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Abstract. Structural equation models with mean structure and non-linear constraints are the
most frequent choice for estimating interaction effects when measurement errors are present.
This article proposes eliminating the mean structure and all the constraints but one, which
leads to a more easily handled model that is more robust to non-normality and more gen-
eral as it can accommodate endogenous interactions and thus indirect effects. Our approach
is compared to other approaches found in the literature with a Monte Carlo simulation and
is found to be equally efficient under normality and less biased under non-normality. An
empirical illustration is included.
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1. Introduction

Moderated regression analysis (MRA)–a particular specification of multiple
linear regression analysis which includes products of regressors–has been
widely used in the social sciences when the value of a continuous var-
iable influences the effect of another continuous variable on the depen-
dent one (e.g. Cohen and Cohen, 1983; Jaccard et al., 1990; Irwin and
McClelland, 2001; Conner et al., 2002; Davis-Blake et al., 2003; Newsom
et al., 2003). However, measurement error makes the estimates of regres-
sion coefficients in MRA inconsistent and biased. This bias is especially
relevant for interaction effects that are usually of low magnitude (second
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order effects) and may easily go undetected if attenuated. Additionally, the
estimated standard errors of regression coefficients are also biased; thus no
coherent inferences about population parameters or relationships among
variables can be made.

Kenny and Judd (1984) proposed a possible specification for model-
ing interaction effects with structural equation models (SEM). Kenny and
Judd’s approach requires each latent variable to relate to at least two indi-
cators and implies the formation of multiple indicators based on the prod-
ucts of the observed variables. These products are then used as indicators
of the latent interaction.

Different alternatives have been proposed for developing Kenny and
Judd’s (1984) approach. It is not our aim to provide a comprehensive
presentation of the various available procedures for testing interaction
effects with SEM (see for this purpose Jöreskog, 1998; Li et al., 1998;
Schumacker and Marcoulides, 1998; Cortina et al., 2002), we only cluster
them into:

1. Two-step approaches (Mathieu et al., 1992; Ping, 1995, 1996; Schumacker,
2002; Bisbe et al., 2006; see also Jöreskog, Latent Variable Scores and
Their Uses, at http://www.ssicentral.com/lisrel/techdocs/lvscores.pdf). In a
first run, based on the main effects’ indicators, they estimate certain
parameter values of the measurement model or alternatively factor
scores that are later used for the interaction factor in the second run.
They have the disadvantage that quantities that are estimated in the first
run are treated as known in the second, which biases standard errors.
On the positive side, some of these approaches are the only feasible ones
when the sample size is small (Bisbe et al., 2006) or the model is very
large (Gonzalez et al., in press).

2. Two-stage least squares approach (Bollen and Paxton, 1998). It has
the disadvantage of using a limited information estimator, which leads
to less efficient estimates (Schermelleh-Engel et al., 1998; Moulder and
Algina, 2002).

3. Maximum likelihood approaches of Jaccard and Wan (1995, 1996) and
of Jöreskog and Yang (1996). Both approaches estimate the complete
model with the main effects, interaction term and measurement part in
one step. Both require the specification of non-linear constraints, some
of which are heavily based on the normality of main effect indicators.
Jöreskog and Yang use only one product indicator of the latent
interaction and a mean and covariance structure, while Jaccard and
Wan use all possible products of pairs of indicators and a covariance
structure. Due to the use of only one indicator, the Jöreskog and Yang
approach shares typical features of limited information approaches if
the indicators are not congeneric or the sample size is small, and the
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results can change depending on which indicator is chosen (Saris et al.,
in press). As a compromise, Batista-Foguet et al. (2004a) and Marsh et
al. (2004) independently suggested using non-overlapping pairs of indi-
cators of the latent interaction, thus moving to a truly full information
approach in comparison with Jöreskog and Yang (1996) and leading
to a simpler specification without correlated errors in comparison with
Jaccard and Wan (1995). This non-overlapping pairs of indicators
approach does not require non-linear constraints for identification
and is thus simpler and can be applied to non-normal main effect
indicators.

4. Maximum likelihood approach without product indicators or non-linear
constraints (Klein and Moosbrugger, 2000; Schermelleh-Engel et al.,
1998) This approach was named latent moderated structural equa-
tions (LMS) approach and does not imply creating or constraining
any product indicators. It derives the joint distribution of the main
effect indicators and dependent variable indicators assuming normal-
ity of the former, and expresses the likelihood as a function of all
model parameters, including interaction effects. Estimation is computa-
tionally very intensive and is carried out by means of the EM algo-
rithm as described in Klein and Moosbrugger (2000). This approach
is reported to be unbiased and efficient under normality (Schermelleh-
Engel et al., 1998) but biased under non-normality (Klein and Moos-
brugger, 2000).

5. Some recent alternative approaches include the Bayesian approach
of Arminger and Muthén (1998) the two-step method of moments
approach of Wall and Amemiya (2000), and the quasi maximum likeli-
hood estimation method (Klein and Muthén, Quasi maximum likelihood
estimation of structural equation models with multiple interaction and
quadratic effects. Submitted to Multivariate Behavioral Research). none
of which has been implemented in widely used software thus far.

Since the newest developments not implemented in software are somewhat
remote from practitioners’ interests and the two-step and two-stage least
squares approaches make it difficult to compute either most of the diagno-
sis indexes commonly used in SEM or correct standard errors, this article
focuses on the maximum likelihood strategies 3 and 4.

Although the seminal article of Kenny and Judd (1984) was pub-
lished 20 years ago, SEM applications to modeling interactions in the
social sciences are rare (for an exception see Reinecke 2002) and MRA
is mostly used instead, despite the latter’s obvious weakness in not taking
measurement errors into account. This indicates that cumbersome
approaches (complex non linear constraints) have deterred practitioners
from using SEM. This is hardly surprising, given that these approaches
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require a great deal of statistical expertise. Furthermore, not all SEM soft-
ware can handle non-linear constraints, and software handling the LMS
approach has appeared only very recently, as well as Batista-Foguet et al.
(2004a) and Marsh et al. (2004) articles. Moreover, probably due to the
influence of the MRA approach, and to the complexity of the non-lin-
ear constraints, every SEM application (except that of Batista-Foguet et al.
2004b) is restricted to a single equation model, thus limiting SEM to only
estimating direct effects.

This article has two main objectives: first, to extend the single equation
approach to a simultaneous structural equation system in which the main
effect and interaction terms may not be exogenous and in which variables
may be related through a multitude of direct and indirect effects; Second
to make the approach more workable and dependent on fewer assumptions
by using only a few simple constraints. Going into detail, we achieve both
objectives by:

1. Following Batista-Foguet et al. (2004a) and Marsh et al. (2004) in
simplifying Jaccard and Wan (1995) and Jöreskog and Yang’s (1996)
approaches by avoiding most of the non-linear constraints and by using
non-overlapping pairs of indicators of the latent interaction. This makes
it possible to extend the applicability of the method to variables that are
not normally distributed.

2. Following Jaccard and Wan (1995) approach by avoiding the need to
use a mean structure. This results in a further simplification of the
Marsh et al. (2004) approach.

3. Generalizing the single equation structural model to a simultaneous
structural equation system. This would allow the researcher to have
the interaction anywhere in the model, making it possible to estimate
direct, indirect and total effects of the latent variables involved, thus
exploiting the full strength of SEM. The earlier attempt of Batista-
Foguet et al. (2004b) would be impracticable for models of moderate
complexity.

The plan of this article is as follows. First we introduce the classic
approaches of Jaccard and Wan (1995) and Jöreskog and Yang (1996).
Then we proceed to respecify the model with the minimum possible
amount of constraints, by first dropping those that are only correct
under normality. Next we show the extension of the approach to mod-
els where interacting variables are endogenous and may be related to
the dependent variables through indirect effects. Next, the practical fea-
sibility of our approach is assessed in terms of bias and efficiency by
means of a Monte-Carlo experiment in which our approach is compared
to more complex SEM specifications and to the LMS and Marsh et
al. approaches. Finally, an application is presented studying indirect and
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interaction effects of political orientation, political understanding, value
orientations with respect to the environment and political influence on
environmentally friendly behavior such as buying and boycotting certain
products.

2. Classic Single-Equation Formulations of Jöreskog and Yang
and Jaccard and Wan

Before we present our proposals for extending and simplifying the approach,
we start with the standard single equation SEM (Figure 1) that is presented
in Equation 1:1

η4 =α4 +β41η1 +β42η2 +β43η3 + ζ4, (1)

where η3 = η1η2, β41,β42, and β43stand for the regression coefficients and
ζ4 is the disturbance term, which is assumed to be independent of (and
not just uncorrelated with) η1 and η2.In this approach all three variables
η1, η2, and η3 are exogenous variables with free variances ψ11, ψ22, and
ψ33, and covariances ψ21, ψ31, and ψ32. Even if η1 and η2are centered, η3

is not. So, E(η3)= α3 is a parameter of the model. Furthermore we have
Var(ζ4)=ψ44.

We assume, without loss of generality, that the main effect latent vari-
ables and the endogenous latent variable have two indicators, which is
enough for identification. A larger number of indicators would of course
be possible.

As regards the measurement part of the model, in this article we will
only consider non-overlapping pairs of interaction indicators. If we choose

α4 

α3

ψ32

ψ21

β43
β42 β41

ψ31

z4
η4

η1

η3
 = η1η2η2

Figure 1. Single equation SEM for modeling interaction effects.
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y5=y1y3 and y6=y2y4, then we omit the other possible indicators y1y4 and
y2y3. Marsh et al. (2004) found non-overlapping pairs of indicators to work
best by constructing a first pair involving the most reliable indicators of η1

and η2, a second pair involving the least reliable indicators of η1 and η2.

y1 = τ1 +λ11η1 + ε1,

y2 = τ2 +λ21η1 + ε2,

y3 = τ3 +λ32η2 + ε3,

y4 = τ4 +λ42η2 + ε4,

y5 = τ5 +λ51η1 +λ52η2 +λ53η3 + ε5,

y6 = τ6 +λ61η1 +λ62η2 +λ63η3 + ε6,

y7 = τ7 +λ74η4 + ε7,

y8 = τ8 +λ84η4 + ε8. (2)

For identification purposes and without any loss of generality, we fix the
scale of the latent variables by constraining three loadings to 1:

λ11 =λ32 =λ74 =1. (3)

Additional parameters of the measurement part are Var(εj )= θjj . The
specification is completed with the assumptions that η1,η2 ,and ε1to ε8 have
zero expectation. Additionally, ε1to ε8are assumed to be mutually indepen-
dent (not only uncorrelated) and independent of η1,η2, and ζ4.

These assumptions allow us to analyze the expectation, variance and
covariance of the product indicators, as well as to derive non-linear
constraints relating their associated parameters.

The product indicators,y5, y6, can be decomposed as:

y5 =y1y3 = (τ1 +η1 + ε1)(τ3 +η2 + ε3)

= τ1τ3 + τ3η1 + τ1η2 +η2η1 + ε5, (4)

y6 =y2y4 = (τ2 +λ21η1 + ε2)(τ4 +λ42η2 + ε4)

= τ2τ4 + τ4λ21η1 + τ2λ42η2 +λ21λ42η2η1 + ε6, (5)

where:

ε5 = τ3ε1 + τ1ε3 +η1ε3 +η2ε1 + ε1ε3,

ε6 = τ4ε2 + τ2ε4 +λ21η1ε4 +λ42η2ε2 + ε2ε4. (6)
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The following constraints on the loadings and intercepts can be derived
from the expressions of y5andy6in Equations 2,4 and 5:

τ5 = τ1τ3,

λ51 = τ3,

λ52 = τ1,

λ53 =1, (7)

τ6 = τ2τ4,

λ61 = τ4λ21,

λ62 = τ2λ42,

λ63 =λ21λ42. (8)

The measurement error variances and covariances can also be derived,
which involves the following constraints:

θ51 =E(ε5ε1)= τ3E(ε1ε1)= τ3θ11,

θ53 =E(ε5ε3)= τ1E(ε3ε3)= τ1θ33, (9)

θ62 =E(ε6ε2)= τ4E(ε2ε2)= τ4θ22,

θ64 =E(ε6ε4)= τ2E(ε4ε4)= τ2θ44, (10)

while the error terms of non-overlapping pairs of product indicators are
uncorrelated:

θ65 =E[(τ4ε2 + τ2ε4 +λ21η1ε4 +λ42η2ε2 + ε2ε4)

(τ3ε1 + τ1ε3 +η1ε3 +η2ε1 + ε1ε3)]=0. (11)

The error variances can also be expressed as functions of other param-
eters, as:

θ55 =V ar(ε5)=V ar(τ3ε1 + τ1ε3 +η1ε3 +η2ε1 + ε1ε3)

= τ 2
3V ar(ε1)+ τ 2

1V ar(ε3)V ar(η1)V ar(ε3)

+V ar(η2)V ar(ε1)+V ar(ε1)V ar(ε3)

= τ 2
3 θ11 + τ 2

1 θ33 +ψ11θ33 +ψ22θ11 + θ11θ33 (12)

θ66 =V ar(ε6)=V ar(τ4ε2 + τ2ε4 +λ21η1ε4 +λ42η2ε2 + ε2ε4)

= τ 2
4 θ22 + τ 2

2 θ44 +λ2
21ψ11θ44 +λ2

42ψ22θ22 + θ22θ44. (13)
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The expectation of the interaction latent variable will be:

α3 =E(η3)=E(η1η2)=Cov(η1η2)=ψ21 (14)

Some constraints on the interaction factor variances and covariances
are possible if the normality assumption is made besides the independence
assumption (Anderson, 1984; Jaccard and Wan, 1995; Rigdon et al., 1998):

ψ33 =V ar(η3)=V ar(η1η2)=V ar(η1)V ar(η2)+Cov2(η1η2)

=ψ11ψ22 +ψ2
21, (15)

Cov(η3η2)=ψ32 =0;Cov(η3η1)=ψ31 =0. (16)

Jaccard and Wan (1995) suggested ignoring the mean structure. This
involves centering the y1 to y4 indicators prior to computing the product
indicators, and using only the covariance matrix as input for the model esti-
mation (i.e., recentering the interaction indicators once they have been com-
puted). Of course, if the α and τ parameters are of substantive interest to
the researcher, then the mean structure is necessary, but this is often not the
case in applied research. Some advantages of using centered indicators are:

1. Frequent non-convergence problems occur when the main effect indica-
tors are not centered (Algina and Moulder, 2001).

2. Centering variables prior to computing the product minimizes the rela-
tionships between the variables and the product computed from them,
which reduces collinearity (See Li et al. 1998 and the appendix in Irwin
and McClelland 2001).

3. The number and complexity of non-linear constraints gets greatly
reduced.

If we omit the mean structure, then all τ and α parameters become zero
and many restrictions are no longer needed and others are greatly simpli-
fied. Constraints 7–10 on the loadings and error covariances thus simplify
to λ51 = λ52 = λ61 = λ62=0 and θ51 = θ53 = θ62 = θ64=0. Only the following
constraints on the loadings, error variances and interaction variances and
covariances remain:

λ63 =λ21λ42, (17)

θ55 =ψ11θ33 +ψ22θ11 + θ11θ33, (18)

θ66 =λ2
21ψ11θ44 +λ2

42ψ22θ22 + θ22θ44, (19)

ψ33 =ψ11ψ22 +ψ2
21, (20)

ψ32 =ψ31 =0. (21)



INTERACTION EFFECTS IN COMPLEX STRUCTURAL EQUATION MODELS 377

Jaccard and Wan (1995) suggested dropping the mean structure and
using all constraints (17)–(21). Additionally, they introduced all other pos-
sible pairs of product indicators (y1y4 and y2y3) with their correspond-
ing additional constraints analogous to (17)–(19). The error covariances
between overlapping pairs (y1y4−y1y3; y1y4−y2y4; y2y4−y2y3; y1y3−y2y3)
were left free.

Jöreskog and Yang (1996) took a different path to simplifying the con-
straints. They argued that the mean structure was necessary because of
the α3 and α4 parameters and they kept it while using only one indicator
(y5). As all constraints related to parameters involving y6 are not needed,
only constraints (7), (9), (12), (14)–(16) remain. Some of these constraints
constitute what makes it possible for a model with only one indicator of
one factor to be exceptionally identified.

Algina and Moulder (2001) employed much the same approach as
Jaccard and Wan (1995) with two differences: They derived appropri-
ate non-linear constraints for the error covariances between overlapping
pairs, and they centered the main effect indicators prior to computing
the interaction indicators but did not recenter the interaction indicators
after their computation. It must be noted that the interaction indicators
do not have a zero mean even if the main effect indicators do. Accord-
ingly, they included a mean structure in which τ1 to τ4 were constrained
to zero. The problem with these constraints is that, for centered data,
they hold not only for the population but also for the sample and can
thus lead to overfitting the model to the sample. Constraint (14) was also
included.

Regardless of whether we take the approach of Jöreskog and Yang
(1996), of Jaccard and Wan (1995) or of Algina and Moulder (2001),
estimating the model with all these non-linear constraints still requires
a considerable technical capability of the researcher and it is even not
possible with software that does not include non-linear constraints. This
is certainly one of the reasons why this approach is not frequently
used in applied research. Besides, some of these constraints assume
normality.

Fortunately, the estimation can be done with fewer or even no
constraints at all. Marsh et al. (2004) modified the approach of Algina
and Moulder (2001) by dropping overlapping pairs of indicators and
by using no constraints at all except (14) which is in fact linear. The
treatment of the mean structure was done as in Algina and Moulder
(2001) and included setting τ1 to τ4to 0 and thus can supposedly lead
to overfitting problems. This approach is further improved on in the next
section.
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3. Specification with Minimal Constraints that are Robust
to Non-Normality

Constraints (20) and (21) on the interaction variances and covariances
make use of a result regarding the variances and covariances of products
of normal variables. If the original measures are severely non-normal, then
the actual variances and covariances can be very different from the values
implied by the constraints (Rigdon et al., 1998) and estimates can be biased
(Wall and Amemiya, 2001).

Fortunately, constraints (20) and (21) are not necessary for identi-
fication, even in the single indicator case. Researchers can deal with
non-normality merely by relaxing these constraints and thus, the cost
of non-normality is no more than a loss of parsimony (Rigdon et al.,
1998). However, practitioners customarily introduce constraints (20) and
(21) without performing any normality test.

In this article, we follow Marsh et al. (2004) and Batista-Foguet et
al. (2004a) in suggesting using multiple non-overlapping pairs of indica-
tors. Using overlapping pairs would only add unnecessary complexity in
exchange of information that is actually redundant, as shown by the many
error covariance parameters in Jaccard and Wan’s formulation. Using only
one indicator would still require the complex constraint (18) on the error
variance for identification.

In the non-overlapping indicator case, no constraints are needed for
identification. The issue here is one of bias and efficiency. Introducing
wrong constraints on the interaction variances and covariances ((20) and
(21) for non-normal data) can lead to bias. Introducing correct constraints
on the error variances and loadings (17–19) can reduce standard errors.
Thus, we advise practitioners to use the very simple non-linear constraint
(17) on the loadings if software permits. Constraints (18) and (19) do not
require normality and may also be used by expert modelers. Constraints
(20) and (21) require normality and are thus not advised.

We depart from Marsh et al. (2004) in that:

1. We still consider the simple constraint (17) on the loadings while
Marsh et al. suggested using no non-linear constraints at all.

2. We introduce the further simplification of omitting the mean struc-
ture completely as Jaccard and Wan (1995), while Marsh et al. sug-
gested keeping it with Equation 14 and the main effect τ parameters
constrained to zero as in Algina and Moulder (2001). This makes our
approach even simpler and prevents us from overfitting the model to
the sample.

3. We consider simultaneous equations and indirect effects, as shown
next.
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4. Extension to a Simultaneous Structural Equation System

With the exception of Batista-Foguet et al. (2004b), SEM have so far been
formulated with one equation, where the regressors that interact are exog-
enous latent variables. This single equation formulation only makes it pos-
sible to estimate direct and interaction effects. In order to also estimate
for instance an indirect effect in the same model, we must specify a simul-
taneous structural equation system. We show a very simple example in
Figure 2.

The structural part of the model would include Equation 1 (without the
α4 term) and an additional equation predicting the up to now exogenous
variable η2.

η2 =β21η1 + ζ2. (22)

Only η1 and η3 = η1η2 are treated as exogenous. Additional parameters
of the structural part are: ψ11, ψ22, ψ33, ψ44, ψ32 and ψ31.We must take
into account that ψ32is not the covariance between η2 and η3 but between
ζ2 and η3 . The assumptions are the same as before with the addition that
ζ2 is uncorrelated with η1 (i.e. ψ21 =0).

The model in this section also includes the relationship between η1 and
η2 and thus both a direct and an indirect effect from η1 to η4. The main
difference with the previous specification is that not all the variances and
covariances of η1 and η2 are model parameters but rather functions of
model parameters that can be derived from path analysis or from variance
and covariance algebra (Batista-Foguet et al., 2004b):

V ar(η2)=ψ22 +β2
21ψ11, (23)

Cov(η1η2)=β21ψ11. (24)

η3
= η1η2

β42

z2

η2

ψ31

η4

η1

ψ32
β41

z4

β43

β21

Figure 2. SEM including direct, indirect and interaction effects simultaneously.
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Substituting in Equations 17–21 the new expression for Var(η2) and
Cov(η1,η2) yields the new constraints that apply to this model:

λ63 =λ21λ42, (25)

θ55 =ψ11θ33 + (β2
21ψ11 +ψ22)θ11 + θ11θ33. (26)

θ66 =λ2
21ψ11θ44 + (β2

21ψ11 +ψ22)λ
2
42θ22 + θ22θ44 (27)

ψ33 =ψ11(ψ22 +β2
21ψ11)+ (β21ψ11)

2 (28)

Cov(η3η2)=ψ32 +β21ψ31 =0,Cov(η3η1)=ψ31 =0. (29)

For the single indicator approach (the only one considered in Batista-
Foguet et al. 2004b), constraint (26) on the error variance is the only one
needed. It does not require normality, but has increased its complexity due
to the fact that Var(η2) is a function of model parameters. This complex-
ity would grow to unbearable levels even for moderately sophisticated mod-
els. Just think of a model including exogenous variables affecting η1and η2,
such as that used in Section 8 (see Figure 3).

For the non-overlapping-indicator approach, none of the constraints is
needed. Constraint (25) on the loadings has not increased its complexity
and is still recommended, software permitting. Constraints (26) and (27) on
the error variances have increased their complexity as has just been said.
Constraints (28) and (29) on the interaction variances and covariances have
also increased their complexity and besides require normality and are thus
neither required nor advised for any of the approaches.

z1

β42

z2

η2

ψ32
β41

z4

η3
= η1η2

ψ31

η4

η1

β21

β26

β15

β43

z3

ψ65

ψ53

ψ63

η6

η5

Figure 3. Model of the illustration with extra exogenous variables.
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Although we illustrated this issue for a simple case, it applies to SEM
with one or more interaction terms anywhere in the model, as constraint
(25), the only one that we recommend for the non-overlapping indicator
approach, will remain always the same. This means that by using non over-
lapping indicators these interaction effects can be estimated with a minimal
burden of extra restrictions.

5. Estimation

Normality of the interaction indicators and of the endogenous indicators
is not assumed by any of the approaches and would be difficult to ful-
fill, as the product of two normal variables is in general not normally dis-
tributed. Maximum likelihood estimation is still appropriate but there is a
requirement for robust standard errors and test statistics (Yang-Wallentin
and Jöreskog, 2001). Among these are the mean scaled χ2 statistic (Satorra
and Bentler, 1988, 1994), the T ∗

2 χ
2 statistic (Yuan and Bentler, 2000) and

robust standard errors based on a sandwich procedure (Arminger and
Sobel, 1990). The LISREL8.5 (Du Toit and du Toit, 2001) and Mplus3
(Marsh et al., 2004) programs include some or all of these robust statistics
and allow the researcher to introduce non-linear constraints and are thus
appropriate for all analyses. If no non-linear constraints are used, virtually
any SEM software is appropriate. As a new feature, Mplus3 includes also
the LMS estimation method of Klein and Moosbrugger (2000).

Note that using the aforementioned robust statistics constitutes no safe-
guard against the consequences of introducing constraints (15), (16), (20),
(21), (28) and (29) on interaction variances and covariances for non-
normal data. Robust methods apply corrections to test statistics, not to
point estimates (Satorra, 1990). Wrong constraints imply model misspeci-
fications and as such lead to biased point estimates.

6. Interpretation and Derivation of Indirect and Total Effects

The total effect of η2 on η4 conditional on different values of η1, can be
obtained from the expected value in the expression (Batista-Foguet et al.,
2004b):

E(η4)=β41η1 +β42η2 +β43η1η2 (30)

as the partial derivative of E(η4) with respect to η2.

∂E(η4)

∂η2
=β42 +β43η1. (31)

Besides a direct main effect, this equation also displays a typical
interaction effect, in which the effect of η2 on η4 depends on the value of
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η1. Thus, the interpretation of the β42 main effect parameter is that occur-
ring when the value of the other variable is zero. As η1 and η2 are always
mean centered, β42can more easily be interpreted as the effect for the mean
value of the other variable.

In order to assess the effect of η1, its relationship to η2 has to be taken
into account, so that:

∂E(η2)

∂η1
=β21. (32)

And the partial derivative of Equation (30), now with respect to η1 gives
us the total effect of η1 on η4 as:

∂E(η4)

∂η1
=β41 +β42β21 +β43(η2 +β21η1). (33)

This equation displays a direct main effect β41, an indirect effect β42β21,
the interaction effect β43η2 and a combined interaction-indirect effect
β43β21η1. Thus, the effect of η1 on η4 also depends on the value of η1.

7. Simulation Experiment

We designed a small Monte Carlo experiment to test the performance of
our suggested approach and assess its bias and efficiency in comparison
with the one-indicator, LMS and Marsh et al. approaches under different
distributional conditions.

For this simulation experiment we used the model in Figure 2, assum-
ing that η1 , η2, and η4 have two indicators each. We simulated 500 samples
of size n=400. The parameter values are described in Appendix A and the
distributional conditions were:

1. Normal distribution of all model components.
2. η1 and ζ2 were distributed as a χ2 with four degrees of freedom. We

selected this distribution because it leads to sizeable but not extreme
departures from normality (skewness was 1.4 for η1 and 1.1 for η2,
kurtosis was 3 for η1 and 1.9 for η2).

3. η1 and ζ2 were distributed as a χ2 with four degrees of freedom but
R2 for η2 was higher than for conditions 1 and 2. We manipulated this
R2 because the fulfillment of constraints on interaction variances and
covariances (28) and (29) does not only depend on the distributional
shape but also on the correlation between η1 and η2.
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We analyzed the data of the 500 replications in five different ways:

1. One interaction indicator without mean structure and with complex con-
straints (26), (28), and (29) that assume normality (modified Jöreskog–
Yang’s approach without means).

2. One interaction indicator without mean structure and with minimal
complex constraints on error variances (26) that do not assume normal-
ity (Modified Jöreskog–Yang’s approach without either means or nor-
mality assumption).

3. Non-overlapping indicators without mean structure and with only sim-
ple constraints (25) that do not assume normality (Our approach with
constrained interaction loadings).

4. Non-overlapping indicators without mean structure or constraints (Our
approach with no constraints).

5. No indicators with mean structure (LMS approach).
6. Non-overlapping indicators with centered main effect indicators and

mean structure with τ1 = · · · = τ4=0 and α3 = β21ψ11, which is what
Equation 14 becomes due to the indirect effect. (Marsh et al.’s
approach).

We did all analyses by maximum likelihood using the T ∗
2 χ

2 statistic
(Yuan and Bentler, 2000) and robust standard errors based on a sandwich
procedure (Arminger and Sobel, 1990), i.e., the MLR option in the Mplus3
program (Marsh et al., 2004). We present the following summary measures
of the results regarding test statistics and parameters of the structural part
of the model:

1. Bias (B): difference between the mean of point estimates and the pop-
ulation value, as a percentage of the population value (positive for
overestimation).

2. Efficiency (SD): standard deviation of the point estimates.
3. Bias of standard errors (BSE): difference between the mean of standard

error estimates and the standard deviation of point estimates, as a per-
centage of the standard deviation of point estimates (positive for over-
estimation).

4. Percentage of rejections using the χ2-test (PR): Computed at the nom-
inal 0.05 level. It should thus approach 5%. The χ2-test is not available
for the LMS approach.

All replications converged to admissible solutions except five negative
variances under distributional condition 1 (normality) for two approaches
(our approaches with and without constrained loadings), and one negative
variance under distributional condition 2 (non normality with low main
effect correlation) for our approach with constrained loadings. The results
are displayed in Table I.
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As regards bias (B), all approaches not requiring normality (the modified
Jöreskog–Yang approach without either means or normality assumption,
both our approaches, and Marsh et al.’s approach) are unbiased under all
conditions (average bias around or below 1%). Omitting the mean struc-
ture, thus, leads to no bias even if all variables were simulated to have
means different from zero (see Appendix A). The modified Jöreskog–Yang
approach without means and the LMS approach lead to biased estimates
under non-normality. Bias is larger when the correlation between η1 and
η2is higher and for the modified Jöreskog–Yang approach. This bias was
also reported by Marsh et al. (2004) who used the original Jöreskog–Yang
approach with means.

As regards the performance of the χ2-test statistic, it is reasonably
accurate (PR close to 5%) for nearly all approaches for which the test
is available for all distributional conditions. The two only exceptions are
the modified Jöreskog–Yang approach without means under non normal-
ity and Marsh et al.’s approach under all conditions. In the first case
the result is due to specification errors. In the second case it is due to
four constraints (τ1 = · · · = τ4 = 0) that hold exactly in the sample and
not only in the population. In fact, under Marsh et al.’s approach, the
mean of the χ2 statistic over the 500 replications was lower than the
number of degrees of freedom by about 4 under all three distributional
conditions.

As regards the accuracy of standard errors (BSE), they are markedly
wrong for the modified Jöreskog–Yang approach without means under
non normality. All approaches except LMS tend to underestimate standard
errors but to a minor extent (by less than 5% on average).

As regards efficiency (SD), from the results of Marsh et al. (2004) we
expected the inclusion of additional constraints to reduce standard errors,
though this did not hold under all conditions. Even under normality, the
modified Jöreskog–Yang approach with extra constraints requiring normal-
ity is no better than the same approach without these extra constraints
in terms of standard deviation (SD). Thus there seems to be nothing to
be gained from the normality assumption even when it holds. In contrast,
our approach is slightly more efficient with the constraint on the load-
ings than without. Marsh et al.’s approach and or approach without con-
strained loadings are equally efficient and seem to be no worse than both
modified Jöreskog–Yang approaches and thus the introduction of addi-
tional indicators generates degrees of freedom that seem to more than off-
set the omission of constraints. The conclusion that the LMS approach is
more efficient than the standard SEM approaches (Schermelleh-Engel et
al., 1998) does not seem to hold when comparing LMS to our approach
with constrained loadings. The LMS approach is, however, more efficient
than all other standard SEM approaches considered.
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As a conclusion, the LMS approach and our approach with con-
strained loadings perform best in terms of efficiency. All approaches except
the LMS approach and the modified Jöreskog–Yang approach without
means are robust to non-normality. All approaches except the modi-
fied Jöreskog–Yang approach without means lead to approximately cor-
rect standard errors. The modified Jöreskog-Yang approach without either
means or normality assumption and both our approaches lead to correct
χ2 statistics. Thus, our approach with non-overlapping indicators and con-
strained loadings (constraint (25)) would generally be considered to be the
best. Our approach without constraints remains an attractive second best
option for researchers not having software that is able to deal with non-
linear constraints. LMS is only appropriate when normality of the main
effect variables holds. The modified Jöreskog–Yang approach without either
means or normality assumption, though not so bad in performance, would
be unworkable for large models. Marsh et al.’s approach has the drawback
of tending to accept the model too often on the basis of the χ2 statis-
tic, which implies a loss of statistical power. The modified Jöreskog–Yang
approach without means is clearly the worst.

8. An Illustration

We illustrate our recommended approaches with and without the factor
loading constraint (25) by using one example based on data from the
British pilot study of the European Social Survey carried out in 2002 (see
www.europeansocialsurvey.org). Our dependent variable is “environmental
friendly behavior” like buying and boycotting certain products (η4). The
explanatory variables are the possibilities of influencing events, or “politi-
cal influence” (η1) and “value orientations with respect to the environment”
(η2). Besides, some exogenous variables are considered: “understanding of
politics” (η5) and “left-right political orientation” (η6). See Appendix B for
the description of the indicators of each of these variables. We expected
left-right orientation to affect value orientations (β26) and understanding of
politics to affect political influence (β15). We expected political influence to
affect value orientations (β21). We also expected value orientation to affect
behavior only if people believed they could influence the situation. So we
expected an interaction effect of these two variables which is represented by
η3 (β43). The model is depicted in Figure 3, where it can be seen that it is a
generalization of Figure 2 with two extra exogenous variables. This added
complexity does not alter the formulation of constraint (25). Note how the
interaction factor correlates with the exogenous factors and the disturbance
term of variables not affected by it. Note also that the main effects β41

and β42 have to be model parameters even if only the interaction effect is
theoretically relevant (Irwin and McClelland 2001).
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Sample size was 409 and we used EM imputation of missing values.
The main effect indicators were non-normally distributed. The maximum
absolute skewness was 0.75 for y4 and the maximum absolute kurtosis was
−0.92 for y1. As a consequence, constraints that assume normality and the
LMS approach were not appropriate.

The results are displayed in Table II. We used the Mplus3 program
with the MLR option. Appropriate input files for both the Mplus3 and
LISREL8.5 programs are in Appendix C.

Both models converged to a proper solution. Even if they are rejected by
the T ∗

2 χ
2 statistic, other fit indices [root mean squared error of approxima-

tion (RMSEA), standardized root mean squared residual (SRMR), Tucker
and Lewis Index (TLI) and comparative fit index (CFI)] all suggest that
the fit of both models is good enough to proceed to compare their results.
Both models also yielded very similar results: left–right orientation had a

Table II. Estimates and standard errors of key parameters and
goodness of fit indexes with and without the simple constraint
(25) on the factor loadings

Parameter/index With (25) Without (25)

β43 −0.081 −0.060
s.e. β43 0.045 0.039
β42 0.104 0.100
s.e. β42 0.033 0.033
β41 −0.134 −0.134
s.e. β41 0.046 0.047
β26 −0.730 −0.730
s.e. β26 0.076 0.076
β21 0.006 0.006
s.e. β21 0.059 0.059
β15 0.603 0.604
s.e. β15 0.086 0.087
R2 (η4) % 10.8 10.4
R2 (η2) % 37.0 37.0
R2 (η1) % 33.4 33.3
Robust T ∗

2 χ2 71.49 70.69
d.f. 44 43
p-value 0.006 0.005
RMSEA 0.039 0.040
SRMR 0.032 0.033
TLI 0.958 0.956
CFI 0.972 0.972
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significant effect on value orientations (β26), understanding of politics had
a positive effect on political influence (β15), political influence had an unex-
pectedly negative effect on behavior (β41), value orientation had a signifi-
cant effect on behavior (β42) which was not moderated by political influ-
ence, as the interaction effect (β43) was non significant.

9. Conclusions and Recommendations

This article provides a simplified, robust and extended approach for mod-
eling interactions using SEM.

The main idea underlying the simplification stems from the fact that
there are still very few SEM users modeling interaction effects. Researchers
keep using MRA instead because the current SEM practice simply requires
too much methodological expertise.

Since Kenny and Judd (1984), available approaches have involved
two-step methods with unclear theoretical and statistical properties, lim-
ited information methods, sophisticated methods out of reach of applied
researchers or maximum likelihood SEM methods with very complicated non-
linear constraints, some of which require normality which, according to our
simulations, is a very unwise assumption for the sake of robustness. Marsh et al.
(2004) proposed some important simplifications and we in some respects sim-
plify their proposal even further (omission of the mean structure) and in some
other respects extend it (inclusion of indirect effects and constraint (25)).

Completely omitting the mean structure has proven appropriate in our
experiment. No bias or loss of efficiency emerges a result. On the contrary,
Marsh et al.’s suggestion to keep a simple constrained mean structure on
the centered data has proven to negatively affect the χ2 statistic.

The main idea underlying the extension of the approaches used so far
is that by restricting SEM to one-equation models, up to now research-
ers were actually diminishing the potentiality of SEM. SEM should also
be able to cope with relatively complex models, including indirect effects
as well as direct. The elimination of the need for complex constraints used
in Batista-Foguet et al. (2004b) makes the approach much more workable,
independent of the complexity of the model and the fulfillment of normal-
ity, while allowing applied researchers to fit these models easily.

So, a very practical recommendation is to drop the mean structure, use
non-overlapping indicators for the latent interaction and:

1. For a model with a single equation, constraints (17)–(19) are relatively
simple, do not require normality and can be used, but they are not
needed for identification.

2. For a model with several equations, only constraint (25) on the loadings
remains simple and can be used though it is not required for identification.
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3. For a researcher whose software cannot handle non-linear constraints,
even constraint (17) or (25) can be dropped, at the expense of getting
slightly larger standard errors.

Our method has shown to be unbiased even under non-normality and at
least as efficient as the alternatives, even as efficient as the LMS approach
which was before thought to be superior to the SEM approaches, and more
efficient than Marsh et al.’s approach while providing correct χ2 statistics.

If the main effects have more than two indicators, it is also possible to
form a larger number of non-overlapping pairs as indicators of the latent
interaction, which can result in higher efficiency and even smaller rates of
inadmissible solutions (Boomsma and Hoogland, 2001). As before, no con-
straints are needed.

Appendix A: Simulated Population Parameters for the Monte Carlo
Experiment

As can be seen from table III, parameter values are the same for all distri-
butional conditions except ψ22 and β21 for the non-normal condition with
highly correlated η1 and η2. This results in obvious changes in the R2-value
for η2 for this condition. However, some other model characteristics (includ-
ing even R2 and reliabilities) change due to the fact that the variances and
covariances of η3 change depending on the extent to which constraints (28)
and (29) are violated, which depends on the distributional condition. The
table shows both the empirical variances and covariances of η3 and those
derived from the constraints and it can be seen that deviations are quite dra-
matic under non-normality, especially when η1 and η2are highly correlated.
Note that parameters relating to η3 were not pre-specified in the simulation
but resulted from the computation of the product of η1 and η2.

Note that the model is simulated with a mean structure (parameters τ1 to
τ4, together with Equation 14). This is made in order to check that omitting
an existent mean structure in the analysis is not harmful. For the analysis,
the main effect indicators were centered on the means of each specific sample
and this was done prior to the computation of the product indicators.

Appendix B: The Measurement of the Different Variables of Figure 3

In the European Social Survey pilot study, the following measures were
available for the different variables of interest.

The dependent variable is an “environmental friendly behavior” variable
measuring behaviors such as purchasing and boycotting of products and
other items for environmental and other political reasons (η4). This mea-
sure has been asked in two different ways, the second at the end of the sup-
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Table III. Simulated parameter values

Condition Normality Non-normality Non normality.
High correlation
η1 −η2

Distribution All normal
components

η1, ζ2 : →χ2
4d.f. η1, ζ2: →χ2

4d.f.

Model parameters
θ11, . . . , θ44, θ77, θ88 0.25 0.25 0.25

λ21, . . . , λ42, λ74, λ84 1.00 1.00 1.00

τ1, . . . , τ4 1.00 1.00 1.00

τ7, τ8 0.00 0.00 0.00

ψ11 1.00 1.00 1.00

ψ22 0.75 0.75 0.50

ψ44 0.75 0.75 0.75

β21 0.50 0.50 0.71

β41, β42, β43 0.30 0.30 0.30

α2, α4 0.00 0.00 0.00

Explained variances

Reliability y1, . . . ,y4 0.80 0.80 0.80

Reliability y7, y8 0.77 0.82 0.85

R2(η2) 0.25 0.25 0.50

R2(η4) 0.43 0.55 0.64

Distribution of η3 (not simulated, computed as η1η2)1

Var(η3) 1.25/1.25 1.9/1.25 3/1.5

Cov(η1,η3) 0/0 0.7/0 1/0

Cov(η2,η3) 0/0 0.3/0 0.7/0

1The first figure shows the empirical distribution. The second figure shows what constraints
(28) and (29) would impose.

plementary methodological questionnaire (after approximately 45 minutes
of other questions):

y7: How many of the four things on this card have you done during the last
12 months?

1. Deliberately bought certain products for political, ethical or environmen-
tal reasons.

2. Boycotted certain products.
3. Donated money.
4. Raised funds.
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y8: During the last 12 months, have you done any of the following ?
(“yes”–“no” scale; the count of “yes” answers was used)

1. Deliberately bought certain products for political, ethical or environmen-
tal reasons.

2. Boycotted certain products.
3. Donated money.
4. Raised funds.

A question was asked to measure “political influence” (η1): How far
do you agree or disagree with the following statement ?(in a 5-point
“completely disagree” to “completely agree” scale): I think I can take
an active role in a group that is focused on political issues

y1: presentation of the item at the beginning of the questionnaire.

y2: presentation of the item at the end of the questionnaire.
“Value orientations with respect to the environment” (η2) were mea-
sured by items of Schwartz (1997) value scale: How much like you is
this person? (in a 6-point “very much like me” to “not like me at all”
scale).

y3: Looking after the environment is important to him/her.

y4: He/she strongly believes that people should care for nature.
For the “understanding of politics” variable (η5) two questions were
asked:

y9: How far do you agree or disagree with the following statement ?(in a
5-point “completely disagree” to “completely agree” scale):Sometimes
politics and government seem so complicated that I can’t really under-
stand what is going on.

y10: How often do politics and government seem so complicated that you
can’t really understand what is going on? (in a 5-point “never” to “fre-
quently” scale).
For the “left–right political orientation” variable (η6) also two ques-
tions were asked:
How much like you is this person?(in a 6-point “very much like me”
to “not like me at all” scale).

y11: He/she thinks it is important that every person in the world be treated
equally.

y12: He/she believes everyone should have equal opportunities in life.

Appendix C: LISREL85 and Mplus3 Setups for the Illustration

Bold faced input corresponds to constraint (25) and can just be dropped if
this constraint is not wished.
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LISREL set-up for the illustration
DA NI=12 NO=409
LA
y1y2y3y4y1y3y2y4y7y8y9y10y11y12
CM FI=illustration.CM
AC FI=illustration.AC
MO NY=12 NE=6 LY=FU,FI PS=SY,FI TE=DI,FR BE=FU,FI
FR LY 2 1 LY 4 2 LY 6 3 LY 8 4 LY 10 5 LY 12 6
FR BE 2 1 BE 4 1 BE 4 2 BE 4 3 BE 1 5 BE 2 6
FR PS 1 1 PS 2 2 PS 3 3 PS 4 4 PS 3 1 PS 3 2 PS 5 5 PS 6 6
FR PS 6 5 PS 5 3 PS 6 3
VA 1 LY 1 1 LY 3 2 LY 5 3 LY 7 4 LY 9 5 LY 11 6
CO LY(6,3) = LY(2,1)*LY(4,2)
OU ML

title: Mplus set-up for the illustration;
data: file is illustration.dat;
variable: names are y1y2y3y4y1y3y2y4y7y8y9y10y11y12;
analysis: type is general;
estimator=mlr;
model:
eta1 by y1@1;
eta1 by y2* (p1);
eta2 by y3@1;
eta2 by y4* (p2);
eta3 by y1y3@1;
eta3 by y2y4* (p3);
eta4 by y7@1 y8*;
eta5 by y9@1 y10*;
eta6 by y11@1 y12*;
eta1 on eta5*;
eta2 on eta1* eta6*;
eta4 on eta1* eta2* eta3*;
y1* y2* y3* y4* y1y3* y2y4* y7* y8* y9* y10* y11* y12*;
eta1* eta2* eta3* eta4* eta5* eta6*;
eta5 with eta6*;
eta3 with eta1* eta2* eta5* eta6*;
model constraint:
p3 = p2*p1;
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Note

1. The all-y (or all-η) notation is used throughout. The exogenous and endogenous status of
certain variables will change from model to model and we want to maintain a homoge-
neous notation for ease of comparison. Besides, this notation is needed to estimate some
of these models with LISREL.
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