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The linear regression model assumes that all individuals come from a

population with a single slope β. This assumption can be relaxed by allowing

the slope to vary across individuals and be predicted by other covariates. The

varying slope is referred to as a random slope, an unobserved continuous variable

βi. Models of this kind are also called random coefficient models and have been

discussed in Hildreth and Houck (1968), Johnston (1984), Swamy (1971), and

Weisberg (2014). Consider a model where a random slope is predicted by a

covariate z which moderates the effect of a covariate x on a dependent variable

y. Random coefficient modeling expresses this as two linear regression equations,

one with y as the dependent variable and one with the random slope β1i as the

dependent variable,

yi = α + β1i xi + β2 zi + εi, (1)

β1i = β0 + β1 zi + δi. (2)

The residuals ε and δ are allowed to covary. The model can be compared to regular

regression with an interaction between the covariates x and z by inserting (2) into

(1),

yi = α + β0 xi + β1 zi xi + δi xi + β2 zi + εi. (3)

The product term β1zixi is present also in regular regression with an interaction,

but random coefficient regression adds the term δixi. If the δ residual is zero

the two models are the same. The random coefficient model includes a non-zero δ

residual to acknowledge that z may not be the only moderator and that the R2 for
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β1i in the regression equation (2) is more realistically less than one. The model has

two more parameters than the regular regression model, the variance of δ and the

covariance of δ and ε. Monte Carlo simulation studies show that analysis of data

generated by the random coefficient model can give overestimated standard errors

and higher mean squared error when applying regular regression with interactions,

implying that important interactions may be overlooked.

The random coefficient model allows for a heteroscedastic residual variance.

Whereas in regular regression the residual variance is assumed to be the same for

all individuals, V (y | x, z) = V (ε), the residual variance for the random coefficient

model varies with x. The conditional variance of y in (3) is

V (yi | xi, zi) = V (δi) x
2
i + 2 Cov(δi, εi) xi + V (εi). (4)

This shows that the residual variance of (4) is a quadratic function of x. The

two parameters specific to the random coefficient model, the variance of δ and the

covariance of δ and ε, are estimated using information on the heteroscedasticity

in the data corresponding to (4).

Random coefficient modeling can have more than one random slope. However,

it should be mentioned that the random coefficient model does not always lead

to an analysis that is as unproblematic as with the regular regression model.

This is mainly due to fitting parameters to variances as indicated in (4). There

has to be sufficient heteroscedasticity in the data. For example, the random

coefficient model is not identified with a random slope for a binary covariate

given that this provides only four pieces of information, the mean and variance for

each covariate group, while the model has five parameters. Even with continuous
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covariates a small degree of heteroscedasticity may lead to an almost flat log

likelihood with random slopes so that convergence is difficult to achieve. The

sparseness of information is clear when comparing to the use of random slopes in

multilevel modeling. Unlike multilevel modeling, random coefficient modeling has

only one observation available per individual, that is, one observation per cluster

in multilevel terms. There are, however, designs where several observations are

taken on y for the same value of x; see, e.g. Weisberg (2014, pp. 169-171).
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