Here is interpretation of ORs for a nominal DV in a multinomial logistic regression (observed or latent DV). Say that we have 3 classes/categories for the DV, so the last class is class 3 . The Odds of being in class 1 versus class 3 is: Prob(class 1)/Prob(class 3). The Odds is obtained as $\exp ($ slope for X$)$ and varies over the classes (it is 1 for the last class). The Odds Ratio (OR) is a ratio of Odds for a unit change in $\mathrm{X}: \mathrm{X}=\mathrm{x}+1$ versus $\mathrm{X}=\mathrm{x}$:

OR for class $1=$ (odds of being in class 1 versus class 3 for $\mathrm{X}=\mathrm{x}+1$) / (the odds of being in class 1 versus class 3 for $\mathrm{X}=\mathrm{x}$)

OR for class $2=($ odds of being in class 2 versus class 3 for $\mathrm{X}=\mathrm{x}+1$) / (the odds of being in class 2 versus class 3 for $\mathrm{X}=\mathrm{x}$)

A positive slope for X gives an OR greater than 1 and implies that an increase in X increases the odds. A negative slope for X gives an OR less than 1 and implies that an increase in X decreases the odds. A zero slope for X gives $\mathrm{OR}=$ 1 and implies no effect of X .

Examples:
$\mathrm{X}=$ male (1)/female (0). OR=1.5 for class 1 implies that "being a male versus a female increases the odds of being in class 1 versus class 3 by a factor of 1.5". Or, "the male odds of being in class 1 versus class 3 is 1.5 times higher than the female odds".
$\mathrm{X}=$ Age. $\quad \mathrm{OR}=0.8$ for class 1 implies that "increasing Age by one unit decreases the odds of being in class 1 versus class 3 by a factor of $0.8^{\prime \prime}$.

