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A method for interval estimation of scale reliability with discrete data is outlined. The approach

is applicable with multi-item instruments consisting of binary measures, and is developed within

the latent variable modeling methodology. The procedure is useful for evaluation of consistency of

single measures and of sum scores from item sets following the 2-parameter logistic model or the

1-parameter logistic model. An extension of the method is described for constructing confidence

intervals of change in reliability due to instrument revision. The proposed procedure is illustrated

with an example.

During the past century, precision of measurement has been one of the most researched topics

in the social, behavioral, and educational sciences (e.g., Bollen, 1989; Crocker & Algina, 1986;

Li, Rosenthal, & Rubin, 1996, and references therein). The majority of the work on it has been

concerned with reliability of multiple-item measuring instruments consisting of continuous

components. Empirical data in these and related disciplines, however, are frequently collected

in discrete form. For instance, often-used scales, tests, subscales, inventories, and so on consist

of binary items or components that are typically evaluated in a dichotomous format (e.g., true-

false answers, present-absent symptom, endorsed-nonendorsed attitude). Treating the resulting

data as (approximately) continuous in these cases, in particular when the goal is scale reliability

evaluation, might yield misleading statistical and substantive conclusions.

As a popular index of reliability, coefficient alpha (’) has been widely used in behavioral and

social research for more than 50 years (Cronbach, 1951). In spite of this popularity, a drawback
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266 RAYKOV, DIMITROV, ASPAROUHOV

of ’ was demonstrated in the 1960s (Novick & Lewis, 1967) that has important theoretical

and empirical implications. Accordingly, unless the scale components are (essentially) tau-

equivalent, ’ underestimates the composite reliability coefficient already at the population

level (with unrelated errors). The amount of this slippage has been quantified subsequently and

shown to be substantial under certain circumstances (Raykov, 1997). Moreover, with correlated

errors ’ can overestimate scale reliability in the population, or conversely underestimate it,

depending on parameter constellation (e.g., Zimmerman, 1972).

This and related research implies that coefficient alpha cannot be considered in general

a dependable estimator of scale reliability with continuous or discrete components. Whereas

alternatives to ’ have long been available for continuous measures (e.g., Bollen, 1989), the

discrete case when approximate continuity cannot be reasonably assumed (and possibly handled

with robust estimation methods) has received substantially less attention. Bartholomew and

Schuessler (1991) and Bartholomew, Bassin, and Schuessler (1993) proposed an estimator

of reliability for weighted scales of homogeneous sets of binary items with uncorrelated

errors (see also Bartholomew & Knott, 1999). However, this estimator did not handle the

commonly used unweighted sum score in the social and behavioral sciences, and in addition

could not be considered readily applicable by the general researcher as it utilizes repeatedly

numerical integration via subroutines currently not widely circulated in these disciplines. Re-

cently, Dimitrov (2003) developed an estimator of dichotomous item and sum score reliability,

capitalizing on a classical test theory approach. Yet his procedure did not provide interval

estimates of item or composite reliability, in particular for the overall scale score, and used

the assumption that the instrument under consideration included already calibrated items. The

cited work by Bartholomew and colleagues and by Dimitrov did also not include a method for

interval estimation of change in scale reliability following revision. As is well known, point

estimates contain limited information about population parameters they purport to evaluate,

and in particular cannot be used on their own to make statements as to how far they could

be from those parameters that are of actual interest (e.g., Wilkinson & The Task Force on

Statistical Inference, 1999). This serious theoretical and empirical limitation is counteracted by

the provision of confidence intervals that represent ranges of plausible values for the population

parameters and have begun to be increasingly used in empirical research over the last decade

or so (e.g., Schmidt, 1996).

To respond to these limitations of past research, this article discusses an approach to interval

estimation of reliability for homogeneous binary items and of their sum score. As illustrated in

a later section, this procedure is preferable to an application of coefficient alpha in the setting

of concern (cf. Novick & Lewis, 1967). Further, the article outlines a method for interval

estimation of the loss or gain in composite reliability that results from deleting or adding one

or more dichotomous measures to a unidimensional instrument (referred to as “revision” in the

sequel). The proposed procedure also permits simultaneous estimation of item parameters and

does not assume the involved dichotomous items to have been previously calibrated.

BACKGROUND, NOTATION, AND ASSUMPTIONS

In this article, we assume that a given multicomponent measuring instrument consists of p

binary items, denoted Y1, Y2; : : : ; Yp .p > 2/. Examples of such instruments are frequently
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SCALE RELIABILITY WITH BINARY MEASURES 267

used tests, scales, self-reports, inventories, subscales, testlets, or questionnaires (all referred to

as “scale” or “instrument” hereafter). These scale components are assumed to follow the two-

parameter logistic (2PL) model that is widely utilized in the behavioral and social sciences (e.g.,

Lord & Novick, 1968). In addition, because the one-parameter logistic (1PL) model is a special

case of the 2PL model (e.g., see later), the following developments also cover the case when

the items follow the former model. The measures Y1, Y2; : : : ; Yp might have been originally

devised as dichotomous items, or alternatively resulted following specific scoring rules for

polytomous items, leading eventually to recording of true-false, present-absent, endorse-not

endorsed, or similar binary answers. (We refer to the “true,” “present,” or “endorsed” response

as the “correct” answer in the remainder of this discussion.)

The rest of this article is concerned with evaluation of (a) the reliability of each dichotomous

item Y1, Y2; : : : ; Yp; (b) the reliability ¡Y of their sum score

Y D Y1 C Y2 C : : : C YpI (1)

and (c) the change in the scale’s reliability, �¡Y , which results after removing or adding one or

more items to the instrument. (When adding items, these are assumed to follow the 2PL model,

or 1PL model if under consideration, along with the ones already in the scale.) To this end,

we capitalize on the approach in Dimitrov (2003), and outline a method for obtaining interval

estimates of (a) item reliability, (b) scale reliability, and (c) revision effect on reliability.

The 2PL model assumption is tantamount to the following expression for the probability of

correct response on the ith item from a considered set of dichotomous measures (e.g., Lord &

Novick, 1968):

P.Yi D 1j™/ D exp.Dai .™ � bi //=Œ1 C exp.Dai .™ � bi//�; (2)

where P(.j.) denotes conditional probability, ™ is the underlying trait being measured (e.g.,

attitude, ability, or in general a latent dimension), exp(.) symbolizes exponent, ai is the item’s

discrimination parameter, bi its difficulty parameter, and D D 1:702 is a scaling constant to

achieve close comparability of the item parameters to those of the two-parameter normal ogive

(2PNO) model (i D 1; : : : ; p; in the latter, the relationship between trait and probability of

correct response is described via the standard normal cumulative distribution function).

Model Equivalence

For the aims of this article, of basic importance will be the equivalence of the 2PNO model

and the congeneric model for latent normal variables assumed to underlie the binary items

Y1; : : : ; Yp (Jöreskog, 1971; Takane & de Leeuw, 1987). Denoting by Y �
1 ; : : : ; Y �

p these corre-

sponding variables, the latter model assumes

Y �
i D œi ˜ C —i (3)

where ˜ is a common factor with variance equal to 1, —i are latent disturbances, and the

probability of correct response on Yi equals the area under the standard normal curve to the

right of a pertinent threshold ›i .i D 1; : : : ; p). With this equivalence, estimates of the item

discrimination and difficulty parameters for the 2PL model can be obtained by fitting the
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268 RAYKOV, DIMITROV, ASPAROUHOV

model in Equation 3 to data and rescaling counterpart estimates as follows (cf. Kamata &

Bauer, 2008):

Oai D Oœi =D; and Obi D O›i = Oœi (4)

(i D 1; : : : ; p; see Muthén & Muthén, 2008). We note in passing that the 1PL model, being a

special case of the 2PL model and resulting when all item discrimination indexes are the same,

is obtained from the model in Equation 3 by imposing the equality restriction on all factor

loadings, namely, œ1 D œ2 D : : : D œp (i.e., a1 D a2 D : : : D ap).

Point Estimation of Item and Scale Reliability

According to the classical test theory (e.g., Zimmerman, 1975), for the i th item’s observed

score the decomposition Yi D £i C ei holds, where £i is its true score and ei its error score

.i D 1; : : : ; p/. As is well known, the expected true score  i of the item in the studied subject

population can be obtained as

 i D

Z 1

�1

Pi .™/®.™/d™; (5)

with ®.™/ being the latent trait distribution and Pi .™/ symbolizing the probability of correct re-

sponse (i D 1; : : : ; p; e.g., Lord & Novick, 1968). Using this framework, with the assumptions

of uncorrelated errors and normal trait distribution that are also adopted in this article, Dimitrov

(2003) provided the following analytic expressions for several population parameters associated

with individual items, which will be capitalized on in the rest of this article. Specifically, for

the item’s mean true score,

 i D
1 � erf .Xi /

2
(6)

was shown .i D 1; : : : ; p/, where Xi D ai bi =

q

2.1 C a2
i / and erf(.) is a known mathematical

function called the error function that is numerically obtained (with an absolute error smaller

than 0.0005) as

erf .Xi / D 1 � .1 C m1Xi C m2X2
i C m3X3

i C m4X4
i /�4; (7)

with m1 D :278393, m2 D :230389, m3 D :000972, and m4 D :078108, assuming X > 0

(when X < 0, the property erf .�X/ D �erf .X/ is used). Similarly, for the item error variance,

denoted ¢2.ei /, he showed

¢2.ei / D mi expŒ�:5.bi =di /
2�; (8)

with

mi D 0:2646 � 0:118ai C 0:0187a2
i and di D 0:7427 C 0:7081=ai C 0:0074=a2

i : (9)

Further, for the item true variance, symbolized by ¢2.£i /,

¢2.£i / D  i .1 �  i / � ¢2.ei / (10)
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SCALE RELIABILITY WITH BINARY MEASURES 269

was deduced. This entailed for the item reliability, ¡i ,

¡i D
¢2.£i /

¢2.£i / C ¢2.ei /
(11)

.i D 1; : : : ; p/. Finally, the scale reliability coefficient was rendered as

¡Y D

p
X

iD1

p
X

j D1

q

¢2.£i /¢2.£j /

p
X

iD1

p
X

j D1

q

¢2.£i /¢2.£j / C

p
X

iD1

¢2.ei /

: (12)

The preceding discussion in this section evolved at the population level and no sampling

or estimation was involved. From Equations 11 and 12, estimators of item reliability and of

scale reliability can be furnished by substituting estimators of item difficulty and discrimination

parameters within the expressions appearing in the right sides of these equations. In this way,

one obtains

O¡i D
O¢2.£i /

O¢2.£i / C O¢2.ei /
(13)

and

O¡Y D

p
X

iD1

p
X

j D1

q

O¢2.£i /O¢2.£j /

p
X

iD1

p
X

j D1

q

O¢2.£i /O¢2.£j / C

p
X

iD1

O¢2.ei /

; (14)

where a caret denotes estimator of the quantity underneath that results thereby .i D 1; : : : ; p/.

Hence, when the maximum likelihood (ML) method is used for parameter estimation and model

testing purposes, due to its invariance property Equations 13 and 14 yield ML estimators of item

reliability and scale reliability, respectively. The estimators furnished by Equations 13 and 14

therefore possess all desirable large-sample properties of ML estimators, namely consistency,

unbiasedness, normality, and efficiency (e.g., Roussas, 1997).

Point Estimation of Loss or Gain in Reliability Following Scale Revision

When developing a multiple-component measuring instrument, behavioral, social, and educa-

tional scholars often undertake revisions consisting of deleting items from a tentative version

of it, or alternatively adding items that are congeneric with the ones already in a scale under

consideration. Without loss of generality, assuming that, say, the last k items are considered

for deletion .1 � k < p/, the change in reliability that would be incurred then, �¡Y , can now
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270 RAYKOV, DIMITROV, ASPAROUHOV

be evaluated using Equation 12 as

�¡Y D

p
X

iD1

p
X

j D1

q

¢2.£i /¢2.£j /

p
X

iD1

p
X

j D1

q

¢2.£i /¢2.£j / C

p
X

iD1

¢2.ei /

�

p�k
X

iD1

p�k
X

j D1

q

¢2.£i /¢2.£j /

p�k
X

iD1

p�k
X

j D1

q

¢2.£i /¢2.£j / C

p�k
X

iD1

¢2.ei /

: (15)

On the right side of Equation 15, the second term is the reliability of the revised scale, which

is obtained with the same method as that of the initial scale. We would like to note in passing

that the sign of reliability change, �¡Y , can be negative or positive (or alternatively �¡Y D 0

could hold), depending on the deleted k items and their psychometric properties. In particular,

it is possible to enhance scale reliability when deleting one (or more) inappropriate items,

which for instance could have disproportionally large error variances relative to the strength of

their relationships with the underlying construct being measured.1

In empirical research, this reliability change due to instrument revision is estimated by

substituting item parameter estimators into the item error variance and true variance expressions

(see Equations 8 and 10), and the resulting into Equation 15, leading to the following estimator

of the revision effect:

O�¡Y D

p
X

iD1

p
X

j D1

q

O¢2.£i /O¢2.£j /

p
X

iD1

p
X

j D1

q

O¢2.£i /O¢2.£j / C

p
X

iD1

O¢2.ei /

�

p�k
X

iD1

p�k
X

j D1

q

O¢2.£i /O¢2.£j /

p�k
X

iD1

p�k
X

j D1

q

O¢2.£i /O¢2.£j / C

p�k
X

iD1

O¢2.ei /

: (16)

When ML is employed for estimation purposes, Equation 16 represents an ML estimator of

the revision effect on scale reliability, which thus possesses all earlier mentioned asymptotic

properties, such as consistency, unbiasedness, normality, and efficiency.

Relationship to Coefficient Alpha

Equation 12 expresses the population scale reliability coefficient with binary items. An index

of reliability that is widely used in empirical settings in such cases is coefficient alpha. Despite

1In general, as discussed in the literature (e.g., Lord & Novick, 1968), it is not true that an increase in the number

of binary items, p, leads to an increase in scale reliability, ¡Y . (Such an increase would be the case, though, with

parallel items, as seen from the well-known Spearman-Brown formula that will then be valid; e.g., Crocker & Algina,

1986. To come up with parallel items, however, especially in large numbers, is exceedingly difficult in empirical social

and behavioral research.) This can be seen from the preceding discussion in the main text, and particularly from a

comparison of both terms on the right side of Equation 15. Specifically, adding items with a weak relationship to

the underlying common true score in the currently considered homogeneous measure case (e.g., Equations 4 and 5),

which are associated with sufficiently large error variances, can lead to the second ratio in Equation 15 being larger

than the first. This will yield a negative sign of the change in scale reliability; that is, an extended scale version with

a larger number of items, yet lower reliability. An example is provided in the illustration section.
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SCALE RELIABILITY WITH BINARY MEASURES 271

its high popularity, as indicated earlier, ’ underestimates scale reliability even if an entire

population of interest were observed, unless the items are (essentially) tau-equivalent; that

is, evaluate the same underlying construct in the same units of measurement (with uncor-

related errors; Novick & Lewis, 1967; see previous discussion for correlated errors). The

tau-equivalence condition is, however, a rather restrictive constraint that in general cannot be

assumed fulfilled in social and behavioral research. Hence, ’ cannot be considered generally

a dependable estimator of scale reliability also in case of binary items. In a later section, we

demonstrate this underestimation property of ’ on dichotomous measure data.

Instead of using ’ for estimation of scale reliability with binary components, this article

advocates utilization of the estimator (Equation 14) for the composite reliability coefficient

itself. This coefficient is logically the quantity of actual interest when questions about instrument

reliability are being raised. Next we discuss a widely applicable procedure that furnishes

confidence intervals for the reliability coefficients of interest in this article (in addition to

yielding point estimates of them). The resulting ranges of plausible population values for these

coefficients are valid with large samples when the 2PL model is tenable.

INTERVAL ESTIMATION OF ITEM AND SCALE RELIABILITY AND

CHANGE IN RELIABILITY DUE TO REVISION

The previously mentioned property of asymptotic normality of the estimators in Equations

13, 14, and 16 can be used to obtain interval estimates of item and scale reliability as

well as of the gain or drop in the latter following revision. These estimates provide further

important information about the psychometric qualities of a multicomponent instrument under

consideration, which is not contained in point estimates or results from hypothesis testing.

To obtain the interval estimates, one can employ the well-known delta method (e.g., Raykov

& Marcoulides, 2004). To outline this procedure next, for simplicity denote generically by ¡

the item reliability ¡i , scale reliability ¡Y , or the change �¡Y in the latter following revision,

whichever is of concern in a particular analytic session .i D 1; : : : ; p/. The first-order Taylor

approximation of this coefficient about the vector ”0 of population parameters is

¡.”/ � ¡.”0/ C

2

4

@¡.”/

@”0

ˇ

ˇ

ˇ

ˇ

ˇ

”D”0

3

5 .” � ”0/; (17)

where the symbol � denotes approximately equal, ” is the parameter vector of the 2PL model,

and bracketed is the vector of partial derivatives of ¡ with respect to the parameters it depends

on (see Equations 13, 14, or 16, respectively). More specifically, when interval estimating a

given item’s reliability, the latter vector consists of two components—the discrimination and

difficulty parameters of that item. When interval estimating the scale reliability coefficient,

this vector ” consists of 2p parameters—these are all items’ discrimination and difficulty

parameters. When interval estimating the change in reliability following revision, the vector

” consists of 4p � 2k parameters—the parameters of the items in the initial and revised

scales (see Equation 15). From Equation 17, a squared large-sample standard error of item
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272 RAYKOV, DIMITROV, ASPAROUHOV

reliability, scale reliability, or change in reliability due to revision follows straightforwardly

as

Var.O¡/ �

2

4

@ O¡. O”/

@ O”0

ˇ

ˇ

ˇ

ˇ

ˇ

”DO”

3

5 Cov. O”/

2

4

@ O¡. O”/

@ O”

ˇ

ˇ

ˇ

ˇ

ˇ

”DO”

3

5 ; (18)

where Cov. O”/ is the observed inverted information matrix (or part of it pertaining to ”). Based

on Equation 18, a large-sample 100.1 � •/% confidence interval .0 < • < 1/ for the item

reliability, scale reliability, or revision effect on reliability, is readily furnished as

O¡ ˙ z•=2

p

Var.O¡/; (19)

where z•=2 is the .1 � •=2/th quantile of the standard normal distribution.

Procedure Application in Empirical Research

Evaluation of the reliability-related point and interval estimates in Equations 13, 14, and 16

through 18 in behavioral and social research can be carried out using the increasingly popular

latent variable modeling Mplus (for software-related details, see Appendixes A and B; Muthén

& Muthén, 2008). In particular, interval estimation of these three parameters does not involve

then explicit estimation by the researcher of partial derivative values and respective information

matrix parts. The reason is that this evaluation can be carried out as a by-product of fitting

the 2PL model. To this end, in a special model constraint section, one introduces as “new

parameters” the item, scale, and change in reliability coefficients; these functions of item

parameters are defined as identical to the right sides of the respective Equations 13, 14, and

16. Approximate standard errors and confidence intervals, both at 95% and 99% confidence

levels, for each of these new parameters using the delta method are then provided by the

software (see Equations 17 and 18). The inclusion of the new parameters in the 2PL model

does not affect its fit to data, as this extension does not have any consequences for the items

Y1; Y2; : : : ; Yp or their distribution. The outlined procedure is demonstrated next.

ILLUSTRATION ON DATA

To illustrate the discussed reliability evaluation method, we use simulated data on n D 1,000

subjects for p D 5 binary items complying with the 2PL model and possessing item discrim-

ination and difficulty parameters correspondingly as follows: a1 D 1:8, b1 D :2; a2 D :5,

b2 D :75; a3 D 1:25, b3 D �1; a4 D 1, b4 D 1:5; a5 D :2, b5 D �1:5. (To this end, first

the probabilities for correct response were worked out using Equation 2, for each of these five

item parameter combinations and n corresponding standard normal draws for ™. Then pertinent

binary data were generated on the five items using the results as respective probabilities for

success.) With these parameters, the true item reliability coefficients are obtained via Equation

11 as ¡1 D :547, ¡2 D :148, ¡3 D :356, ¡4 D :213, and ¡5 D :034 (see also Equations 6–10).

Similarly, from Equation 12, the true reliability of their sum score, Y D Y1 C Y2 C : : : C Y5,

results as ¡Y D :597.
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SCALE RELIABILITY WITH BINARY MEASURES 273

Fitting to this data set the 2PL model yields a Pearson chi-square value .¦2/ of 13.374, for

degrees of freedom .df / D 21 and an associated p value .p/ of .90, as well as a likelihood

ratio ¦2.21/ D 15:029, p D :82. (See Appendix A for software source code with annotated

comments.) These goodness-of-fit indexes suggest a tenable model. The obtained estimates,

standard errors, and approximate 95% confidence intervals for the item parameters, reliability,

scale reliability, and related parameters are presented in Table 1.

As seen from Table 1, the composite reliability estimate of O¡Y D :621, with a standard

error (SE) of .017, is fairly close to its population (true) value ¡Y D :597. Moreover, this

population value ¡Y is covered by the resulting 95% confidence interval (.569, .673) for

scale reliability (see final row of Table 1). In contrast, coefficient alpha is estimated as

O’Y D :525, and thus is (a) markedly lower than the true scale reliability coefficient of

.597, and (b) positioned to the left of the preceding reliability confidence interval. Even more

important, via the definitional formula for coefficient alpha (e.g., Crocker & Algina, 1986),

its population value is readily obtained as ’ D :566, and hence is notably lower than the

population reliability ¡Y D :597. Furthermore, the population ’ D :566 is located to the left

of the scale reliability’s 95% confidence interval, (.569, .673). That is, the population alpha

TABLE 1

Parameter Estimates, Standard Errors, and 95% Confidence Intervals

for the Fitted Two-Parameter Logistic Model

Parameter Estimate SE t Value 95% CI

a1 1.546 0.269 5.738 (1.016, 2.071)
a2 0.548 0.066 8.273 (.417, .676)
a3 1.962 0.494 3.970 (.992, 2.928)

a4 1.112 0.161 6.890 (.795, 1.427)
a5 0.164 0.048 3.389 (.069, .258)
b1 0.140 0.048 2.900 (.045, .234)

b2 0.725 0.105 6.883 (.518, .931)
b3 �0.914 0.072 �12.759 (�1.054, �.773)
b4 1.471 0.119 12.231 (1.237, 1.705)

b5 �1.683 0.534 �3.150 (�2.730, �.636)

¢2.£1/ 0.122 0.016 7.530 (.090, .153)

¢2.£2/ 0.038 0.006 6.534 (.027, .050)

¢2.£3/ 0.090 0.018 4.948 (.054, .126)

¢2.£4/ 0.029 0.008 3.582 (.013, .045)

¢2.£5/ 0.005 0.005 .976 (�.005, .014)

¢2.e1/ 0.126 0.016 7.815 (.095, .158)

¢2.e2/ 0.193 0.006 30.084 (.181, .206)

¢2.e3/ 0.075 0.017 4.313 (.041, .109)

¢2.e4/ 0.089 0.009 10.418 (.072, .106)

¢2.e5/ 0.234 0.006 40.344 (.223, .245)
¡1 0.491 0.065 7.543 (.363, .619)
¡2 0.165 0.025 6.643 (.116, .213)

¡3 0.546 0.105 5.193 (.340, .752)
¡4 0.248 0.063 3.907 (.123, .372)
¡5 0.019 0.020 .976 (�.020, .058)

¡Y 0.621 0.017 23.397 (.569, .673)

Note. t value D ratio of estimate to standard error (Muthén & Muthén,
2008). Parameter notation defined in text.
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274 RAYKOV, DIMITROV, ASPAROUHOV

coefficient is not even a plausible value (at the 95% confidence level) for the population scale

reliability coefficient.

These results about alpha’s performance are not unexpected and are consistent with the

earlier mentioned population underestimation feature of ’ with respect to composite reliability

(Novick & Lewis, 1967). In fact, these findings represent a specific illustration of this drawback

of coefficient alpha with binary items. (Alpha’s underestimation feature with scales consisting

of continuous components has been well documented in earlier research; e.g., Li et al., 1996,

and references therein.)

Table 1 also shows that whereas the first four item reliability estimates are associated with

confidence intervals substantially above the zero point, that of the fifth item is not so. For

the sake of illustrating the outlined interval estimation method for reliability change due to

revision, we next evaluate the drop or gain in reliability resulting from deleting the last item

of the initial scale. In particular, for the purposes of this section we are also interested in

examining if this change in measurement consistency is significant in the population. (In social

and behavioral research, such a decision needs to also be based on substantive and validity-

related considerations.)

To accomplish this goal, we utilize the confidence interval resulting from an application

of the delta method on the pertinent difference in scale reliability coefficients, as stated in

Equation 15. To this end, all we need to do is include Equation 15 in the model fitting process.

(See Appendix B for source code with annotated comments.) This inclusion does not affect the

model fit or any estimate, standard error, or confidence interval reported in Table 1, although

yielding a notably higher estimate of the reliability ¡0 for the revised scale consisting of the

first four items: O¡0 D :681, SE D :022, and 95% confidence interval (.637, .725). In addition,

we obtain the estimate of revision effect on reliability as O�¡ D �:06, SE D :017, with a

95% confidence interval (�.093, �.027). Because the zero point is not covered by the latter

interval and is to the right of it, we conclude that dropping the last from the original set of five

binary items is associated with a significant gain in reliability (at the .05 level). Any other point

hypothesis about reliability change due to revision—as well as some one-tailed hypotheses—

could be tested in the same manner (at the significance level of .05), namely by examining

whether the hypothetical value is covered by the 95% confidence interval (e.g., Hays, 1994;

a correspondingly modified confidence level needs to be used if another significance level is

preselected). This example also provides an illustration of the fact that adding binary items to an

existing scale of dichotomous measures can lower the composite reliability (consider reversely

the initial five-item scale as resulting from the later considered four-item scale version, when

extending the latter by adding the item Y5).

CONCLUSION

This article was concerned with item and scale reliability for multiple-component instruments

consisting of binary measures. Dichotomous items and composites based on them are quite

frequently utilized for evaluation of indirectly observable latent dimensions (traits, abilities,

attitudes, aptitude) in the behavioral, social, and educational sciences. This article outlined a

method for interval estimation of item and scale reliability, which permits researchers to obtain

ranges of plausible values in studied populations for the degree of consistency associated with
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SCALE RELIABILITY WITH BINARY MEASURES 275

binary components and their sum score. The approach also allows one to evaluate the gain

or loss in scale reliability following a decision to add or delete certain items from a tentative

composite. Interval estimates of item and scale reliability as well as change in it following

revision, provide important information not contained in point estimates. This information

can be especially useful in instrument construction and development frequently carried out

by social, behavioral, and educational researchers (e.g., Schmidt, 1996; Wilkinson & The

Task Force on Statistical Inference, 1999). With its focus on interval estimation, the proposed

procedure further permits testing simple and especially composite hypotheses of interest with

regard to any of the three reliability coefficients or change quantity of concern. In particular,

minimum effect hypotheses (e.g., Rindskopf, 1997) about item reliability, scale reliability,

or revision effect on reliability can be readily tested by examining whether the pertinent

confidence interval is entirely within the null hypothesis or the alternative hypothesis tail

(e.g., Roussas, 1997).

The described method is best utilized with large samples of subjects when a considered scale

complies with the popular 2PL model (or, as a special case, the 1PL model) and is associated

with uncorrelated errors. The approach also includes a routine test of overall fit of this model,

which is conducted by examining the fit of the counterpart congeneric model (e.g., Takane & de

Leeuw, 1987; see also Kamata & Bauer, 2008). With this feature, the procedure permits one to

routinely assess the latent structure underlying a given scale with binary components, and based

on examining their factor loadings and standard errors, to possibly consider revisions aimed at

enhancing its psychometric qualities. The method is also straightforwardly employed in cases

with missing values, which are rather frequent in empirical research, under the assumption

of data missing at random (e.g., Little & Rubin, 2002). Although the concern of this article

was primarily with interval estimation of scale reliability for binary items and of the change

in it following revision, future research needs to examine the effects of deleting items with

various psychometric features, the relationships among the remaining items, and the number

of items deleted (or added). This will permit a more complete picture of revision effect on

reliability of scales consisting of dichotomous measures in the practice of social and behavioral

research.
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APPENDIX A

Mplus SOURCE CODE FOR POINT AND INTERVAL ESTIMATION OF

ITEM AND SCALE RELIABILITY WITH BINARY ITEMS

TITLE: POINT AND INTERVAL ESTIMATION OF ITEM AND SCALE RELIABILTY FOR

DICHOTOMOUS MEASURES. (ANNOTATING COMMENTS ARE ADDED AFTER

EXCLAMATION MARK WITHIN PERTINENT ROW.)

DATA: FILE = <name of raw data file>; ! NEED TO ANALYZE THE RAW DATA

VARIABLE: NAMES = Y1-Y5;

CATEGORICAL = Y1-Y5; ! STATES CATEGORICAL NATURE OF SCALE COMPONENTS

ANALYSIS: ESTIMATOR = ML;

MODEL: F BY Y1* (P1) ! THIS AND NEXT LINE ASSIGN PARAMETRIC SYMBOLS (P1 TO

Y2-Y5 (P2-P5); ! P5) TO SUCCESSIVE FACTOR LOADINGS, TO BE USED BELOW
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SCALE RELIABILITY WITH BINARY MEASURES 277

F@1; ! FIXES LATENT VARIANCE, FOR MODEL IDENTIFICATION

[Y1$1-Y5$1] (P6-P10); ! ASSIGNS SYMBOLS TO SUCCESSIVE THRESHOLDS

MODEL CONSTRAINT:

NEW(A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 X1 X2 X3 X4 X5 PI_1 PI_2 PI_3 PI_4 PI_5

TV1 TV2 TV3 TV4 TV5 EV1 EV2 EV3 EV4 EV5 R1 R2 R3 R4 R5 TRUVAR ERRVAR REL);

A1 = P1/1.702; ! THIS AND NEXT 4 LINES YIELD THE ITEM DISCRIMINATION INDEXES

A2 = P2/1.702; ! (SEE EQUATION 4)

A3 = P3/1.702; A4 = P4/1.702; A5 = P5/1.702;

B1 = P6/P1; ! THIS AND NEXT 4 LINES FURNISH THE ITEM DIFFICULTY INDEXES

B2 = P7/P2; ! (SEE EQUATION 4)

B3 = P8/P3; B4 = P9/P4; B5 = P10/P5;

X1 = A1*B1/SQRT(2+2*A1**2); ! THIS AND NEXT 4 LINES DEFINE AUXILIARY

X2 = A2*B2/SQRT(2+2*A2**2); ! QUANTITIES THAT SIMPLIFY CODING NEXT (SEE EQ. 10)

X3 = -A3*B3/SQRT(2+2*A3**2); ! (SEE NOTE 2 BELOW)

X4 = A4*B4/SQRT(2+2*A4**2);

X5 = -A5*B5/SQRT(2+2*A5**2); ! (SEE NOTE 2 BELOW)

PI_1 = .5 -.5*(1-1/(1+.278393*X1 + .230389*X1**2

+ .000972*X1**3 + .078108*X1**4)**4); ! = 1ST ITEM MEAN TRUE SCORE

PI_2 = .5-.5*(1-1/(1+.278393*X2 + .230389*X2**2

+ .000972*X2**3 + .078108*X2**4)**4); ! = 2ND ITEM MEAN TRUE SCORE

PI_3 = .5+.5*(1-1/(1+.278393*X3 + .230389*X3**2

+ .000972*X3**3 + .078108*X3**4)**4); ! = 3RD ITEM MEAN TRUE SCORE

PI_4 = .5-.5*(1-1/(1+.278393*X4 + .230389*X4**2

+ .000972*X4**3 + .078108*X4**4)**4); ! = 4TH ITEM MEAN TRUE SCORE

PI_5 = .5+.5*(1-1/(1+.278393*X5 + .230389*X5**2

+ .000972*X5**3 + .078108*X5**4)**4); ! = 5TH ITEM MEAN TRUE SCORE

EV1 = (.2646 -.118*A1 + .0187*A1**2)*EXP(-.5*(B1/

(.7427 + .7081/A1 + .0074/A1**2))**2); ! = ERROR VARIANCE OF ITEM 1

EV2 = (.2646 -.118*A2 + .0187*A2**2)*EXP(-.5*(B2/

(.7427 + .7081/A2 + .0074/A2**2))**2); ! = ERROR VARIANCE OF ITEM 2

EV3 = (.2646 -.118*A3 + .0187*A3**2)*EXP(-.5*(B3/

(.7427 + .7081/A3 + .0074/A3**2))**2); ! = ERROR VARIANCE OF ITEM 3

EV4 = (.2646 -.118*A4 + .0187*A4**2)*EXP(-.5*(B4/

(.7427 + .7081/A4 + .0074/A4**2))**2);! = ERROR VARIANCE OF ITEM 4

EV5 = (.2646 -.118*A5 + .0187*A5**2)*EXP(-.5*(B5/

(.7427 + .7081/A5 + .0074/A5**2))**2); ! = ERROR VARIANCE OF ITEM 5

TV1 = PI_1*(1-PI_1)-EV1; ! THIS IS THE TRUE VARIANCE OF ITEM 1

TV2 = PI_2*(1-PI_2)-EV2; ! THIS IS THE TRUE VARIANCE OF ITEM 2

TV3 = PI_3*(1-PI_3)-EV3; ! THIS IS THE TRUE VARIANCE OF ITEM 3

TV4 = PI_4*(1-PI_4)-EV4; ! THIS IS THE TRUE VARIANCE OF ITEM 4

TV5 = PI_5*(1-PI_5)-EV5; ! THIS IS THE TRUE VARIANCE OF ITEM 5

R1 = TV1/(TV1+EV1); ! THIS IS THE RELIABILITY COEFFICIENT OF ITEM 1

R2 = TV2/(TV2+EV2); ! THIS IS THE RELIABILITY COEFFICIENT OF ITEM 2

R3 = TV3/(TV3+EV3); ! THIS IS THE RELIABILITY COEFFICIENT OF ITEM 3

R4 = TV4/(TV4+EV4); ! THIS IS THE RELIABILITY COEFFICIENT OF ITEM 4

R5 = TV5/(TV5+EV5); ! THIS IS THE RELIABILITY COEFFICIENT OF ITEM 5

ERRVAR = EV1 + EV2 + EV3 + EV4 + EV5; ! = ERROR VARIANCE OF THE ITEM SUM SCORE Y

TRUVAR = TV1 + TV2 + TV3 + TV4 + TV5

+2*(SQRT(TV1*TV2)+SQRT(TV1*TV3)+SQRT(TV1*TV4)+ SQRT(TV1*TV5)

+ SQRT(TV2*TV3)+SQRT(TV2*TV4)+SQRT(TV2*TV5)

+ SQRT(TV3*TV4)+SQRT(TV3*TV5)

+ SQRT(TV4*TV5)); ! THIS IS THE TRUE VARIANCE OF THE ITEM SUM SCORE

REL = TRUVAR/(TRUVAR+ERRVAR); ! THIS IS THE SCALE RELIABILITY COEFFICIENT, ¡Y
OUTPUT: CINTERVAL; ! REQUESTS CONFIDENCE INTERVALS FOR ALL PARAMETERS
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Note 1

After assigning parametric symbols to the factor loadings and thresholds for all five items (P1–P10), the “new

parameter” section introduces successively the item discrimination and difficulty parameters (the as and the bs,

respectively), auxiliary quantities to simplify following code (the Xs), item mean true scores (the  s), item true and

error variances (the ¢2.£i /s), item reliabilities (the ¡i s), the true and error variances for the item sum score Y , and

finally the reliability coefficient .¡Y /. The following two sections yield consecutively the item discrimination and

difficulty parameters (see Equation 4), the auxiliary quantities (see equation following Equation 10), the item mean

true scores (see Equations 10 and 11), true variances, error variances and reliabilities (see correspondingly Equations

5, 7, and 13), and finally the sum score true variance, error variance, and reliability coefficient (see Equation 14).

Note 2

Because O›3 < 0 and O›5 < 0 for the analyzed data set (which can be found with an initial model fitting without the

“model constraint” section), the indicated antisymmetric feature of the error function erf .X/ requires (a) definition of

the auxiliary quantities X3 and X5 with a negative sign (see Note 1), and then (b) adding to .5, rather than subtracting

from .5, half of the pertinent error function value as implemented in the preceding command file (see Equations 10

and 11, and subsequent discussion).

APPENDIX B
Mplus SOURCE CODE FOR POINT AND INTERVAL ESTIMATION OF

GAIN OR LOSS IN SCALE RELIABILITY FOLLOWING REVISION

TITLE: POINT AND INTERVAL ESTIMATION OF CHANGE IN COMPOSITE RELIABILITY DUE

TO DELETION (OR ADDITION) OF BINARY ITEMS. THIS IS THE COMMAND FILE

FOR EXAMINING DROP OR GAIN IN RELIABILTY AS A RESULT OF REMOVING THE

LAST ITEM (SEE MAIN TEXT FOR A MORE GENERAL NOTE).

DATA: FILE = <name of raw data file>;

VARIABLE: NAMES = Y1-Y5;

CATEGORICAL = Y1-Y5;

ANALYSIS: ESTIMATOR = ML;

MODEL: F BY Y1* (P1)

Y2-Y5 (P2-P5);

F@1;

[Y1$1-Y5$1] (P6-P10);

MODEL CONSTRAINT:

NEW(A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 X1 X2 X3 X4 X5 PI_1 PI_2 PI_3 PI_4 PI_5

TV1 TV2 TV3 TV4 TV5 EV1 EV2 EV3 EV4 EV5 R1 R2 R3 R4 R5 TRUVAR ERRVAR REL1 REL2 DR);

A1 = P1/1.702; A2 = P2/1.702; A3 = P3/1.702; A4 = P4/1.702; A5 = P5/1.702;

B1 = P6/P1; B2 = P7/P2; B3 = P8/P3; B4 = P9/P4; B5 = P10/P5;

X1 = A1*B1/SQRT(2+2*A1**2);

X2 = A2*B2/SQRT(2+2*A2**2);

X3 = -A3*B3/SQRT(2+2*A3**2);

X4 = A4*B4/SQRT(2+2*A4**2);

X5 = -A5*B5/SQRT(2+2*A5**2);

PI_1 = .5 -.5*(1-1/(1+.278393*X1 + .230389*X1**2 + .000972*X1**3 + .078108*X1**4)**4);

PI_2 = .5-.5*(1-1/(1+.278393*X2 + .230389*X2**2 + .000972*X2**3 + .078108*X2**4)**4);

PI_3 = .5+.5*(1-1/(1+.278393*X3 + .230389*X3**2 + .000972*X3**3 + .078108*X3**4)**4);

PI_4 = .5-.5*(1-1/(1+.278393*X4 + .230389*X4**2 + .000972*X4**3 + .078108*X4**4)**4);

PI_5 = .5+.5*(1-1/(1+.278393*X5 + .230389*X5**2 + .000972*X5**3 + .078108*X5**4)**4);
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EV1 = (.2646 -.118*A1 + .0187*A1**2)*EXP(-.5*(B1/(.7427 + .7081/A1 + .0074/A1**2))**2);

EV2 = (.2646 -.118*A2 + .0187*A2**2)*EXP(-.5*(B2/(.7427 + .7081/A2 + .0074/A2**2))**2);

EV3 = (.2646 -.118*A3 + .0187*A3**2)*EXP(-.5*(B3/(.7427 + .7081/A3 + .0074/A3**2))**2);

EV4 = (.2646 -.118*A4 + .0187*A4**2)*EXP(-.5*(B4/(.7427 + .7081/A4 + .0074/A4**2))**2);

EV5 = (.2646 -.118*A5 + .0187*A5**2)*EXP(-.5*(B5/(.7427 + .7081/A5 + .0074/A5**2))**2);

TV1 = PI_1*(1-PI_1)-EV1;

TV2 = PI_2*(1-PI_2)-EV2;

TV3 = PI_3*(1-PI_3)-EV3;

TV4 = PI_4*(1-PI_4)-EV4;

TV5 = PI_5*(1-PI_5)-EV5;

R1 = TV1/(TV1+EV1); R2 = TV2/(TV2+EV2); R3 = TV3/(TV3+EV3); R4 = TV4/(TV4+EV4);

R5 = TV5/(TV5+EV5);

ERRVAR = EV1 + EV2 + EV3 + EV4 + EV5; ! = ERROR VARIANCE OF THE LONGER SCALE

TRUVAR = TV1 + TV2 + TV3 + TV4 + TV5

+2*(SQRT(TV1*TV2)+SQRT(TV1*TV3)+SQRT(TV1*TV4)+ SQRT(TV1*TV5)

+ SQRT(TV2*TV3)+SQRT(TV2*TV4)+SQRT(TV2*TV5)

+ SQRT(TV3*TV4)+SQRT(TV3*TV5)

+ SQRT(TV4*TV5)); ! = TRUE VARIANCE OF THE LONGER SCALE

REL1 = TRUVAR/(TRUVAR+ERRVAR); ! = LONGER SCALE’S RELIABILITY COEFFICIENT

REL2 = (TRUVAR-TV5-2*(SQRT(TV1*TV5)+SQRT(TV2*TV5)+SQRT(TV3*TV5)+SQRT(TV4*TV5)))/

(TRUVAR-TV5-2*(SQRT(TV1*TV5)+SQRT(TV2*TV5)+SQRT(TV3*TV5)+SQRT(TV4*TV5))

+ERRVAR-EV5); ! = SHORTER SCALE’S RELIABILITY COEFFICIENT

DR = REL2-REL1; ! THIS IS THE CHANGE IN RELIABILITY DUE TO REVISION, �¡;

OUTPUT: CINTERVAL;

Note

This command file only extends that in Appendix A in two places: (a) the “new parameter” section includes the

shorter scale’s reliability coefficient (named REL2) and the revision effect on reliability (named DR); and (b) these

two parameters are formally defined with the last two input lines immediately before the “output” command. (For

consistency, the reliability coefficient of the longer scale is named REL1 and is identical to the parameter named REL

in the source code of Appendix A.)
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