimates across terminal nodes to 

understand how each group differs relative to the others on these estimates. In this way, SEM 

Trees possesses the benefits of exploratory analysis via the decision tree component while also 

allowing for the accommodation of a theoretical framework, via the SEM piece. 

The SEM Tree approach has an advantage over the previously discussed methods in that 

a structural equation model is fit at each node. This permits greater flexibility in the types of 
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models that can be specified and, as a result, the research questions that can be asked. The 

decision tree component of SEM Trees provides explicit well-defined groups that can be of great 

practical interest. For example, the method can be used to show that younger low-income males 

benefit from a treatment more so than older high-income males, a conclusion that would be 

challenging to reach from a regression perspective due to the interaction of several variables 

(especially if there are a large number of potential covariates). Additionally, such multi-variable 

interactions need not be specified in advance, allowing the potential discovery of a new subgroup 

of people for whom, for example, certain items do not load as highly onto a given factor as 

expected.  

Because the method we propose in this paper is related to SEM Trees, we discuss the 

SEM Trees algorithm in detail. To begin, the structural equation models fit using SEM Trees are 

estimated in the usual way. The case-wise minus two log-likelihood for a structural equation 

model fit using full information maximum likelihood can be written as 

 −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝐾𝐾𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙|𝚺𝚺𝑖𝑖| + (𝐱𝐱𝑖𝑖 −  𝛍𝛍𝑖𝑖)′ 𝚺𝚺𝑖𝑖−1(𝐱𝐱𝑖𝑖 −  𝛍𝛍𝑖𝑖) (1)  
    
where for individual i, 𝐾𝐾𝑖𝑖 is a constant depending on the number of complete-data points, 𝐱𝐱𝑖𝑖 is 

the vector of complete data, 𝚺𝚺𝑖𝑖 is the expected covariance matrix, and 𝛍𝛍𝑖𝑖 is the expected mean 

vector. The minus two log-likelihood (a.k.a. deviance) for the full sample of N individuals can be 

obtained by taking the sum over the individual log-likelihoods, so that 

 −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  ∑ (−2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖)𝑁𝑁
𝑖𝑖=1  . (2)  

    
Parameters are estimated such that they minimize this quantity (i.e., maximize the likelihood of 

the parameters under the model).  
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 For each covariate, the data is split along all possible splits of that covariate. For an 

ordinal or continuous covariate with J possible response options, there are J-1 possible splits for 

this covariate. For a categorical covariate with J observed levels, there are 2𝐽𝐽−1 − 1 possible 

splits that lead to non-empty partitions. For each candidate split, we can obtain two -2logL 

values. The first is the -2logL for the full data at that node, while the second is the -2logL of a 

two-group model with the data partitioned according to the split. It can easily be seen that the 

model fit to the full data is nested within the model fit to the partitioned data because the former 

is a constrained case of the latter as in a multiple-group model. Thus, these two models can be 

compared via a likelihood ratio test (LRT). The partition of the covariate that results in the 

greatest improvement in model fit is retained and the process is repeated in each daughter node. 

This process continues recursively until a stopping criterion is reached (e.g., a non-significant 

LRT, a maximal tree depth, or a minimal number of cases in a node).  

 SEM Trees is currently implemented in R (R Core Team, 2018), via the semtree 

package (Brandmaier & Prindle, 2018). The package uses other R packages to perform all SEM-

related operations (such as model specification and parameter estimation), and then implements 

the decision tree component to grow trees. The primary SEM package for SEM Trees is the 

OpenMx package (Neale et al., 2016), which allows for very flexible specification of structural 

equation models. However, the need to fully specify the entirety of the model with limited 

defaults can present a challenge for casual users1. An alternative is to use the lavaan package 

(Rosseel, 2012), where models tend to be much easier to specify. Additionally, the model syntax 

of lavaan as well as its output are very similar to that of Mplus (Muthén & Muthén, 1998–

2012), making it more accessible to Mplus users. However, lavaan is currently more limited in 
                                                            
1 We note however that Ωnyx (von Oertzen, Brandmaier, & Tsang, 2015) is a visual modeling tool that allows the 
automatic generation of OpenMx code from path diagrams. 
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the scope of models it can fit, compared to Mplus. The goal of the current work is not to replace 

the semtree package, but instead to capitalize on Mplus’ ability to easily specify a greater 

variety of models. 

 The purpose of this article is to introduce an implementation of the SEM Tree approach 

in Mplus which we call Mplus Trees. We describe our proposed approach, how it works, and the 

details of its software implementation. We then conduct a small simulation study and apply the 

method to three empirical datasets to demonstrate how it can be used in applied contexts. Finally, 

we discuss the place of Mplus Trees in the context of tree-based methods in psychological 

research, as well as implications for future research. 

Mplus Trees 

 We begin our description of Mplus Trees with the algorithm. Consider a structural 

equation model, M, specified by the user in advance. The algorithm begins by fitting M to the 

full dataset D, an N × (P + C) matrix with N rows (one for each individual) and (P + C) 

columns, where P of the columns hold observed variables explicitly modeled in M and the 

remaining C columns contain covariates to be used in constructing the decision tree. Thus, D can 

be decomposed into two submatrices, one with variables modeled in M, DN×P, and another with 

covariates not modeled in M, DN×C. Consider a covariate c with J observed response options. Let 

us, for simplicity, assume that c is an ordinal variable2. To examine c for a possible split at the 

first response option, j=1, the procedure can divide DN×P into two submatrices: those individuals 

with j=1 (D1) and those with j>1 (D2). For j=2, DN×P would be divided into individuals with j≤2 

                                                            
2 Categorical covariates can be handled similarly, either by breaking them up into a set of dichotomous indicator 
variables, or by examining all possible combinations of groups that result in individuals on either side of the split. 
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(D1) and those with j>2 (D2). This process can be repeated for all J-1 possible splits on c. The 

Mplus Trees algorithm proceeds by fitting M to each of the J-1 pairs of D1 and D2.  

 This procedure is repeated for all possible splits on all covariates in DN×C. The split that 

produces the lowest possible value of the -2logL is put forth as a candidate split. Whether the 

candidate split is actually made depends on user-specified criteria. A number of possible criteria 

are available, which we describe in greater detail in the section discussing implementation. If the 

criteria are not met, no split is made, and the current node becomes a terminal node. If the 

criteria are met, a split is made. This entails creating two daughter nodes, consisting of data 

subsets D1 and D2 from the relevant split. Each of these daughter nodes is treated as a new 

dataset and is recursively subjected to the same splitting procedure. This process continues until 

no further splits are retained because all nodes are considered terminal nodes. 

As a result of the tree-building process, each of the N individuals will be placed in the 

terminal node corresponding to the values observed on their C covariates. This results in a 

number of useful properties. For example, the tree itself can be read as a map directing the 

placement of individuals into terminal nodes according to the rules defined by the covariate 

splits. Additionally, since each terminal node contains different subsets of individuals, the 

estimates of the parameters expressed in M resulting from fitting M to each node will be distinct. 

The expected parameter estimates for a given pattern of covariates are thus the parameter 

estimates produced by fitting M to the appropriate terminal node. The -2logL for the full tree can 

also be obtained by summing the -2logL values in each terminal node. 

Software Implementation 
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 The Mplus Trees algorithm is implemented in the R package MplusTrees, which 

requires the Mplus program to be installed. The package weaves together several packages in 

order to construct the decision trees. First, the user must specify an Mplus model in R using the 

R package MplusAutomation (Hallquist & Wiley, 2018), which serves as an interface that 

allows R to communicate with Mplus. The model is sent to Mplus, Mplus fits the model, and the 

relevant results are extracted from the Mplus output files and read back into R. The construction 

of the trees is performed in R by the rpart package (Therneau & Atkinson, 2018), a package 

for recursive partitioning. In short, Mplus fits the models, rpart builds the trees, and 

MplusAutomation connects R to Mplus. The MplusTrees package coordinates this 

activity as well as organizes and presents the results, streamlining the entire process. 

 The primary function of the MplusTrees package is named MplusTrees(). As 

input, this function takes the Mplus script written in MplusAutomation form, the dataset as 

an R data frame, and a set of covariates upon which to split. An argument also exists to 

determine the conditions that control the splitting procedure. These conditions are defined by the 

rpart.control() function in the rpart package. The primary argument of this function is 

the complexity parameter, denoted cp. In general, the complexity parameter determines the 

relative improvement in model fit in order for the split to be retained. The rpart algorithm 

stems from the algorithmic modeling culture (Breiman, 2001), in which model selection is not 

based on statistical significance but on prediction accuracy. In this context, cp corresponds to the 

proportional improvement in the -2logL needed to perform a split. Thus, if a candidate split 

improves upon -2logLroot, the -2logL of the root node (the node containing the full sample before 

any splits are made), by 𝑐𝑐𝑐𝑐 ⋅ (−2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), it is made. Otherwise, the node becomes a terminal 

node. For example, if the -2logL of the root node was 1,000 and cp was .01, the candidate split 
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would need to improve the -2logL by 10 for that split to be retained. Other criteria can also be 

specified in addition to cp, including the minimum number of observations within a node needed 

to attempt a split, the minimum observations within a terminal node, the maximum depth of any 

node in the tree, and whether/how to use surrogate splits if covariate information is missing. 

 Using the proportional change in -2logL is advantageous in that it can be calculated quite 

easily and is available for all models for which Mplus produces the log-likelihood (e.g. when 

maximum likelihood estimation is used). We also choose it for practical reasons, based on the 

contexts in which we believe Mplus Trees can provide greater utility than other approaches 

discussed. Specifically, the relative ease with which one can specify and fit a relatively complex 

model (e.g. a multilevel structural equation model with random intercepts and slopes, a growth 

mixture model, etc.) in Mplus makes Mplus Trees a more attractive option when fitting trees to 

these models. However, complex models typically require greater sample sizes, and approaches 

based on p values can split based on trivial differences in large samples, leading to very large 

trees. The proportional change in -2logL can be conceptualized as a heuristic for relative effect 

size, in contrast to the type I error rate, α, which is a heuristic for statistical significance. 

 The output from the MplusTrees() function provides the tree structure as well as the 

model estimates at each terminal node. With regard to the tree structure, the output describes 

each node, including the splitting criterion (the variable that is split and the cutpoint at which the 

split is made), the number of individuals within that node, and whether the node is a terminal 

node. For each terminal node, the output gives the SEM parameter estimates (extracted from 

Mplus) of the model fit to the individuals within that node. It also provides the final terminal 

node location for each individual used to construct the tree. 

Practical Guidelines 
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 The challenge that comes in using proportional changes in log-likelihood as a splitting 

criterion is that no conventional standard exists for this metric (as opposed to a threshold such as 

p < .05). This is further complicated by the fact that the log-likelihood varies with sample size, 

and so it is unclear whether an objective standard is even achievable. Ideally, the cp parameter 

would be chosen via a procedure such as cross-validation. Though this feature is available in the 

MplusTrees package, it is likely that its application will be impractical for most users, given 

limitations further elucidated in the discussion. However, we encourage the user to at least try 

several values of the cp parameter (e.g. .01, .001, etc.) in order to determine the depth of tree that 

is most suitable in the context of the problem they are trying to solve. The cp parameter directly 

governs the depth of the tree. Smaller values of cp lead to more splits, larger values of cp lead to 

fewer splits. We leave it to the user to determine how many splits are practically useful given 

their goals, data, and model. We believe this recommendation to be consistent with the 

exploratory nature of decision trees as a whole, and hope that it encourages users to think more 

carefully about the tree-construction process. We also remind users that the chosen value of cp 

must be defensible in context. 

 For those concerned about using a cp value that is too small (i.e., too liberal), the p value 

from the LRT (as in SEM Trees) can also be used as an additional splitting criterion. When this 

option is used, the split must meet both criteria (a p value less than α and a proportional change 

in -2logL greater than cp) for the split to be retained. This can be especially useful in smaller 

samples, since the -2logL of the root node would be smaller, potentially causing small changes in 

the -2logL to lead to splits. The use of the LRT can help protect against spurious splits due to this 

phenomenon. It can also help reduce overfitting due to sampling variability, the negative effects 

of which are magnified in smaller samples.  
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 As mentioned in the previous section, the SEM part of the algorithm can be 

computationally burdensome. The decision tree algorithm performs an exhaustive search upon 

all possible subsets of data created by all possible splits of the covariates. Even if it takes only a 

few seconds to fit M, if M must be fit several thousand times, this can quickly add up. If M is 

especially complex and takes a nontrivial amount of time to fit even once, this can lead to 

extended computation times. As such, there are a number of options available in MplusTrees 

to shorten the computation time as much as possible. 

 One such feature is parallelization. Mplus allows for the use of multiple processors using 

the PROCESSORS option, which can be added into the model script in R, potentially decreasing 

the time it takes to fit M. Another option deals with how MplusTrees treats categorical 

(nominal) covariates. As mentioned above, a categorical covariate with J observed response 

options has 2𝐽𝐽−1 − 1 possible splits. If J is large, an option exists to convert the categorical 

variable into J indicator variables, one for each response option. This reduces the computational 

time from O(2𝐽𝐽) to O(J). If splitting on continuous covariates with a large number of different 

observed responses, we recommend first rounding these covariates or placing them in bins before 

using them to build trees. In such cases, we find that the gain achieved in finding the exact 

cutpoint is rarely worth the computational time spent evaluating each possible partition, not to 

mention that practical recommendations are typically made using rounded numbers anyway.  

Simulation Study 

 To investigate the performance of Mplus Trees, we performed a small simulation study. 

Data from N=2,000 individuals were generated using lavaan from a two-factor confirmatory 

factor analysis (CFA) model, with 4 items per factor. Factor and uniqueness variances were 
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simulated to be 1, and the covariance between factors was simulated to be 0.2. Only the loadings 

differed across people. Loadings were simulated to be equal for each item within a person, but 

the values these loadings took on differed between people, depending on their terminal node. 

Three dichotomous covariates were also simulated, X1, X2 and X3.  

The population tree structure can be found in Figure 2. Individuals in the first terminal 

node all had large factor loadings (0.9). Those in the second terminal node had medium factor 

loadings (0.6), and those in the third terminal node had small factor loadings (0.3). Values of the 

covariates were assigned to achieve the tree in Figure 2. Since the first split was to be made on 

X1, all those with loadings of 0.9 had values of X1=0, and those with loadings of 0.6 and 0.3 had 

values of X1=1. The second split was to be made between those with loadings of 0.6 and 0.3, so 

those with loadings of 0.6 had values of X2=0, and those with loadings of 0.3 had values of 

X2=1. Those with loadings of 0.9 were assigned values of 0 and 1 for X2 with equal probability, 

since no further splits should be made for these individuals. X3 was assigned in a similar way, 

since no splits were to be made on X3; it was simply a “noise” covariate. 

The two-factor CFA was fit to the data, with factor variances constrained to 1 and all 

loadings and uniqueness variances freely estimated. At each node, a minimum of N=200 

individuals was required to attempt a split, and each terminal node was required to have a 

minimum sample size of N=200 as well. The cp parameter was set to .001. This process was 

repeated 1,000 times, yielding 1,000 replications. 

The true population tree structure was correctly recovered in 95.5% of replications. 

Parameter estimates were fairly close to their population values. For those in the group with large 

loadings, the average estimated loading was 0.899 (vs. 0.9). The average covariance between 

factors was 0.200 (vs. 0.2), and the average uniqueness variance was 0.997 (vs. 1). For those 
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with medium loadings, the average estimated loading was 0.600 (vs. .6), the average covariance 

between factors was 0.201 (vs. 0.2), and the average uniqueness variance was 0.994 (vs. 1). For 

those in the group with small loadings, the average loading was 0.309 (vs. 0.3), the average 

covariance was 0.200 (vs. 0.2), and the average uniqueness variance was 0.921 (vs. 1). Of all the 

parameter estimates, only the uniqueness variance for individuals with loadings of 0.3 seemed to 

deviate slightly from the population value. However, most parameter estimates were unbiased, 

with values nearly identical to the population values. This demonstrates that Mplus Trees can 

accurately uncover both the tree structure and parameter estimates within terminal nodes. 

Illustrative Examples 

 In this section, we present three examples with empirical data to demonstrate how Mplus 

Trees can be used in practice. We simultaneously use this opportunity to present how the 

MplusTrees package can be used, including sample code. The datasets used are publicly 

available, so that the user may reproduce these examples. All R code is contained in the 

Appendix. We note that all splits found using the given values of cp were retained when also 

using the LRT criterion, allowing us to place more faith in the results. 

Example 1 

 In our first example, we use data from Holzinger and Swineford (1939) contained in the 

lavaan package. The data consist of mental ability scores for 301 seventh and eighth grade 

students from two different schools (see the documentation in the lavaan package for further 

details). The nine items of interest have been well studied, and are known to follow a three-factor 

model, with three items per factor. The first three items (visual perception, cubes, lozenges) are 

thought to load onto a visualization factor, the next three items (paragraph comprehension, 
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sentence completion, word meaning) load onto a verbal ability factor, and the final three items 

(speeded addition, counting of dots, discrimination of capitals) load onto a speed factor. 

 An Mplus script is written in R using the mplusObject() function from the 

MplusAutomation package to specify a three-factor CFA model, with R code below.  

script1 = mplusObject( 
  TITLE = "Example #1 - Factor Model;", 
  MODEL = "f1 BY x1-x3; f2 BY x4-x6; f3 BY x7-x9;", 
  usevariables = c('x1','x2','x3','x4','x5','x6','x7','x8','x9'),  
  rdata = HolzingerSwineford1939) 
 

The script contains the usual elements of an Mplus script. The TITLE and MODEL statements 

correspond to what they would in Mplus. The MODEL statement can, of course, be written over 

multiple lines, though we have placed it on a single line here to conserve space. The 

usevariables statement tells R which variables to use in the dataset, and rdata tells R 

which dataset to use. Next is the MplusTrees() function, with R code below. 

fit.ex1 = MplusTrees(script1, HolzingerSwineford1939, group=~id,  
rPartFormula=~sex+school+grade, control=rpart.control(minsplit=100, 
minbucket=100, cp=.01)) 

 

This function takes as arguments the script as well as the dataset. The group argument, 

beginning with a tilde, specifies the name of an identification (ID) variable in the dataset for each 

individual. This allows the user to identify the terminal node in which each individual is placed. 

If one is not provided, the program creates ID numbers based on each individual’s row number. 

The rPartFormula denotes which variables are to be used as covariates upon which splits 

should be considered. In our case, we use sex, school, and grade, all of which are dichotomous.  

The last piece is the control argument, which sets some control parameters via 

rpart.control(). These parameters have some initial default values (which are described 
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in its documentation), but can be changed. The first control parameter worth changing is the 

minsplit parameter, the minimum number of observations in a node in order to attempt a 

split. The second is the minbucket parameter, the minimum number of observations in a 

terminal node. These should be set to the minimum sample size required to fit the structural 

equation model. By default, minsplit is set to 20, and minbucket is set to 7. These sample 

sizes are clearly too small to fit our CFA, so we have set these values to 100. This number 

depends on the model and the data, but we note that raising it can save computation time by 

keeping MplusTrees from trying to fit models when samples are too small. 

 The most important control parameter is the cp parameter, which we set at .01 for this 

example. With minsplit and minbucket set to 100, this produced the same results as a cp 

value of .001 and smaller. When removing the minsplit and minbucket restrictions, 

smaller values such as .001 led to terminal nodes containing too few individuals (30) to yield 

trustworthy estimates when fitting a three-factor CFA. We encourage users to try multiple values 

of cp (e.g. .01, .001, etc.) and select one that produces the tree with the most practical utility. For 

example, a tree with dozens of terminal nodes is hardly interpretable, defeating the purpose of 

building it. The cp value can be chosen by using k-fold cross-validation (simply set the 

argument cv=T), but this approach has some practical limitations, described in the discussion. 

 The output provides several pieces of information, including the tree structure, terminal 

nodes for each individual, and parameter estimates. This example’s tree is given below. 

node), split, n, deviance, yval 
      * denotes terminal node 
 
1) root 301 7475.490 7475.490    
  2) school=Grant-White 145 3469.778 3469.778 * 
  3) school=Pasteur 156 3894.618 3894.618 * 
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The first two lines provide a key with which to read the tree, denoted by the numbered lines. The 

first line of the tree corresponds to the root node before any splits, containing the full sample of 

301 individuals, with a -2logL (deviance) of 7475.490. Since the deviance is the outcome in each 

node, the “deviance” and “yval” will be identical. The second and third lines show that the 

algorithm chose to make only a single split. This split was made on school, with the 145 students 

in the Grant-White school falling in the second node and the 156 students in the Pasteur school 

in the third node. The -2logL value for each of these nodes is also given. The asterisks at the end 

of these lines show that nodes 2 and 3 are terminal nodes.  

 Though not explicitly presented, the fitted model object also contains information on 

which nodes are terminal nodes and the terminal node in which each individual is placed. 

Parameter estimates for the structural equation model are also given for each terminal node. 

These are the estimates calculated by Mplus, and in this case they would be identical to the 

estimates from a multiple-group model where school was the grouping variable. The factor 

loadings for each group are presented in Table 1. The largest differences between these schools 

seem to be in the estimated loadings of the first factor. We emphasize here that standard errors 

and Wald p values are strictly valid only if the model is specified a priori instead of data-

adaptive and if it is correctly specified. Thus, when using Mplus Trees we advise against 

reporting and interpreting these standard errors and p values (see e.g. Serang, Jacobucci, 

Brimhall, & Grimm, 2017, as well as Serang & Jacobucci, in press, for use of this same logic in 

the context of regularization).   

Example 2 

 Our second example uses data from the National Longitudinal Survey of Youth (Bureau 

of Labor Statistics, 2015) to demonstrate trees with longitudinal count outcomes. The sample 
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comes from the 1997 cohort, and contains 796 individuals measured on 10 variables: five 

outcomes and five covariates for splitting3. To simplify the example, we only analyzed 

individuals with complete data, but this is not a requirement as MplusTrees easily 

accommodates missing data in both the model variables as well as the covariates. The outcome 

was the number of cigarettes the participant usually smoked per day within the last 30 days (all 

participants in the selected sample admitted to smoking since the last interview). The outcome 

was measured annually from 1998–2002, yielding five repeated observations. The five covariates 

were time-invariant, all measured in 1997. These included two dichotomous covariates: sex and 

whether the participant ever had an alcoholic beverage. Three peer-related questionnaire items 

were also considered as covariates: the percent of peers who smoked, got drunk at least once a 

month, and used illegal drugs. The peer variables had five possible response options: less than 

10%, about 25%, about 50%, about 75%, and above 90%.  

 The count data were modeled using a latent growth curve model with a linear basis 

(Meredith & Tisak, 1990). This problem is unique in that the number of cigarettes smoked per 

day is a count variable, and as such is best analyzed using a Poisson residual structure model 

with a log link function. This can be done with a single line of code in Mplus, but would be quite 

challenging to do in OpenMx and cannot currently be done at all in lavaan. As such, this 

example highlights the advantages MplusTrees possesses in using Mplus for estimation. 

 Using a cp value of .001, only one split was made based on the covariate “peers who used 

illegal drugs”. Those who had almost no peers (< 10%) who used illegal drugs (N=161) were 

determined to have different change patterns in the number of cigarettes they smoked compared 

                                                            
3 Downloading the dataset with these 10 variables and the “id” variable from the NLSY website and deleting all 
individuals with any missing data should yield the exact same dataset we used for this analysis. 
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to those who had some peers (25% or more) who did use illegal drugs (N=635). Parameter 

estimates are provided in Table 2. The corresponding decision tree is given in Figure 3, and the 

average number of cigarettes smoked per day for each group is provided in Figure 4.  

Figure 4 illustrates that those with fewer peers who used illegal drugs smoked on average 

fewer cigarettes per day at the start of the study, but increased their smoking behavior more than 

their counterparts. This is also evident in the model parameters, as those with fewer illegal drug-

using peers had a lower intercept (1.652 vs. 1.987) but a higher rate of change (0.173 vs. 0.087) 

relative to the other group. Since both groups smoked a similar number of cigarettes per day by 

the fifth wave, multiple explanations could be plausible. One possibility is a pseudo-ceiling 

effect where exposure to more peers who used illegal drugs accelerated the smoking behavior of 

these individuals before the first wave of data analyzed, and the other group simply caught up. 

Evidence for this can be seen in the negative intercept-slope covariances, which indicate that 

individuals who smoked fewer cigarettes per day at the start of the study changed more. This 

covariance was larger for those with fewer illegal drug-using peers (-0.162 vs. -0.076), consistent 

with a ceiling effect given that this group had a lower intercept. Another possibility is that those 

who had more peers who used illegal drugs were more likely to transition into using illegal drugs 

at the expense of smoking cigarettes.  

Example 3 

 Our final example applies recursive partitioning to survival analysis, resulting in survival 

trees. Although the concept of a survival tree is not new (see e.g. Aichele, Rabbitt, & Ghisletta, 

2016; Ghisletta, 2014; Zhou & McArdle, 2015), the implementations are usually specific to 

survival models alone, much like other tree-based methods we have discussed. The ease of fitting 

a survival model in Mplus makes the Mplus Trees framework a convenient approach for these 
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kinds of models, especially since they can, as with other models we have discussed, be very 

challenging to fit using OpenMx and currently impossible to fit using lavaan.  

The data for this example also come from the 1997 cohort of the National Longitudinal 

Survey of Youth, with all potential predictor variables measured in 1997. We are interested in 

whether individuals have ever smoked a cigarette, and the extent to which this can be predicted 

by the nature of the participant’s home environment, as operationalized by the Family/Home 

Risk Index, a 21-point scale for which higher scores indicate higher risk environments. For those 

unfamiliar with survival analysis, the feature distinguishing it from logistic regression is our 

interest in a specific event, in our case, smoking, and the time at which this event first occurs. An 

important characteristic of this kind of data is that the event is irreversible; once an individual 

has smoked a cigarette, they cannot then transition back into the former state of never having 

smoked. In our sample of 4,548 participants (all under the age of 17), 1,443 (31.7%) smoked a 

cigarette, and for these individuals we know the age at which this event occurred. The smoking 

status for the remaining individuals is censored in that we know the last age at which they were 

observed not yet having smoked a cigarette, but we do not know if or when they do smoke 

beyond this age. The five covariates considered for splits are the same five as in Example 2: sex, 

whether the participant had ever had an alcoholic beverage, the percent of peers who smoked, the 

percent of peers who got drunk at least once a month, and the percent of peers who used illegal 

drugs. As in the previous example, we use only complete data, though this is not required. 

Within each node, a Cox regression model was fit with the score on the Family/Home 

Risk Index as the predictor. With a cp value of .01 one split was made. The regression estimate 

for those who had never had an alcoholic beverage (N = 3,084, β = 0.133) was larger than those 

had consumed an alcoholic beverage (N = 1,464, β = 0.072). That is, for those who never had an 
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alcoholic beverage, the hazard of smoking was 14.2% higher per additional point on the 

Family/Home Risk Index, whereas for those who had consumed an alcoholic beverage, the 

hazard of smoking was only 7.5% higher per additional point on the Family/Home Risk Index. 

We can interpret this as a compensatory (negative) interaction between the Risk Index and 

alcohol usage: for those who have consumed alcohol, the riskiness of the environment is not as 

influential a factor in smoking behavior compared to those who have not consumed alcohol. 

Discussion 

 The purpose of this paper is to extend the SEM trees developed by Brandmaier and 

colleagues (2013) for use with Mplus. Our proposed approach, called Mplus Trees, accomplishes 

this in two major ways. First, we use Mplus as the SEM engine, allowing users the opportunity to 

fit a broad range of models using efficient optimization algorithms in a relatively accessible way. 

Second, we use the proportional change in -2logL as the primary criterion for splitting. The 

method is implemented in the freely available R package MplusTrees and several examples 

have been provided using publicly available empirical datasets to demonstrate how Mplus Trees 

can be applied in practice.  

The implementation of this algorithm is relatively straightforward. After loading the 

MplusTrees package, the user specifies an Mplus model script using the function 

mplusObject(). The MplusTrees() function is then called, with arguments including the 

model script, dataset, covariates, and control parameters, including the cp parameter. Several 

values of cp should be tried, unless the user is using cross-validation in which case this is 

performed automatically. The output contains the final tree structure, the terminal node for each 

individual, and the parameter estimates for the model fit in each terminal node. 
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 Mplus Trees occupies a unique position among tree-based methods in psychological 

research. Compared to approaches such as Rasch trees, item-focussed trees, and nonlinear 

longitudinal recursive partitioning, Mplus Trees is flexible enough to fit a wider range of models. 

Mplus can also model count data, zero-inflated data, complex survey data, survival data, etc., 

something that can prove challenging (or impossible) to run with current implementations of the 

SEM Trees algorithm.  

Though the conceptual foundations of Mplus Trees and SEM Trees are quite similar, the 

implementation differs. This is especially true with regard to software. SEM Trees fits the 

structural equation models in lavaan and OpenMx. The lavaan package can fit many 

commonly used models, but more complex models such as mixture models, models with count 

outcomes, and general multilevel structural equation models are currently unavailable. Though 

OpenMx can theoretically fit a broader range of models, this can require a level of programming 

expertise beyond that of the casual user, making these models less accessible to applied 

researchers in the social sciences. Mplus Trees benefits both from the efficiency of Mplus as well 

as its popularity, making it both computationally powerful and accessible to a wide audience. 

 The two also differ in their splitting criterion. SEM Trees uses the LRT to determine 

whether a split is made, whereas Mplus Trees primarily uses a threshold based on the 

proportional improvement in the log-likelihood. A benefit of using proportional improvement in 

log-likelihood is that it does not require the distributional assumptions made by the LRT. Yuan 

and colleagues have shown that in models with a large number of variables, the LRT statistic 

does not follow a chi-square distribution even in large samples with normally distributed data 

(Yuan, Fan, & Zhao, 2019). This difference in splitting criteria can potentially lead to differences 

in the structure of the tree, as one approach may lead to a split when the other does not.  
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 Since Mplus Trees relies on a user-specified cp parameter to determine the depth of the 

tree, overfitting is a potential concern. By overfitting, we refer to the notion that the tree can 

become too sample-specific at the expense of generalizability to the population at large. 

Brandmaier et al. (2013) recommend k-fold cross-validation or pruning as methods to ensure 

generalizability to out-of-bag samples. Although k-fold cross-validation is available in the 

MplusTrees package, it is only practical under the following circumstances. First, the model 

cannot take too long to fit in Mplus. Since cross-validation involves repeatedly fitting 

(potentially hundreds of) models, if each model takes a nontrivial amount of time to fit, the 

computational time required to fit models to each fold, for each cp, can quickly become 

prohibitive. Second, cross-validation should currently only be used with a small number of 

covariates with a small number of response options, also for reasons relating to computation 

time. Finally, the user must be confident that the model can be fit without issue in samples a 

fraction of the size of the original. Say for example we wished to fit a 1 factor CFA model and 

believed this required a sample size of N=100 to fit. If we were using 5-fold cross-validation, we 

would need a sample of at least N=500, since we would need to fit the model in each fold. If we 

were considering two dichotomous covariates for possible splits, we would need at least 

N=2,000, since the tree would partition the data into even smaller subsamples. This illustrates 

that the required sample for even a simple model with only a pair of dichotomous covariates can 

balloon quite rapidly! As such, though available, we recommend that users employ cross-

validation with caution.  

 Since many users will be unable to perform cross-validation, we recommend they try 

several values of cp. One can start with a smaller (liberal) value, increasing it gradually, in effect 

pruning the tree. We have also included the LRT as an added criterion for splitting along with cp. 
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Based on their properties, the cp criterion is more likely to overfit in small samples, whereas the 

LRT is more likely to overfit in large samples though their exact behavior depends, of course, on 

the chosen criterion values. As such, we expect that using both criteria together may provide a 

pragmatic approach for selecting trees with high scientific utility.  

 We note that our approach inherits the variable selection bias inherent in rpart. Given 

the exhaustive searching for a best split point both within and across variables, those variables 

with more potential split points (e.g., continuous variables or ordinal variables with many levels) 

have a higher chance to be selected because they have more split points. As a result, a covariate 

with a large number of possible splits is more likely to be chosen not (only) because of its 

importance, but rather because of the large number of partitions available (Brandmaier et al., 

2013; Jensen & Cohen, 2000; Strobl, Boulesteix, Zeileis, & Hothorn, 2007). Although a 

correction for multiple comparisons such as the Bonferroni correction may seem at first a natural 

solution, Brandmaier et al. (2013) found that this introduces bias into the variable selection, so its 

use is discouraged. They suggest a “fair selection” approach which splits the dataset in half. One 

half is used to find the best split value for each covariate, and the second half is used to compare 

the covariates based on these optimal splits. The authors found this approach to be unbiased in 

terms of variable selection. However, this approach is not currently available in MplusTrees 

because it relies on rpart (which does not implement the approach) to perform the splitting. At 

this time, we recommend that users encountering this issue reduce the possible response options 

of their variables by creating substantively meaningful bins (e.g. instead of treating age as 

continuous, create intervals such as 20-40 years, 40-60 years, etc.). 

Finally, we suggest that users make use of the other options offered by 

rpart.control(), especially minsplit and minbucket. We highly recommend taking 
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this into consideration because the structural equation models themselves have minimum sample 

size requirements for identification and estimation, and it would seem inappropriate to attempt to 

further grow the tree if the model cannot be estimated within each daughter node. This can 

greatly decrease computational time by reducing the number of candidate splits considered. 

 In addition to the potential future features already discussed, Mplus Trees has much room 

for expansion both as a method and in application. As is well known, decision trees can be 

unstable due to sampling variability. Random forests grow multiple trees and have gained 

popularity due to their ability to address this issue. SEM Trees has been extended to SEM 

Forests (Brandmaier, Prindle, McArdle, & Lindenberger, 2016), and such an extension would 

seem very natural for Mplus Trees as well. On the application side, it can be used to identify 

groups of people defined by nonlinear interactions of covariates which would otherwise be 

challenging to find. For example, with Mplus Trees one could arrive at the conclusion that there 

is more baseline variability in the number of occasions of self-disclosure for couples defined by 

an interaction between four (out of a dozen) covariates. Such a result would be difficult to reach 

without decision trees, as this would require the specification of at least all possible interaction 

terms up to the fourth order, which is typically impractical.  

 Mplus Trees represents a flexible approach to exploratory multiple group modeling to 

better understand heterogeneity among individuals. It can be used to identify nonlinear 

interactions between covariates that lead to differences in parameter estimates of the resulting 

subgroups. Because of its use of Mplus, Mplus Trees can be used fit a wide range of models in a 

relatively accessible way. The approach can be implemented in practice using the MplusTrees 

package, which is freely available in R. We hope that Mplus Trees provides researchers with a 

tool that further assists them in their theory-guided exploration.  
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Appendix 

Example 1 R code 
> library(MplusTrees) 
> library(lavaan) 
> script1 = mplusObject( 
  TITLE = "Example #1 - Factor Model;", 
  MODEL = "f1 BY x1-x3; f2 BY x4-x6; f3 BY x7-x9;", 
  usevariables = c('x1','x2','x3','x4','x5','x6','x7','x8','x9'),  
  rdata = HolzingerSwineford1939) 
> fit.ex1 = MplusTrees(script1, HolzingerSwineford1939, group=~id,  
rPartFormula=~sex+school+grade, control=rpart.control(minsplit=100, minbucket=100, 
cp=.01)) 

> fit.ex1 
 

Example 2 R code 
> script2 = mplusObject( 
  TITLE = "Example #2 – Count LGM;", 
  VARIABLE = "COUNT = y1-y5;", 
  MODEL = "i s | y1@0 y2@1 y3@2 y4@3 y5@4;", 
  usevariables = c('y1','y2','y3','y4','y5'), rdata = data2) 
> fit.ex2 = MplusTrees(script2, data2, group=~id, rPartFormula =~ sex + alc + psmoke +     
  pdrunk + pdrugs, control=rpart.control(cp=.001)) 
> fit.ex2 

 
Example 3 R code 
> script3 = mplusObject( 
  TITLE = "Example #3 – Survival;", 
  VARIABLE = "SURVIVAL = age;  

TIMECENSORED = smk (0 = RIGHT 1 = NOT);", 
  MODEL = "age ON risk;", 
  usevariables = c('age','risk','smk'), rdata = data3) 
> fit.ex3 = MplusTrees(script3, data3, group=~id, rPartFormula =~ sex + alc + psmoke +  
  pdrunk + pdrugs, control=rpart.control(cp=.01)) 
> fit.ex3 
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Tables 

Table 1: Example 1 Results – Factor loadings for CFA model fit to Holzinger-Swineford data.  

Factor Loading Grant-White school Pasteur school 
Visualization X1 1.000  1.000  

 X2 0.736 0.394 
 X3 0.925 0.570 

Verbal ability X4 1.000 1.000 
 X5 0.990 1.183 
 X6 0.963 0.875 

Speed X7 1.000 1.000 
 X8 1.226 1.125 
 X9 1.058 0.922 

 

 

 

 

Table 2: Example 2 Results – Parameter estimates for latent growth curve model with count 
outcome fit to smoking data.  

 <10% peers use illegal drugs >25% peers use illegal drugs 
Intercept Mean 1.652 1.987 
Slope Mean 0.173 0.087 
Intercept Variance 0.834 0.642 
Slope Variance 0.067 0.030 
Intercept-Slope Covariance -0.162 -0.076 
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Figures 

Figure 1: An example of a decision tree (Left) and the covariate space it partitions (Right). 

 

 

Figure 2: Simulation study population tree structure. 
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Figure 3: Decision tree for latent growth curve model in Example 2. Covariate-based decisions 
are in bold face. Decision paths are labeled “yes” or “no” based on the criterion. Each node 
contains three values. The bottom left value is the sample size of the node. The bottom right 
value is the sample size relative to the root node. The top value is the deviance (-2logL). 

 

 

 

Figure 4: Average number of cigarettes smoked per day for each group in Example 2.

 
 

 

 


