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Abstract
This article demonstrates that the regular LTA model is unnecessarily restrictive and that an alternative
model is readily available that typically fits the data much better, leads to better estimates of the transition
probabilities, and extracts new information from the data. By allowing random intercept variation in the
model, between-subject variation is separated from the within-subject latent class transitions over time
allowing a clearer interpretation of the data. Analysis of two examples from the literature demonstrates
the advantages of random intercept LTA. Model variations include Mover-Stayer analysis, measurement
invariance analysis, and analysis with covariates.

Translational Abstract
Modeling with latent classes over time is a common approach in psychology when studying the
development of for example mental states of happiness or depression over time. Latent transition analysis
is a well-known approach for this purpose. A better statistical approach is presented here which
represents the data better and more correctly assesses change and stability over time. Interpretations of
psychological change processes are changed by this new methodology. Earlier LTA findings need to be
revisited.

Keywords: hidden Markov, mixtures, transition probabilities, latent trait–state, measurement
noninvariance

Latent transition analysis (LTA) is frequently used in longitu-
dinal studies to characterize changes over time in latent discrete
states, also referred to as latent classes (see, e.g., Collins & Lanza,
2010; Collins et al., 1992; Graham et al., 1991; Kaplan, 2008;
Langeheine & van de Pol, 2002; Lanza & Collins, 2008; Mooi-
jaart, 1998; Reboussin et al., 1998). The regular LTA model is,
however, unnecessarily restrictive and an alternative model is
readily available that typically fits the data much better, leads to
better estimates of the transition probabilities, and extracts new
information from the data.

The regular LTA is represented as a single-level, wide-format
model. The alternative LTA model draws on the multilevel mod-
eling idea of separating between-subject variation from within-
subject variation. From a multilevel perspective, viewing time as
the within level and subject as the between level, the latent class
transitions are represented on the within level whereas the between
level captures the variability across subjects. Essential parts of this

multilevel idea, however, can be represented in a single-level
model in line with the regular LTA model. Such an alternative
single-level LTA model will be referred to as random intercept
LTA (RI-LTA) because a key focus is allowing for variation
across subjects represented by random intercepts.

The article is structured as follows. The Regular LTA section
describes the regular single-level LTA model and gives a critique
of it. The Random Intercept LTA (RI-LTA) section proposes the
RI-LTA model. The Related Models: A Multilevel Perspective
section places the proposed model in the context of other multi-
level models with multiple indicators of latent variables. The
Monte Carlo Simulation section provides a Monte Carlo study to
investigate estimation of the new model. The Analysis of Two
Examples section shows applications of RI-LTA to two data sets.
The Discussion section concludes with a discussion of computa-
tional aspects, other model variations, and the need for further
research.

Regular LTA

Figure 1 and Figure 2 show model diagrams for two types of
regular LTA models. In Figure 1 there is one binary indicator
measured at five time points and in Figure 2 there are two binary
indicators measured at three time points.

The regular LTA model has three parts. (a) The part for the
latent class variable Ct at the first time point describes the initial
status probabilities for the Time 1 latent classes, P(C1). (b) The
transition part describes the conditional probabilities of the latent
class variable Ct at time t given the latent classes at time t�1,
P(C2 | C1), P(C3 | C2), and so forth. Note that regular LTA allows
only lag-1 relationships among the latent class variables, that is, Ct
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is influenced only by Ct�1, not C at any earlier time point. This is
known as the Markov property. Stationarity, that is, invariance
across time of the transition probabilities, is sometimes imposed.
(c) The measurement part specifies the conditional probabilities
P(Ut | Ct) of the categorical latent class indicators Ut given the
latent classes of Ct where the different latent class indicators Ut at
time point t are independent conditioned on their respective latent
class variable Ct. The latent class indicators Ut are typically
assumed to be influenced only by Ct, the latent class variable at the
same time point. Furthermore, measurement invariance for all
latent class indicators is typically applied across all the time points.
The model implies that the correlations across time for the latent
class indicators are fully explained by the correlations among the
latent class variables. Regular LTA is typically estimated using
maximum-likelihood (ML) although Bayesian estimation can also
be used.

Consider the parameters of the model represented in Figure 1.
With two latent classes, this model has five parameters for the
stationary version and 11 for the nonstationary version: one initial
status parameter P(C1 � 1) with two transition parameters for the
stationary model; P(Ct � 1 | Ct�1 � 1), P(Ct � 1 | Ct�1 � 2), and
with eight transition parameters for the nonstationary model, ob-
tained as two times the four transitions; and two measurement
parameters corresponding to the conditional probabilities P(Ut �
1 | Ct � 1) and P(Ut � 1 | Ct � 2). The five binary outcomes
contribute 25 � 1 � 31 pieces of information, that is, the unre-
stricted model for the five binary outcomes has 25 � 1 � 31
parameters. With a large enough sample and a small enough total
number of latent class indicators, it is possible to test fit between
the observed and estimated frequency tables. This uses a
likelihood-ratio or a Pearson chi-square test of the LTA model

against the unrestricted model with degrees of freedom equal to the
difference in the number of parameters for the unrestricted model
and the LTA model. In other cases, model fit has to be assessed in
more limited ways, for example, via univariate and bivariate
marginal frequency tables. The decision on the number of latent
classes to use is typically based on BIC (Schwarz, 1978).

As an example, Table 1 gives the estimates for a life satisfaction
example of Langeheine and van de Pol (2002) which corresponds
to the Figure 1 model. Survey respondents were asked, “How
satisfied are you on the whole with your life” with answer cate-
gories unsatisfied and satisfied. A two-class model was considered
with classes labeled the same way as the answer categories.

The top part of the table shows the measurement parameters as the
conditional probabilities of an unsatisfied/satisfied answer given
membership in an unsatisfied/satisfied latent class. Each row shows
the probabilities for the observed responses for the two latent classes.
For each row, the large difference in these probabilities shows that the
latent class indicators clearly discriminate between the two latent
classes. The off-diagonal probabilities can be seen in the context of
“measurement error” in that membership in a certain class does not
necessitate an answer in the corresponding response category (Wig-
gins, 1973) but the probabilities are less than one. This discrepancy
between latent and observed categories is a key feature of LTA and
has given rise to the name hidden Markov modeling (see, e.g.,
MacDonald & Zucchini, 1997).

The bottom parts of the table show estimates for the latent
classes. The latent class probabilities at the initial time point are
estimated as 0.395 for the unsatisfied class and 0.605 for the
satisfied class. The probability of staying in the same class be-
tween Time 1 and Time 2 is high, estimated as 1.000 and 0.874 for
the unsatisfied and satisfied class, respectively. The latent class
probabilities at the second time point are obtained as follows from
the latent class probabilities at the first time point and the transition
probabilities.

Unsatisfied: 0.395 � 1.000 � 0.605 � 0.126 � 0.471 (1)

Satisfied: 0.605 � 0.874 � 0.395 � 0.000 � 0.529. (2)

The transition probabilities for the other three transitions are of
similar magnitude (although a test rejects invariance/stationarity).

The regular LTA model is analyzed in a single-level, wide
format. It can, however, be viewed as a two-level model where
time represents the within level (Level 1) and subject represents

Figure 1
LTA for One Binary Item at Five Time Points (Squares Denote
Observed Variables and Circles Latent Variables)

u1 u3u2

c1 c2 c3

u4

c4

u5

c5

Figure 2
LTA for Two Binary Items at Three Time Points

u11

c1 c2 c3

u12 u31 u32u21 u22

Table 1
LTA Estimates for the Life Satisfaction Example

Measurement probabilities
Observed
response

Latent class
Unsatisfied

Latent class
Satisfied

Unsatisfied 0.855 0.163
Satisfied 0.145 0.837

Time 1 latent class probabilities
Latent class Unsatisfied: 0.395 Satisfied: 0.605

Transition probabilities for Time 1 (rows) to Time 2 (columns)
Latent class Unsatisfied Satisfied

Unsatisfied 1.000 0.000
Satisfied 0.126 0.874

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

2 MUTHÉN AND ASPAROUHOV



the between level (Level 2). In line with general two-level mod-
eling, it is therefore important to separate between-level variation
across subjects from within-level, across-time latent transitions. It
is essential to remove between-subject differences that are stable
over time from the within-subject process which is of primary
interest. This general idea appears in several contexts with contin-
uous observed and latent variables. For example, latent trait–state
modeling (see, e.g., Cole et al., 2005; Eid et al., 2017; Kenny &
Zautra, 1995) refers to the stable between-subject differences as a
latent trait, a continuous latent variable. A related example is
cross-lagged panel modeling (CLPM) where Hamaker et al. (2015)
strongly advocates for separating out the stable between-subject
differences referred to as random intercepts so that the cross-
lagged relationships across time can be studied without interfer-
ence of those between-subject differences. This is named the
RI-CLPM approach and is the inspiration for the current paper.
The idea of separating trait and states can be clearly seen in the
Kenny-Zautra model shown in Figure 3. The latent trait is referred
to as “T” and the latent states as “S” while the observed outcomes
are denoted “Y” (other literature refers to this modeling as latent
state-trait and defines states as the sum of the trait and the
occasion-specific latent variables; see, e.g., Eid & Langeheine,
1999). Each observed outcome is the sum of trait, state, and a
residual seen as measurement error. The key feature is that the
latent trait influences the observed outcomes and not the latent
states. In this way, the states are free of trait influence which
means that the relationships between the states are not affected by
stable differences between subjects.

The aim of the current article is similar to the literature just
cited, building on the idea of a stable trait in Kenny and Zautra
(1995) and extracting between-subject variation in Hamaker et al.
(2015). These two articles discuss continuous outcomes where you
can split each outcome into a between and a within component of
variation. This article considers categorical variables where this
split is more challenging. The split of the variation in the
continuous-outcome case, however, is the same as using random
intercept modeling and it is the random intercept idea that connects

the continuous and categorical cases. The random intercept idea is
common in the statistics and econometrics literature as a general
way of representing unobserved heterogeneity (see, e.g., Fitzmau-
rice et al., 2011; Wooldridge, 2002). For categorical latent and
observed variables, Eid and Langeheine (1999, 2003) consider
latent trait–state modeling with a lag-1 structure for occasion-
specific latent class variables which together with latent class
variable traits contribute to the categorical outcomes. This is a type
of latent transition model that uses a random intercept notion
although not portrayed as such. Judging from the last two decades
of applied LTA articles, however, the Eid-Langeheine model ap-
pears to have been overlooked and not adopted in latent transition
analysis practice but will be one of the models studied here.

This article focuses on the following two key aspects. First, it is
of interest to study how much the latent transition probabilities are
distorted in regular LTA when stable between-subject differences
are ignored. Second, because LTA typically considers several
indicators of the latent class variables, it is important to correctly
assess the measurement quality of the indicators.

To summarize, because regular LTA does not separate out stable
between-subject differences, it suffers from the risk of distorted
estimates of the model’s parameters, especially the transition prob-
abilities. The alternative of random intercept LTA aims to avoid
this distortion while staying in the single-level, wide analysis
format.

Random Intercept LTA (RI-LTA)

Continuous Random Intercept

Figure 4 shows two versions of continuous random intercept
LTA (RI-LTA) for two binary latent class indicators measured at
three time points. Here, f1, f2, and f are continuous latent variables
(factors) where the loadings � capture their different influence on
the two latent class indicators. Each indicator’s loading is held
equal across time. In the top part of Figure 4, each latent class
indicator has its own random intercept, f1, and f2, whereas in the
bottom part of the figure, the indicators share the same random
intercept factor f that has different effects on the two indicators.
With many indicators, allowing each indicator to have its own
random intercept makes the model unnecessarily complex and
computationally cumbersome. This is discussed further in the
section Related Models: A Multilevel Perspective.

The focus of the article is the proposed single-factor model in
the bottom part of Figure 4. It is in the spirit of the Kenny-Zautra
latent trait–state model for continuous observed and latent vari-
ables shown in Figure 3. Between-subject variation in the u out-
comes is represented by a random intercept factor and the c1–c3

model part represents the within-subject variation across time.
Formally presented, a single-factor continuous random intercept

model version expressed in logit terms uses the following param-
eterization for a binary latent class indicator Urit for indicator r,
subject i, and time t measuring the latent class variable Cit for
subject i and time t for class j,

logit[P(Urit � 1 | Cit � j, fi)] � �rj � �r fi, (3)

where �rj represent parameters that vary over latent class indica-
tors and latent classes and fi represent a subject-specific random

Figure 3
Kenny and Zautra (1995) Latent Trait–State Model

y1 y3y2

s1 s2 s3

y4

s4

y5

s5

t

Note. t represents a latent trait variable, y1-y5 represent observed vari-
ables, s1-s5 represent continuous latent state variables.
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intercept factor that does not vary across time point with factor
loadings �r that vary across the latent class indicators. The factor
is assumed to be distributed as N(0, 1). Alternatively, each latent
class indicator can have its own factor fri as in the top part of
Figure 4 but this extension did not improve fit in the examples
studied and the extension is not considered further here. The single
random intercept factor version for R latent class indicators per
time point adds only R parameters to regular LTA namely the
factor loadings �r for each latent class indicator held equal across
time. Note that in line with the concept of a random intercept, the
factor loadings should not be different across time points because
then the intercept factor does not reflect stable (time-invariant)
individual differences (in contrast, latent trait–state modeling
sometimes let loadings for traits be different across time). For
simplicity, the factor loadings are also not allowed to change
across the latent classes.

The factor fi in Equation 3 can be viewed as the trait of subject
i, that is, a stable, time-invariant tendency where the � factor
loadings allow different effects of this trait on the different latent

class indicators. For example, continuing the life satisfaction ex-
ample and assuming a positive factor loading, a subject with a
higher positive factor value has higher trait satisfaction and a
subject with a higher negative factor value has lower trait satis-
faction. If U is a binary latent class indicator where U � 1
represents satisfaction, a higher positive factor value means that
the probability is higher of answering in the satisfied category and
a higher negative value means that the probability is higher of
answering in the unsatisfied category. In this way, large positive or
negative factor values capture a tendency to not transition over
time. This also implies that analysis using regular LTA of data
generated by a RI-LTA model will tend to overestimate the prob-
abilities of staying in the same class.

Note also that the factor effect is specified to be the same for all
latent classes which means that if there are two classes represent-
ing unsatisfied versus satisfied, the probability of answering in the
satisfied category is increased for both classes. This results in the
latent class indicator being somewhat less discriminating between
the two classes in the sense that the U � 1 probabilities for the two
classes are closer to each other. Typically, this effect is small and
at the factor mean of zero, there is no such effect. Nevertheless, if
the model fits better than regular LTA, this implies that regular
LTA gives an inflated view of the class separation.

In regular LTA, the measurement part of the model considers
the probability of a latent class indicator conditional on latent
class, P(Urt � 1 | Ct � j). For RI-LTA, this probability cannot be
expressed in an explicit form but is obtained from Equation 3 by
integration over the factor. It is, however, possible to use the
approximate logit to probit transformation obtained as

P(U � 1 | C � j) � �[�j ⁄ �(3.2865 � �2 V(f)], (4)

where � is the standard normal distribution function and 3.2865 �
�2/3, the variance of the logistic density.1 Setting the metric of the
factor as V(f) � 1, this shows that the larger the factor loading �,
the smaller the argument of �, that is, the closer the probability is
to 0.5. This is another way to look at the lower latent class
discrimination when the continuous random intercept factor is
called for.

As Equation 3 shows, different response probabilities are ob-
tained for subjects with different fi values. Because of this, the
RI-LTA model allows for a certain form of measurement nonin-
variance across subjects (see also the discussion in the section
Related Models: A Multilevel Perspective). In contrast, regular
LTA implicitly imposes measurement invariance across subjects
and this may be a too strict assumption.

Binary Random Intercept

Consider next the version of RI-LTA that has a binary random
intercept represented by a latent class variable. This model also
corresponds to the bottom part of Figure 4 but where f is a binary
latent variable, here referred to as I. A simple model version
expressed in logit terms uses the following parameterization for a
binary latent class indicator Urt for indicator r, time t, measuring

1 Other transformations are also used in the literature, e.g. replacing the
constant 3.2865 by 1.72. It is also possible to use a probit link in which case
the � approximation using the constant 1 is exact.

Figure 4
RI-LTA for Two Binary Latent Class Indicators at Three Time
Points With a Random Intercept: 2 Continuous Random Inter-
cept Factors Versus 1 (f Denotes Factors, u Denotes Observed
Binary Variables, and c Denotes Latent Class Variables)

c1 c2 c3

u11 u12 u31 u32u21 u22

f1 f2

u11

c1 c2 c3

u12 u31 u32u21 u22

f
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the latent class variable Ct with latent class j and the single random
intercept latent class variable I with latent class k,

logit[P(Urt � 1 | Ct � j, I � k)] � �r � �rj � 	rk, (5)

where �r1 � 0, 	r1 � 0 for identification purposes. Here, �r is a
parameter representing the effect of the latent class indicator r, �rj

is a parameter representing the effect of the latent class indicator r
in combination with the latent class j of C, and 	rk is a parameter
representing the effect of the latent class indicator r in combination
with the latent class k of I. An interaction term for the combination
of j and k classes is omitted to keep the model parsimonious. As an
example for three C classes and two I classes, the logits for a
binary latent class indicator Urt at time t are

logit[P(Urt � 1 | Ct � 1, I � 1)] � �r (6)

logit[P(Urt � 1 | Ct � 2, I � 1)] � �r � �r2, (7)

logit[P(Urt � 1 | Ct � 3, I � 1)] � �r � �r3, (8)

logit[P(Urt � 1 | Ct � 1, I � 2)] � �r � 	r2, (9)

logit[P(Urt � 1 | Ct � 2, I � 2)] � �r � �r2 � 	r2, (10)

logit[P(Urt � 1 | Ct � 3, I � 2)] � �r � �r3 � 	r2. (11)

It is seen that the six logits are expressed in terms of four parameters.
The parameters do not change over time. For the case of R latent class
indicators per time point, J latent classes for C, and only two latent classes
for I, this binary random intercept model has R 
 R(J � 1) 
 R 
 1
parameters beyond those of the C part of the model: R � parameters,
R(J � 1) � parameters, R 	 parameters, and 1 latent class parameter for
I. The regular LTA model has R J parameters beyond those of the C part
of the model. This means that R 
 1 parameters are added to the regular
LTA model when using two latent classes for I. This is irrespective of the
number of response categories for U due to assuming a common shift for
all response categories. Although not portrayed as a random intercept
model, this is the parameterization used in the Eid and Langeheine (1999,
2003) studies of longitudinal mixture models.

Estimation and Modeling Considerations

Both the continuous and the binary random intercept models
involve more heavy computations than regular LTA. Using
maximum-likelihood estimation, the single continuous random
intercept version leads to computations with one dimension of
numerical integration. The binary random intercept version does
not involve numerical integration but leads to one more latent class
variable than regular LTA. Both the continuous and binary random
intercept model versions of RI-LTA can be estimated using Mplus
(Muthén & Muthén, 1998–2017). This draws on the general mod-
eling framework described for example, in Muthén and Asp-
arouhov (2009). The analyses in this article use maximum-
likelihood estimation. Models cannot be compared using regular
likelihood-ratio chi-square difference testing when they differ in
the number of latent classes and/or when one model contains a
continuous random intercept factor and the other does not. Also,
due to having many cells in the frequency table for all the cate-
gorical outcomes, frequency table chi-square is not possible due to
too many low frequency cells. The choice of model will instead be
based on BIC (Schwarz, 1978) where smaller values are better,

BIC � 
2 loglikelihood � p ln N, (12)

where p is the number of parameters, ln is the natural (e) log, and
N is the sample size. BIC was found to perform well in Nylund et
al. (2007) for related models with the large sample sizes usually
encountered in latent transition analysis settings.

It should be noted that the regular LTA model is a special case
of the RI-LTA model. In situations where there are no stable
between-subject differences, the continuous random intercept
model obtains zero factor loadings while the binary random inter-
cept model does not find a latent intercept class.

It is clear from Figure 4 that the random intercept variable
allows the indicators to correlate across time beyond what is
captured by the latent class variables Ct being correlated across
time in the latent transition part of the model. The indicator
correlation across time is not a typical autoregressive feature in
that the correlation does not diminish with increasing time distance
but is constant in line with representing a stable, time-constant, and
between-subject difference. Because it accounts for some of the
correlation across time, it is clear that introducing this random
intercept will affect the estimates of the latent transition probabil-
ities, especially with respect to staying in the same latent class over
time, that is, the diagonals of the transition probability matrices.

To some extent, random intercept modeling also relaxes the
latent class assumption of conditional independence among
the latent class indicators at a given time point. In this way, the
continuous random intercept version is related to factor mixture
modeling (see, e.g., Lubke & Muthén, 2005; Muthén & Asp-
arouhov, 2006). The random intercept model does not, however,
specify a factor for each time point but a factor that is in common
for all time points. Using a factor mixture model for each time
point as the measurement model may reduce the number of latent
classes at each time point but is unlikely to reduce the number of
latent classes in the analysis of all time points due to a one-factor
construct being more restrictive than multiple latent classes in how
across-time correlation is captured.

Unobserved heterogeneity in the form of between-subject variation
in the latent class variable part of the model can be represented by
adding a binary latent class variable where the two classes have
different transition matrices. For each class, transitions can be viewed
as a within-subject process using an RI-LTA model. The Mover-
Stayer model (see, e.g., Langeheine & van de Pol, 2002) is an
example of this where a latent class of Stayers is specified to stay in
their Time 1 latent class membership throughout all time points with
probability 1. This attempt at capturing between-subject heterogeneity
is in line with the random intercept theme of this paper, here applied
to the latent class part of the model. The Mover-Stayer latent class
variable can also be regressed on covariates. In the examples of the
section Analysis of Two Examples, regular LTA with a Mover-Stayer
addition is compared to the RI-LTA models with and without a
Mover-Stayer addition.

Observed between-subject heterogeneity can be studied using
groups and covariates and is discussed next.

Groups and Covariates

Regular LTA

In regular LTA, it is possible to study group differences in the
model parameters in line with Clogg and Goodman (1985) who
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presented an approach to a simultaneous analysis of several groups. A
strength of the multiple-group approach is its generality which allows
any parameter to be equal or different across the groups. An example
is the exploration of gender differences in the Lanza and Collins
(2008) dating and sexual risk behavior study. The multiple-group
approach can be used to test for measurement invariance across
groups, that is, equality across time of latent class indicator probabil-
ities conditional on latent class. An alternative approach is to let
covariates representing subject characteristics such as gender, ethnic-
ity, socioeconomic status, and age influence the latent class indicators
directly to thereby change their probabilities.

Covariates can also influence the latent class variables as well as
their transition probabilities. This is carried out using the logit
parameterizations shown in Table 2 for two latent class variables
C1 and C2 where C2 is regressed on C1 and a covariate X. The
regression is expressed as a multinomial logistic regression where

P(C2 � c | C1 � k, X � x) � e�c��ck�	ckx ⁄ �
j�1

J

e�j��jk�	jkx,

(13)

with �J � 0, �Jk � 0, �c,J � 0, 	Jk � 0. Here, � represents the
intercepts for C2, � represents the regression coefficients of C2

regressed on C1, and 	 represents the regression coefficients of C2

regressed on X. This translates the logit parameters into transition
probabilities. Equation 13 model implies that the log odds comparing
a certain C2 category c to the last C2 category J, is obtained as

log[P(C2 � c | C1 � k, X � x) ⁄ P(C2 � J | C1 � k, X � x)]

� �c � �ck � 	ck x. (14)

Exponentiation gives the odds. The log odds and odds can also
be computed with the diagonal of the transition table as the
reference category showing the odds of transitioning relative to
staying in the same class.

Table 2 shows two model variations. In the most general case
shown at the top, an interaction is allowed between the X variable
and the latent class variable C1 so that the 	 parameters vary across
the different rows, that is the classes of C1. Not allowing interac-
tions but only main effects, the bottom part of the table shows that
the 	 parameters describing the influence of X are held equal

across the C1 classes. In this way, �1 
 	1x and �2 
 	2x can be
seen as intercepts that are different for the C2 classes whereas the
regressions of C2 on C1 are not affected.

RI-LTA

With RI-LTA, the intent is to represent between-subject varia-
tion by random intercepts so that the relationships between the
latent class variables are based on within-subject variation only.
Because a random intercept of RI-LTA represents between-subject
variation, it is therefore natural to let the random intercept have
different means across groups in a multiple-group approach or be
regressed on covariates in the covariate approach. The multiple-
group approach, allowing for group specific transition probabilities
in addition to group specific random intercept means, is suitable
for the RI-LTA purpose because within each group, it can still be
assumed that there is no between-subject variation in the relation-
ships among the latent class variables. The covariate approach
captures observed heterogeneity among subjects so that condition-
ing on the covariate values, the relationships among the latent class
variables can be seen as within-subject relationships.

The next section places the proposed RI-LTA model in the
context of other multiple indicator models with latent variables.
This section is followed by a Monte Carlo simulation study of the
proposed model. Readers more interested in applications can pro-
ceed directly to the section Analysis of Two Examples.

Related Models: A Multilevel Perspective

Because LTA can be viewed as a model with variation across
time and variation across subjects, it can be described as a two-
level model. In this way, random intercept LTA can be related to
other multiple-indicator latent variable models namely two-level
factor analysis and two-level latent class analysis. This places the
proposed random intercept LTA in a broader perspective.

A key modeling choice is if the random intercepts appear for the
observed indicators of the latent variables or for the latent vari-
ables themselves. When the two-level modeling is applied to
longitudinal data, this determines if the within-level relationships
across time refer to within-level parts of the variables or to the
combination of within- and between-level parts of the variables
(the whole variables). The former approach is chosen in this article
as it gives a clearer representation of the data. The choice between
the two modeling approaches is discussed below. The concept of
measurement noninvariance expressed as random intercepts for the
observed indicators is also emphasized.

Random Intercepts in Multilevel Factor Analysis

Consider a binary outcome Uij for subject i in cluster j which
is an indicator of a factor fij using for example, logistic regres-
sion. A typical example is measurement of student performance
in schools. Denoting the within- and between-level factors as
fWij

and fBj
, the model can be expressed by the two equations

logit[P(Uij � 1 | fWij
)] � �j � �WfWij

, (15)

�j � � � �BfBj
� �Bj, (16)

corresponding to the within- and between-level parts of a two-level
model. This is in line with two-level regression where the intercept

Table 2
Logit Parameterizations for C2 Regressed on C1 and X:
Interaction and Main Effect Model Versions

C 2

Latent class variable 1 2 3

Interaction model

C1

1 �1 
 �11 
 	11x �2 
 �21 
 	21x 0
2 �1 
 �12 
 	12x �2 
 �22 
 	22x 0
3 �1 
 	13x �2 
 	23x 0

Main effect model

C1

1 �1 
 �11 
 	1x �2 
 �21 
 	2x 0
2 �1 
 �12 
 	1x �2 
 �22 
 	2x 0
3 �1 
 	1x �2 
 	2x 0
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�j is random, varying across schools. The fact that the intercept �j

is not the same for all schools can be seen as a type of measure-
ment noninvariance (Jak et al., 2013, 2014; Muthén & Asp-
arouhov, 2018). The model is shown in Panel A of Figure 5 for
five factor indicators u1–u5 where in line with Muthén and Muthén
(1998–2017), the filled circles for the factor indicators on the
within level show that their intercepts are random. On the between
level, the random intercepts are shown as circles representing
continuous latent variables (u in the figure corresponds to � in
Equations 15 and 16). The �B residuals on the between level are
left out in the figure because they are often close to zero. Leaving
them out typically has little consequence for the rest of the model.

The extraction of between-level variation ensures that using fW as
a predictor on the within level does not confound its effect by
between-level variation.

Although the random intercept values are different for dif-
ferent clusters, the clusters are assumed to belong to the same
population with the same mean and variance for the random
intercepts. This view of measurement invariance/noninvariance
is discussed in Asparouhov and Muthén (2016) and Muthén and
Asparouhov (2018) and also relates to two-level modeling with
random item parameters in item response theory (see, e.g.,
de Jong & Steenkamp, 2010; de Jong et al., 2007; Fox,
2010).

Figure 5
Panel A Shows Multilevel Factor Analysis and Panels B–D Show Multilevel La-
tent Class Analysis (Squares Represent Observed u Variables and Circles Repre-
sent Latent Variables; Filled Circles on the Within Level Show That the Vari-
ables Have Random Intercepts; on the Between Level, the Random Intercept
Variables are Latent Variables; fw and fb Represent Factors on the Two Levels;
c# Variables Represent the Between-Level Random Intercepts of the Latent
Class Variable c)

u1

c

u2 u3 u4

c#1 c#2

u5

Within

Between

u2 u3u1 u4 u5

c

u1 u2 u3 u4 u5

u2 u3u1 u4

f

u5

fw

u1 u2 u3 u4 u5

u2 u3u1 u4

fb

u5

A B

Within

Between

Within

Between

Within

Between

DC

c

u1 u2 u3 u4 u5
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Random Intercepts in Multilevel Latent Class Analysis

Latent class analysis (LCA) has typically taken a different
approach to multilevel modeling than factor analysis. As shown in
Panel B of Figure 5, the variation across clusters is expressed via
random intercepts/means for the classes of the latent class variable
c instead of its indicators. This implies that cluster variation in the
latent class indicators is sufficiently well accounted for by cluster
variation in their underlying latent class variables. On the between
level, the random intercepts/means c#1 and c#2 are continuous
latent variables and are typically correlated as indicated by the
double-headed arrow. The statistical underpinnings of multilevel
latent class and latent transition analysis are discussed in for
example, Altman (2007), Asparouhov and Muthén (2008), Henry
and Muthén (2010), and Vermunt (2003, 2008). The latent class
variable c in Panel B contains both within-level and between-level
variation. Using c as a predictor therefore confounds the two
sources of variation. This modeling approach is therefore not
suitable for latent transition modeling with random intercepts.

The current article draws on another multilevel LCA model that
is in line with the multilevel factor analysis model presented
earlier. The random intercepts will be specified for the latent class
indicators instead of the latent classes as has been discussed in
Asparouhov and Muthén (2008) and Henry and Muthén (2010).
Consider a binary latent class indicator Uij observed for student i
in school j where the latent class variable Cij represents different
latent classes of students. Considering one of the five latent class
indicators U, the random measurement intercept �cj can be ex-
pressed via the logit of the conditional probability for Uij given the
latent class variable Cij as

logitP(Uij � 1 | Cij � c) � �cj � �c � �j, (17)

where the intercept �c varies across the classes c and � is a
normally distributed random effect with mean zero and a variance
that represents across-school variation.

This model is shown in Panel C of Figure 5. The filled circles
at the bottom of the u boxes represent random measurement
intercepts. On the between level, the random measurement inter-
cept for each latent class indicator is shown as a circle u repre-
senting a continuous latent variable that varies across the between-
level units, in this case schools. The random intercepts for the
different items may correlate as indicated by the double-headed
arrows. With a polytomous ordinal indicator, one can still specify
a single random intercept shifting the probabilities of all response
categories.

The model with random intercepts for the latent class indicators
presents computational difficulties using maximum-likelihood es-
timation. With five indicators, it requires five dimensions of nu-
merical integration corresponding to the five latent variables on the
between level and this leads to very slow computations with low
precision. A common solution to this problem is to place an
intercept factor (a continuous latent variable) behind the set of
latent variables as shown by the f intercept factor on the between
level in Panel D of Figure 5. With zero residuals, this reduces the
numerical integration to one dimension while allowing the random
intercepts to correlate and estimating their factor loadings. A
nonparametric version of this solution replaces the continuous
intercept factor with a latent class variable to eliminate the numer-
ical integration altogether and avoid a normality assumption for

the factor. For example, a continuous factor can be seen as ap-
proximated by for example, a three-class latent class variable
where the class proportions allow a nonsymmetric distribution. In
this article, both the parametric approach using continuous factors
and the nonparametric approach using latent classes are referred to
as using random intercepts. The model in Panel D of Figure 5 is the
latent class counterpart to the factor analysis model of Panel A.
The Panel D model is also the two-level representation of the
model in the bottom part of Figure 4. In this context, the within
level represents time and the between level represents subject.

Henry and Muthén (2010) provides an example of two-level
LCA analyzing smoking behavior for 10,772 ninth grade females
in 206 rural communities across the United States. Six categorical
latent class indicators measure three latent classes of student
smoking behavior. Using random intercepts for the latent class
indicators, they found significant variation across communities in
the response probabilities for several of the indicators where the
variation across communities was related to the proportion of
youth living in poverty. For example, the indicator “Most friends
are smokers” had a much larger probability of being endorsed in
communities with a large poverty proportion. In contrast, no
significant differences across communities were found for the
indicators “Parents would try to stop me from smoking” and
“Smoking harms health.” Using random intercepts/means for the
latent classes, they also found differences across communities
where communities in tobacco-growing states had a higher prob-
ability of being in the heavy smoking latent class.

As suggested by the Henry and Muthén (2010) smoking exam-
ple, random intercept variation for the latent class indicators can be
seen as a type of measurement noninvariance. In the LTA context,
this noninvariance refers to different subjects having different
response probabilities for a given latent class indicator.

Monte Carlo Simulation

A small simulation study is carried out to assess the perfor-
mance of RI-LTA at different sample sizes and number of time
points. This is compared with the performance of regular LTA,
both when data have been generated by a regular LTA model and
when the data have been generated by an RI-LTA model.

The study uses five binary indicators to represent a situation
with a moderate number of latent class indicators. Two latent
classes are used where the indicators have the same logit values of
1 for Class 1 and �1 for Class 2. This translates to an indicator
probability of 0.731 conditional on Class 1 and an indicator prob-
ability of 0.269 conditional on Class 2 when the regular LTA is
considered. The large difference in probability means that the
latent class indicators discriminate well between the classes. For
RI-LTA, the indicators all have a factor loading of 2 which is of a
magnitude seen in real data. The factor mean is zero and the factor
variance is 1 (these are fixed parameters). By integrating over the
factor, this corresponds to conditional probabilities of 0.644 for
Class 1 and 0.356 for Class 2, that is, the indicators discriminate
somewhat less well between the classes in the RI-LTA setup. The
probabilities of class membership at the first time point are chosen
as 0.5, 0.5. The transition probabilities are chosen as (rows repre-
sent starting class and columns ending class):
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Class 1 Class 2
Class 1 0.622 0.378
Class 2 0.500 0.500

This means that starting in Class 1, it is more likely for a subject
to stay in Class 1 while starting in Class 2, the subject is equally
likely to stay as to change class. For simplicity in reporting, the
study will focus on the diagonal element with population value
0.622 and the off-diagonal element with population value 0.500.
These parameters are referred to as TRANS11 and TRANS21,
respectively in the result tables. The Monte Carlo study uses
sample sizes of 500, 1,000, 2,000, and 4,000. Two and three time
points are studied. With three time points the transition probabil-
ities are the same for the last two time points as for the first two
time points, reflecting a stationary LTA. Stationarity is not, how-
ever, imposed in the analysis. Five-hundred replications are used.
The simulations use Mplus where the Monte Carlo reporting gives
the population value, the estimate mean over replications, the
estimate standard deviation across replications (referred to as SD),
the average standard error across replications (referred to as Ave
SE), the mean square error, the 95% coverage, and the power to
reject that the parameter is zero computed as the proportion of the
replications where the confidence interval does not include zero.
Bias in each estimated transition probability is reported as estimate
minus population value. Key evaluation criteria are bias in the
estimates, agreement between SD and Ave SE, and coverage.

Performance of Regular LTA

A useful first step is to study the performance of regular LTA
when data have been generated by a regular LTA so that the
analysis model is correctly specified. The results are shown in
the top part of Table 3. Only the case of N � 500 is shown because
the performance is good already at this sample size. For both T �
2 and T � 3, the bias is negligible, SD and Ave SE agree, and
coverage is close to 0.95.

The bottom part of Table 3 shows the performance of regular
LTA when data have been generated by the RI-LTA model with a
continuous random intercept factor. It is seen that the performance

is not acceptable because of the large bias which is 40% and 68%
of the population probabilities, respectively. There is a strong
overestimation of the probabilities representing staying in the same
class which is to be expected as discussed in the section Contin-
uous Random Intercept. There is no improvement increasing from
two to three time points. Increasing the sample size also does not
help (results not shown).

Performance of RI-LTA

Table 4 shows the results when data are generated by RI-LTA
with a continuous random intercept factor and analyzed with this
model. The top and bottom parts of the table shows the results for
T � 2 and T � 3, respectively. For T � 2, the parameter bias is
large and the overall performance in terms of standard errors and
coverage is not quite acceptable even for N � 4,000. The poor
results for T � 2, N � 500 are in contrast with the Table 3 results
for regular LTA when data are generated by a regular LTA. Note,
however, that when data are generated by RI-LTA, the T � 2, N �
500 results in Table 4 for analysis using RI-LTA are considerably
better in terms of both bias and coverage than those at the bottom
of Table 3 using regular LTA.

For T � 3, acceptable results are obtained already at N � 500
and are very good for N � 1,000 and above. Further increasing the
number of time points gives a small but practically negligible
improvement of performance (not shown). A large sample size is
most important.

Analysis of Two Examples

As a first step, analyses of two examples are described in terms
of model fit, comparing regular LTA with RI-LTA using both a
continuous random intercept and a binary random intercept. Next,
estimates are presented and compared between regular LTA and
RI-LTA.

The RI-LTA with a continuous random intercept factor uses
the simple one-factor model version shown in Equation 3 and in
the bottom part of Figure 4. This is the same model as used in the

Table 3
Analysis Using Regular LTA on Data Generated by Regular LTA and by RI-LTA

Data generated by LTA
Parameter Est-pop bias SD Ave SE MSE Coverage Power

T � 2, N � 500

TRANS11 0.003 0.052 0.052 0.003 0.940 1.000

TRANS21 0.001 0.054 0.054 0.003 0.948 1.000
T � 3, N � 500

TRANS11 0.003 0.051 0.050 0.003 0.948 1.000
TRANS21 0.001 0.049 0.051 0.002 0.962 1.000

Data generated by RI-LTA
T � 2, N � 500

TRANS11 0.251 0.030 0.029 0.064 0.000 1.000

TRANS21 �0.328 0.030 0.032 0.108 0.000 1.000
T � 3, N � 500

TRANS11 0.261 0.028 0.028 0.069 0.000 1.000
TRANS21 �0.341 0.030 0.031 0.117 0.000 1.000
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Monte Carlo simulations. For the RI-LTA with a binary random
intercept, the parameterization of Equations 6–11 is used. The
Mover-Stayer models use one parameter more than the standard
models with only movers due to adding a binary latent class
variable of movers and stayers. All analyses are carried out using
Mplus (Muthén & Muthén, 1998–2017) and scripts are available
from the first author as well as at http://www.statmodel.com/RI-
LTA.shtml

Analysis of the Mood Data

The first example concerns ratings of mood. The data set is from
a longitudinal study with N � 494, four time points 3 weeks apart,
and two binary latent class indicators measuring two latent classes
at each time point (Eid & Langeheine, 2003). Participants rated
their momentary sadness and unhappiness on a 5-point scale
ranging from 1 (not at all) to 5 (very much). A dichotomized
version of the two items was used in Eid and Langeheine (2003) as
well as here (first category vs. the other categories). A stationary
model is chosen for this example because this is the model con-
sidered in Eid and Langeheine (2003).

Model Fitting Results for the Mood Data

Table 5 compares the model fitting results of regular LTA with
those of RI-LTA with a continuous and a binary random intercept.
Models 1–3 in the top part of the table show standard analysis
whereas Models 4–6 in the bottom part show Mover-Stayer anal-

Table 4
Analysis Using RI-LTA on Data Generated by RI-LTA (Population Value for TRANS11 � .622, TRANS21 � .500)

T � 2

Parameter Est-pop bias SD Ave SE MSE Coverage Power

N � 500

TRANS11 0.121 0.335 0.358 0.127 0.576 0.514
TRANS21 �0.072 0.316 0.269 0.105 0.522 0.618

N � 1,000

TRANS11 0.122 0.307 0.277 0.109 0.664 0.558
TRANS21 �0.058 0.275 0.275 0.079 0.642 0.652

N � 2,000

TRANS11 0.090 0.251 0.243 0.071 0.764 0.656
TRANS21 �0.066 0.239 0.221 0.061 0.756 0.768

N � 4,000

TRANS11 0.050 0.172 0.159 0.032 0.860 0.820
TRANS21 �0.044 0.182 0.174 0.035 0.850 0.910

T � 3

N � 500

TRANS11 0.021 0.141 0.147 0.020 0.924 0.914
TRANS21 �0.005 0.137 0.146 0.019 0.904 0.932

N � 1,000

TRANS11 0.012 0.095 0.098 0.009 0.936 1.000
TRANS21 �0.002 0.101 0.101 0.010 0.920 0.992

N � 2,000

TRANS11 0.006 0.068 0.068 0.005 0.926 1.000
TRANS21 �0.002 0.068 0.071 0.005 0.948 1.000

N � 4,000

TRANS11 0.000 0.048 0.047 0.002 0.942 1.000
TRANS21 �0.003 0.048 0.050 0.002 0.946 1.000

Table 5
Model Fitting Results for the Mood Data

Model # Parameters Loglikelihood BIC

Standard

1. Regular LTA 7 �2053 4150
2. RI-LTA, binary RIa 10 �2028 4118
3. RI-LTA, continuous RI 9 �2019 4093

Mover-Stayer

4. Regular LTA 8 �2037 4123
5. RI-LTA, binary RIb 11 �2017 4101
6. RI-LTA, continuous RI 10 �2017 4096

a Model 2 is model 2 in Table 1 of Eid and Langeheine (2003).
b Model 5 is model 5 in Table 1 of Eid and Langeheine (2003).
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ysis. Model 2 is the same as Model 2 in Table 1 of Eid and
Langeheine (2003). The RI-LTA models are clearly better than the
regular LTA both in terms of higher loglikelihood and lower BIC.
BIC of the RI-LTA Model 2 is better than that of the regular LTA
Model 1 and the RI-LTA Model 3 with a continuous random
intercept factor further improves on BIC. Model 3 in fact has a
better loglikelihood value than Model 2 despite having one param-
eter less.

Models 4–6 in the bottom part of Table 5 have the same BIC
rank ordering as in the top part. For regular LTA, the Mover-
Stayer version of Model 4 is preferred over the regular LTA Model
1 due to the better BIC. Similarly, using a binary random intercept,
the Mover-Stayer RI-LTA Model 5 is preferred over the RI-LTA
Model 2. Model 5 is Model 5 of Table 1 of Eid and Langeheine
(2003) and is the preferred model in that article. In contrast, using
a continuous random intercept, the RI-LTA Model 6 has a worse
BIC than that of Model 3 indicating no need for Mover-Stayer
modeling.

Model Estimates for the Mood Data

It is interesting to compare the model estimates for some key
models of Table 5, both in terms of measurement probabilities and
transition probabilities. Table 6 shows estimates from regular LTA
(Model 1), regular LTA with a Mover-Stayer component (Model
4), and the continuous version of RI-LTA without a Mover-Stayer
component (Model 3). Regular LTA gives quite different results
than the better-fitting RI-LTA both in terms of measurement
parameters and transition parameters.

The measurement parameter estimates of the two regular LTA
models suggest that the two indicators sad and unhappy discrim-
inate well between the two classes, labeled as not sad/happy and
sad/unhappy. The probabilities are very low in the first class and
very high in the second class. For the better-fitting RI-LTA model,
the class differences in probabilities are smaller showing that
regular LTA gives an inflated view of class separation as discussed
in the section Continuous Random Intercept.

The factor loadings of the continuous version of RI-LTA are
significant with estimates (SEs) 2.805 (0.251) and 6.775 (2.135).
The larger loading for the unhappiness indicator compared with
the sadness indicator suggests that unhappiness shows a higher
degree of stability over time.

The estimated transition probabilities of regular LTA have
higher diagonal values suggesting more stability in class member-
ship over time than with RI-LTA. This is in line with the Monte
Carlo simulation findings of overestimated diagonal values with
regular LTA shown in the bottom part of Table 3.

For RI-LTA, transitioning from the sad/unhappy class to the not
sad/happy class is almost as likely as staying in the same class. The
Mover-Stayer version of the regular LTA has similar transition
probabilities but they are valid for only the movers, estimated as
61%; this model also has worse log likelihood and BIC.

Further insight into the RI-LTA model can be obtained by
taking a closer look at the stayers in the mood data. Of the N � 494
subjects, 96 (19%) give the same not sad/happy answer to both
latent class indicators at all four time points and 62 (13%) give the
same sad/unhappy answer. In other words, about a third of the
sample consists of stayers. The RI-LTA model captures the stayers
by assigning large factor values to them. To see this, factor values
can be estimated by the usual maximum a priori method. With the
0, 1 metric of the factor, the 96 consistently happy subjects have
the by far lowest factor score estimate of �1.157 and the 62
consistently unhappy subjects have the by far highest factor score
of 1.420. As discussed in the section Continuous Random Inter-
cept, the large negative estimate implies a high probability of
answering in the not sad/happy category (U � 0) at all time points
and the large positive estimate implies a high probability of an-
swering in the sad/unhappy category (U � 1) at all time points.
Rather than the regular LTA categorization into movers and
stayers, the random intercept factor of RI-LTA provides a contin-
uum of more or less movement over time.

Analysis of the Dating Data

The second example concerns dating and sexual risk behavior.
The data set is from the National Longitudinal Survey of Youth
(NLSY97) with N � 2,937, three time points 1 year apart, and four
ordinal and binary items measuring five latent classes at each time
point. An LTA analysis of these data appeared in an influential
article by Lanza and Collins (2008), introducing SAS PROC LTA.
The items are past-year number of dating partners (0, 1, 2 or more),
past-year sex (no, yes), past-year number of sexual partners (0, 1,
2 or more), and exposed to sexually transmitted disease (STD) in
past year (no, yes). Covariates are gender and whether the respon-
dent has used cigarettes, been drunk, or used marijuana in the past
year. In the current analyses, the item had sex in past year is
dropped due to a no response necessitating a zero answer to the
item number of sexual partners, thereby avoiding an unnecessary

Table 6
Mood Data Estimates

Classes

Variables/classes Not sad/happy Sad/unhappy

Regular LTA

Measurement probabilities
Indicator

Sad 0.089 0.902
Unhappy 0.038 0.857

Transition probabilities
Not sad/happy 0.803 0.197
Sad/unhappy 0.248 0.752

Mover-stayer LTA: Movers

Measurement probabilities
Indicator

Sad 0.089 0.898
Unhappy 0.031 0.860

Transition probabilities
Not sad/happy 0.664 0.336
Sad/unhappy 0.446 0.554

RI-LTA, continuous RI

Measurement probabilities
Indicator

Sad 0.286 0.748
Unhappy 0.164 0.804

Transition probabilities
Not sad/happy 0.691 0.309
Sad/unhappy 0.486 0.514
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violation of conditional independence. The regular LTA analyses
still produce the same five-class interpretation as in Lanza and
Collins (2008). A stationary model is chosen for the dating and
sexual risk behavior example because unlike regular LTA as in
Lanza and Collins (2008), stationarity cannot be rejected for the
RI-LTA models.

Model Fitting Results for the Dating Data

Table 7 compares the model fitting results of regular LTA with
those of RI-LTA with a continuous and a binary random intercept.
Models 1–3 in the top part of the table show standard analysis
whereas Models 4–6 in the bottom part show Mover-Stayer anal-
ysis. The RI-LTA models are clearly better than the regular LTA
both in term of higher loglikelihood and lower BIC. For regular
LTA, BIC points to a Mover-Stayer model whereas for the RI-
LTA models it does not.

Model Estimates for the Dating Data

It is interesting to compare the model estimates for some key
models of Table 7, both in terms of measurement probabilities and
transition probabilities. Table 8 shows estimates from regular LTA
(Model 1) used in Lanza and Collins (2008) and the continuous
version of RI-LTA without a Mover-Stayer component (Model 3).
Regular LTA gives quite different results than the better-fitting
RI-LTA both in terms of measurement parameters and transition
parameters.

For the regular LTA, the measurement parameter estimates
show a pattern of probabilities that is very similar to that of Lanza
and Collins (2008) with latent class described as nondaters, daters,
monogamous, multipartner safe, and multipartner exposed where
exposed refers to being exposed to STD in the past year. In parts,
the RI-LTA model has a similar pattern of probabilities where the
latent classes of nondaters, daters, and multiexposed can be seen.
The monogamous class is however somewhat different in that
having two or more dating partners is a bit more likely than having
one partner. Also, the multisafe class is not found but instead a
class that can be described as monogamous exposed.

The factor loadings for the continuous random intercept version
of the RI-LTA model are significant with estimates (SEs) 1.574
(0.152), 4.194 (0.504), and 1.507 (0.246). The larger loading for
the latent class indicator number of sexual partners in the last year
suggests that this indicator has a higher degree of stability over
time. Viewed from the perspective of measurement noninvariance
discussed in the section Continuous Random Intercept, it also

indicates that this latent class indicator shows a larger amount of
measurement noninvariance across subjects.

The difference in estimated transition probabilities do not show
a clear pattern in the difference between regular LTA and RI-LTA.
For the three latent classes with the same interpretation by the two
models, the estimated transition probabilities show larger diagonal
elements for regular LTA as compared with RI-LTA in two out of
the three classes.

Measurement Invariance Testing for the Dating Data

Lanza and Collins (2008) studied differences in LTA parameters
for males and females. A first such analysis concerns measurement
invariance across gender. This can be done using a multiple-group
approach or equivalently by using a gender covariate that influ-
ences all latent class indicators directly. The latter approach is used
here because it is more efficient computationally. To reduce the
risk of distorting the measurement invariance testing, a reasonably
flexible structural model for the latent class part is used here,
namely, the main effect model described in the bottom part of
Table 2.

Table 9 shows the model testing results for regular LTA and
RI-LTA with a continuous random intercept factor. Measurement
invariance can be checked using likelihood-ratio chi-square test-
ing, in this case with 15 degrees of freedom corresponding to three
latent class indicators and five latent classes for which there are
gender differences. For these data, regular LTA and RI-LTA agree
that invariance is rejected with p  .005. BIC, however, points to
measurement invariance in both cases and for simplicity this
model will used when adding other covariates.

Covariate Influence for the Dating Data

The dating example has four binary covariates, gender and
whether the respondent has used cigarettes, been drunk, or used
marijuana in the past year. Table 10 shows the results of a second
set of analyses that explores the influence of these covariates on
the latent class variables and the transitions.

The regular LTA Model 1 uses the main effect model shown at
the bottom of Table 2. Model 2 uses the interaction effect model
for regular LTA shown at the top of Table 2 but where the
interaction is only with respect to gender and not the other three
covariates. This interaction model was chosen because the possible
gender effect on transitions was mentioned in Lanza and Collins
(2008). Contrasting the models, both BIC and chi-square testing
indicate that males and females do not have different transitions.

In the RI-LTA Model 3, the covariates are allowed to influence
the continuous random intercept factor while in the RI-LTA Model
4, the covariates also influence the latent class variables using the
main effect parameterization shown at the bottom of Table 2.
Comparing Models 3 and 4 shows that the covariate influence on
the latent class variables needs to be included in the model. Model
5 is the RI-LTA counterpart to the regular LTA Model 2 which
allows gender interaction effects on the transitions. This indicates
that males and females do not have different transitions so in this
case there is agreement with regular LTA. Comparing the best
regular LTA Model 1 and the best RI-LTA Model 4, however, it
is seen that both the loglikelihood and BIC are better for RI-LTA.
In addition, Model 1 and Model 4 have different covariate effects.
The effect of covariates on the latent class of multipartner-exposed

Table 7
Model Fitting Results for the Dating Data

Model # Parameters Loglikelihood BIC

Standard

1. Regular LTA 49 �16202 32796
2. RI-LTA, binary RI 53 �16056 32535
3. RI-LTA, continuous RI 52 �16043 32502

Mover-stayer

4. Regular LTA 50 �16194 32787
5. RI-LTA, binary RI 54 �16053 32536
6. RI-LTA, continuous RI 53 �16041 32506
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is of special interest. In presenting these results, the log odds
relates this class to the class of monogamous. For the regular LTA
of Model 1, significant and positive effects are seen for male and
past-year marijuana usage at all time points, with an additional
significant positive effect of past-year drunkenness for the first
time point. Past-year cigarette use does not have a significant

effect. For the RI-LTA Model 4, only male has a significant effect
and it is positive. The covariate effects on the continuous random
intercept, however, are significant and positive for all the covari-
ates. Positive effects increase the random intercept value which in
turn increases the probability of the latent class indicators being in
Category 1 versus Category 0 for binary indicators and increases

Table 8
Dating Data Estimates

Regular LTA

Variables/classes Nondaters Daters Monogamous Multisafe Multiexposed

Measurement probabilities
# dating partners in past year

0 0.789 0.008 0.096 0.031 0.025
1 0.166 0.214 0.641 0.026 0.044
2 0.045 0.778 0.262 0.943 0.932

# sex partners in past year
0 0.975 0.948 0.000 0.104 0.000
1 0.014 0.048 0.961 0.258 0.118
2 0.011 0.004 0.039 0.638 0.882

Exposed to STD in past year
No 1.000 1.000 0.385 1.000 0.187
Yes 0.000 0.000 0.615 0.000 0.813

Transition probabilities
Nondaters 0.627 0.197 0.096 0.038 0.042
Daters 0.023 0.626 0.173 0.086 0.091
Monogamous 0.034 0.032 0.679 0.056 0.199
Multi-safe 0.036 0.000 0.177 0.584 0.203
Multiexposed 0.021 0.033 0.201 0.055 0.690

RI-LTA, continuous RI

Nondaters Daters Monogamous Monoexposed Multiexposed

Measurement probabilities:
# dating partners in past year

0 0.861 0.039 0.000 0.193 0.057
1 0.041 0.192 0.457 0.708 0.048
2 0.098 0.770 0.543 0.100 0.895

# sex partners in past year
0 0.922 0.789 0.026 0.000 0.017
1 0.033 0.075 0.883 0.898 0.099
2 0.045 0.136 0.091 0.102 0.884

Exposed to STD in past year
No 1.000 1.000 0.485 0.113 0.398
Yes 0.000 0.000 0.515 0.887 0.602

Transition probabilities
Nondaters 0.583 0.264 0.029 0.058 0.067
Daters 0.014 0.660 0.183 0.013 0.130
Monogamous 0.008 0.067 0.405 0.200 0.320
Multisafe 0.071 0.007 0.040 0.639 0.243
Multiexposed 0.031 0.050 0.172 0.127 0.619

Table 9
Measurement Invariance Testing for the Dating Data: Males Versus Females

Model # Par’s LL BIC Test (df) �2

1. Regular LTA, invariance 61 �16123 32733
2. Regular LTA, noninvariance 76 �16097 32800 1 vs 2 (15) 52
3. RI-LTA, continuous RI, invariance 64 �15977 32465
4. RI-LTA, continuous RI, noninvariance 79 �15951 32532 3 vs 4 (15) 52

Note. Scaling correction factors have not been applied. # Par’s � number of parameters; LL � loglikelihood;
df � degrees of freedom; �2 � chi-square. Bold numbers indicate which model is favored by the chi-square test.
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the probabilities of the higher categories relative to the lower
categories for the ordinal indicators. In other words, only male
increases the latent class odds while all covariates increase the
odds of answering in a more “extreme” category of the latent class
indicators. The latter effect refers to a between-subject difference
that is stable over time and is unrelated to latent class membership.

Discussion

This article demonstrates the need for replacing regular LTA
with random intercept LTA (RI-LTA). Most importantly, RI-LTA
typically fits the data better as illustrated by the examples in this
article. This was also found to be the case using several other data
sets, including the life satisfaction data of Langeheine and van de
Pol (2002) mentioned in the section Regular LTA and the reading
data of Kaplan (2008). Apart from a better fit of the model to the
data, RI-LTA gives a clearer interpretation. Regular LTA suffers
from estimating transition probabilities that confound between-
and within-subject influences. By allowing random intercept vari-
ation in the model, the between-subject variation is extracted from
the latent class indicators so that latent class transitions over time
refer to within-subject transitions. Because regular LTA does not
include a random intercept, the probability of staying in the same
class is typically over estimated. In addition, regular LTA over-
looks information in the data which relates to measurement. Unlike
regular LTA, RI-LTA allows for measurement noninvariance
across subjects represented by the random intercepts. Regular LTA
typically overstates the ability of latent class indicators to discrim-
inate between latent classes. Regular LTA is also more likely to
need an added Mover-Stayer component whereas the random
intercept of RI-LTA captures tendencies to stay in the same latent
class without such an added component. A limited simulation
study indicates that for sample sizes of at least 500, RI-LTA
performs well when there are three or more time points whereas
with only two time points, a sample size of more than 4,000 may
be needed.

While the case of categorical latent class indicators has been
discussed here, the same approach can also be applied to contin-
uous, count, or nominal latent class indicators. Several additional
aspects of modeling with random intercepts are of interest and are
discussed below.

Computational Aspects

The RI-LTA model requires a considerably longer computa-
tional time than regular LTA. The continuous random intercept

version is the most time-consuming in that the maximum-
likelihood estimation requires numerical integration but also be-
cause it needs more random starting values to replicate the best
loglikelihood. While much faster than the continuous random
intercept version, the binary random intercept version is also
slower than regular LTA due to having one more latent class
variable. Recent advances in CPU speed, multithreading, and
algorithmic improvements, however, have made it practical to
estimate RI-LTA models.

Other Model Variations

Several other variations of RI-LTA are possible in order to make
the model more flexible. Following are five such variations that are
possible in the latent variable framework of Mplus (Muthén &
Muthén, 1998–2017). First, the typical assumption of a lag-1
relationship between the latent class variables Ct may be relaxed.
Lag-2 effects were significant per likelihood-ratio chi-square test-
ing in the examples using the three model types. Second, the
assumption of uncorrelated latent class indicators across time
conditional on the latent classes and the random intercept may be
relaxed. Asparouhov and Muthén (2015) presented a method for
this in a regular LTA setting, allowing correlated “residuals.”
Several instances of correlated residuals were found for these
examples using both regular LTA and RI-LTA models. Third, with
the use of a binary random intercept, RI-LTA can be generalized
to more than two classes and more than one latent class variable.
In the examples in this article, however, there was no evidence that
this was needed. Fourth, the model can be extended to include
other model parts such as distal outcomes and multiple processes,
the latter including the possibility to connect RI-LTA to the
random intercept cross-lagged panel modeling of Hamaker et al.
(2015). Fifth, a trend over time can be accommodated. In the
continuous random intercept case, a slope can be added to
the random intercept, for example, by letting the slope influence
the latent class indicators at each time point using the same
loadings as for the random intercept and allowing a slope mean to
influence the outcomes over time. Using a linear trend, this did not
result in a better-fitting model for the examples of this article.

Future Research on RI-LTA

Despite the promising results obtained by replacing regular LTA
with RI-LTA, further explorations and extensions of this new
technique are warranted. It will be useful to have more extensive
Monte Carlo simulation studies for different settings, studying the

Table 10
Model Testing Using Covariate Analysis for the Dating and Sexual Risk Behavior Example: Regular LTA Compared to RI-LTA With
a Continuous Random Intercept

Model Covariate Influence # Par’s LL BIC Test (df) �2

1. Regular LTA Main effects 81 �15630 31906
2. Regular LTA Main effects and gender interaction effects 97 �15621 32016 1 vs 2 (16) 18
3. RI-LTA Continuous RI 56 �15653 31753
4. RI-LTA Continuous RI and main effects 88 �15461 31624 3 vs 4 (32) 384
5. RI-LTA Continuous RI, main effects, and gender interaction effects 104 �15454 31738 4 vs 5 (16) 14

Note. Scaling correction factors have not been applied. # Par’s � number of parameters; LL � loglikelihood; df � degrees of freedom; �2 � chi-square.
Bold numbers indicate which model is favored by the chi-square test.
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sample size requirements as a function of number of time points,
number of latent class indicators, number of latent classes, cova-
riates, and so forth. The susceptibility to model misspecification
should be studied. Class enumeration techniques need to be con-
sidered. It will be of interest to develop multistep analyses for
including covariates and distal outcomes in line with Asparouhov
and Muthén (2014) and Bakk and Kuha (2018). Multilevel ver-
sions of RI-LTA are needed when subjects are nested within
schools, organizations, or communities.
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