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The methodological literature on mixture modeling has rapidly expanded in the past

15 years, and mixture models are increasingly applied in practice. Nonetheless, this

literature has historically been diffuse, with different notations, motivations, and

parameterizations making mixture models appear disconnected. This pedagogical

review facilitates an integrative understanding of mixture models. First, 5 proto-

typic mixture models are presented in a unified format with incremental complexity

while highlighting their mutual reliance on familiar probability laws, common

assumptions, and shared aspects of interpretation. Second, 2 recent extensions—

hybrid mixtures and parallel-process mixtures—are discussed. Both relax a key

assumption of classic mixture models but do so in different ways. Similarities in

construction and interpretation among hybrid mixtures and among parallel-process

mixtures are emphasized. Third, the combination of both extensions is motivated

and illustrated by means of an example on oppositional defiant and depressive

symptoms. By clarifying how existing mixture models relate and can be combined,

this article bridges past and current developments and provides a foundation for

understanding new developments.

Over the past 15 years, the number of finite mixture modeling applications has

dramatically increased in the social sciences (Collins & Lanza, 2010; Muthén

& Muthén, 2000; Nagin & Odgers, 2010). Mixture models are now more

commonly used for accommodating discrete population heterogeneity than are

non-model-based classification methods such as cluster analysis and taxometrics

(for reasons discussed in Lubke & Tueller, 2010; McLachlan, 2011; Vermunt,
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776 STERBA

2011). When mixture modeling is viewed as a unified methodological approach,

many commonalities can be noted. Each mixture model can be broken down into

a within-class model and a between-class model. The within-class model defines

a data-generating mechanism for persons in class k. The between-class model

defines how likely it is that a person will be a member of one class versus another.

Combining these yields a combined model—a marginal (across-class) density

function. Further, the construction of mixture models can be seen to rely on the

same probability laws. These models also share assumptions, and they allow the

same approach for obtaining predictions of class assignment given observed data.

Mixture models also all allow “direct” and “indirect” interpretations of latent

classes. Under the “direct” interpretation, extracted classes are hypothesized

to correspond with unobserved population subgroups (e.g., Mazza, Fleming,

Abbott, Haggerty, & Catalano, 2010). Under an “indirect” interpretation, classes

can be used to discretely approximate unknown distributional forms even without

the assumption that population subgroups exist (e.g., Bauer, 2005; Nagin, 2005).

An integrative understanding of shared aspects of mixture models is bene-

ficial in highlighting similarities in how key assumptions can be relaxed and

in suggesting how these models can be extended or combined in new ways.

However, currently it remains difficult for psychology researchers to obtain an

integrative understanding of mixture models. Historically, one reason has been

the different parameterizations1 and notational conventions used in mixture liter-

atures for continuous versus categorical outcomes (Heinen, 1996; McCutcheon,

2002; McLachlan & Peel, 2000). Three other reasons for this difficulty, described

here, jointly have not been thoroughly addressed.

First, reviews commonly focus on a pair of closely related mixture models

rather than on a broader spectrum. For instance, reviews of such pairs of mixture

models have included latent class versus latent profile models (e.g., McDonald,

1962; Wolfe, 1970), latent class versus latent transition models (e.g., Collins &

Lanza, 2010), and groups-based trajectory versus growth mixture models (e.g.,

Kreuter & Muthén, 2008; Muthén, 2004; Pickles & Croudace, 2010). The first

goal of this article is to provide more inclusive coverage of prototypic mixture

models, employing a cumulative model-building approach incrementing from

1For mixture models with discrete outcomes, a probability parameterization, most commonly,

or loglinear parameterization, have historically been used (e.g., Biemer, 2011; Collins & Flaherty,

2002; Heinen, 1996; McCutcheon, 2002). For mixture models with continuous outcomes, a logistic

parameterization is typically used for the between-class model, as employed here also. For

consistency, we also employ a logistic parameterization with discrete outcomes (following, e.g.,

Humphreys & Janson, 2000; B. O. Muthén, 2001, 2004; Reboussin, Reboussin, Liang, & Anthony,

1998). This logistic parameterization can be used to compute probabilities, implicitly achieves the

same constraints as in the popular probability parameterization, and readily expands to accommodate

covariates (unlike the probability parameterization; Magidson & Vermunt, 2004).
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LINKAGES AMONG MIXTURES 777

the simplest univariate mixture model, to some of the most complex recent

extensions, under unified notation.

Second, sources that do provide general coverage of mixture models have had

somewhat different presentation formats in the literature aimed at statisticians

versus psychologists. General presentations in the statistics literature have placed

more emphasis on the combined model (marginal density), whereas within-class

data models may not be presented for every mixture model (e.g., McLachlan

& Peel, 2000, Chapter 1; Schlattmann, 2009, Chapter 1; Vermunt, 2008). This

format is more useful for highlighting the “indirect” approximation function of

mixtures and for highlighting how assumptions are imposed. General presen-

tations aimed at psychologists place more emphasis on the within-class data

models whereas a marginal density may not be presented for every mixture

model (e.g., Muthén, 2002); alternately, path diagrams may be presented (e.g.,

Sterba & Bauer, 2010). This format is more helpful for understanding the “direct”

interpretation of mixtures; additionally, interpreting the path diagrams requires

an equations-based familiarity with the model architecture.2 This article repre-

sents each mixture model by a within-class data model and density, between-

class model, and marginal density in order to facilitate its second goal. The

second goal is to highlight mixture models’ similar construction through their

reliance on shared probability laws.

Third, relationships among two recent extensions of mixture models have

not been fully emphasized. However, these two extensions have a common

objective: relaxing a key “local independence” assumption (defined later). One

extension, hybrid mixtures, accomplishes this objective by allowing for system-

atic individual differences in the within-class model. Hybrid mixtures include,

for instance, factor mixtures, item response theory (IRT) mixtures, growth mix-

tures, and latent transition analysis with a factor measurement model. Another

extension, parallel-process mixtures, accomplishes this objective via expansion

of the between-class model. Parallel-process mixtures include, for instance, joint

groups-based trajectory models and associative latent transition models. The

third goal of this article is to pedagogically relate models implementing each

extension under shared assumptions and shared construction based on probability

laws. With this foundation, we consider how and why both extensions can be

employed at once in an empirical illustration.

2Reasons are that (a) there is no formal set of rules (akin to Wright’s tracing rules in SEM)

allowing mixture model equations to be directly reproduced from their diagrams and (b) diagrams

do not fully represent all aspects of the mixture model. For instance, current path diagrams do not

communicate how many classes there are, if a particular parameter differs across some but not all

classes, if a parameter is fixed to 0 in some classes but estimated in others, or which is the reference

class.
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778 STERBA

The remainder of this article proceeds as follows: First, five prototypical

mixture models are presented: the univariate finite normal mixture, latent pro-

file analysis, latent class analysis, groups-based trajectory, and latent transition

analysis models. The presentation of each mixture model intentionally takes a

similar form—a within-class, between-class, and combined model—followed by

description of calculating posterior probabilities of class membership. The shared

construction across mixture models is explicitly related to the following four

probability laws, here stated for discrete variables3 (each law has a continuous

variable analogue).

Law of total probability:

P.A/ D P.B1/P.AjB1/ C : : : C P.Bk/P.AjBk/ (1)

Multiplication rule for conditionally independent events:

P.A; C jB/ D P.AjB/P.C jB/ (2)

Multiplication rule for dependent events:4

P.A; B; C; D/ D P.A/P.BjA/P.C jA; B/P.DjA; B; C/ (3)

Bayes’ rule: P.BjA/ D P.B/P.AjB/=P.A/: (4)

After the classic mixture models are presented, two kinds of recent extensions—

hybrid and parallel-process mixtures—are related and examples of each kind are

reviewed. Finally, a novel application illustrates how an integrative perspective

facilitates flexibly combining these two extensions to meet particular modeling

challenges. Syntax (in Mplus; L. K. Muthén & Muthén, 1998–2013) for model

fitting is deferred to an online appendix,5 as are path diagrams for all but the

final empirical example model.

UNIVARIATE FINITE NORMAL MIXTURE

MODEL (UFNM)

The simplest mixture model we consider, a univariate finite normal mixture

(UFNM; e.g., Pearson, 1894), requires one observed, continuous variable yi

measured cross-sectionally in a sample of i D 1 : : : N persons. Suppose there is

a latent classification variable, ci , which can take one of k D 1 : : : K values for

person i. K is the finite, total number of classes in an analysis. K is determined

3Here we use a shorthand: P.A/ represents P.A D a/, where a is a realization of random

variable A.
4This is also sometimes called the chain rule.
5Online appendix is available at http://www.vanderbilt.edu/peabody/sterba/appxs.htm
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LINKAGES AMONG MIXTURES 779

via comparing the fit of competing models with different numbers of classes

using model selection indices, for instance, the Bayesian information criterion

(BIC; see Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 2007).

Within-Class Model

For person i in class k, that is, where ci D k, we have the following data model:

yi D �.k/ C ©i (5)

©i � N.0; ¢2.k//: (6)

In class k, �.k/ is the model-implied mean, and ¢2.k/ is the model-implied

variance of the normally distributed person-specific residual ©i . A parameter’s k

superscript denotes that its value is allowed to differ across classes. The UFNM

assumes that, within each class, the outcome is univariate normally distributed

with probability density function (PDF)

f .yi jci D k/ D 1

¢.k/
p

2 
exp

�

� .yi � �.k//2

2¢2.k/

�

: (7)

Between-Class Model

The model-implied probability that person i will be a member of class k (also

called the class probability) can be obtained via a multinomial logistic parame-

terization

p.ci D k/ D exp.¨.k//=

K
X

kD1

exp.¨.k//: (8)

¨.k/ is a multinomial intercept, and for identification purposes (to avoid redun-

dancy), ¨.K/ D 0.

Combined Model

Applying the law of total probability in Equation (1), the marginal density of

yi in the population, denoted f .yi /, can be obtained as a weighted sum of

within-class densities:

f .yi / D
K
X

kD1

p.ci D k/f .yi jci D k/: (9)
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780 STERBA

FIGURE 1 Illustrative univariate finite normal mixture density where K D 3. Note.

Bold solid line is the marginal density. Dashed lines represent the within-class densities

weighted by their respective class probabilities: Class 1 (left), Class 2 (middle), Class 3

(right). Generating parameters: p.ci D 1/ D :67, p.ci D 2/ D :25, p.ci D 3/ D :08,

¢2.1/ D 3, ¢2.2/ D 12, ¢2.3/ D 10, �.1/ D 5, �.2/ D 10, �.3/ D 20.

Suppose a UFNM is fit where yi D a total score on a depression inventory such

as the Hamilton Rating Scale, and K D 3. A “direct” interpretation may focus

on estimates of data model parameters in Equations (5), (6), and (8) that define

the weighted class-specific densities in Figure 1. Doing so may suggest that

Classes 1, 2, and 3 correspond to normal, subclinical, and clinically depressed

population subgroups, consistent with the fact that �.3/ (for Class 3, constituting

8% of the sample) falls in the Hamilton’s clinical range, whereas �.1/ (for Class

1, constituting 67% of the sample) falls in the normal range. In contrast, an “in-

direct” interpretation of the UFNM could suggest that these three classes instead

serve to flexibly approximate a nonnormal-but-continuous population density of

depression when marginalizing across class (bold solid line in Figure 1). This

interpretation emphasizes that different combinations of locations, �.k/; spreads,

¢2.k/; and weights, p.ci D k/, could account for nearly any marginal shape.

Posterior Probabilities

Estimates from the best-fitting UFNM may be used to calculate posterior proba-

bilities of class membership—each person’s model-implied probability of being
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LINKAGES AMONG MIXTURES 781

in each class given their observed data. Conveniently, these K posterior probabil-

ities per person i are produced at the final step of the algorithm usually used for

fitting mixture models—the Expectation-Maximization algorithm (see McLach-

lan & Peel, 2000; B. O. Muthén & Shedden, 1999). These posterior probabilities

are computed using Bayes’ rule from Equation (4). For UFNM this yields

p.ci D kjyi / D p.ci D k/f .yi jci D k/

f .yi /
; (10)

where the numerator consists of Equations (7) and (8), and the denominator

is Equation (9), all with estimates substituted for corresponding parameters.

Posterior probabilities can be further collapsed into modal class assignments—

assignments of each person to the class for which he or she has the high-

est posterior probability of membership. This constitutes an Empirical Bayes

Modal approach to assigning each person a score on the discrete latent variable

(Skrondal & Rabe-Hesketh, 2004). These modal class assignments can be used

for descriptive purposes, diagnostics, assessments of classification accuracy, or

subsequent predictive analyses (but see the Discussion).

LATENT PROFILE ANALYSIS (LPA)

For LPA (e.g., Gibson, 1959) multivariate cross-sectional data are instead re-

quired on j D 1 : : : J continuous outcomes, for instance, severity ratings on

J D 4 depression symptoms. These outcomes are theorized to measure the

same underlying latent construct—for example, a categorical latent depression

variable with K classes. If K discrete subpopulations with different profiles of

means and variances on the J variables are mixed together, this can give rise to

nonnormal marginal distributions of the variables (as in the UFNM) but also to

associations among the variables in the population at large.

Within-Class Model

For outcome variable j and person i in class k (i.e., where ci D k) we have

yij D �
.k/
j C ©ij (11)

©ij � N.0; ¢
2.k/
j /: (12)

The means �
.k/
j and variances ¢

2.k/
j may vary across j D 1 : : : J and k D

1 : : : K. Within-class, each outcome is assumed univariate normally distributed
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782 STERBA

FIGURE 2 Illustrative LPA model-implied class-specific densities for each of J D 4

outcomes (shown weighted by corresponding class probabilities, where K D 3). Note.

Dashed lines represent within-class densities for each outcome, weighted by their respective

class probabilities. The weighting is used here only for visualization purposes. In LPA

estimation, weighting is done for the joint outcome density, not individual outcome densities

(see Equation (14)). LPA D latent profile analysis. Classes 1, 2, and 3 correspond with short,

medium, and long dashes.

(Equation (7)) as in the UFNM; this is illustrated in Figure 2 for a simulated

depression symptom severity LPA, where K D 3 and J D 4.6 For each of the

outcome panels in Figure 2, the kth within-class density has a location centered

at �
.k/
j , with spread ¢

2.k/
j .

According to the important axiom (assumption) of local independence, the

joint density of outcomes within class is the product of J univariate normal

densities, using a continuous-variable analogue of the multiplication rule for

conditionally independent events in Equation (2).

f .yi jci D k/ D
J
Y

j D1

f .yij jci D k/: (13)

This assumption implies that associations among y’s in the population at large

are fully accounted for by between-class mean differences. As such, within-class

residual covariances are assumed to be 0.

Between-Class Model

In LPA, the probability of membership in class k is as in Equation (8).

6For each outcome in the LPA, Figure 2 depicts class-specific densities weighted by their class

probabilities; however, weighting is used here only for ease of visualization. In LPA estimation,

weighting is done for the joint outcome density, not individual outcome densities (see Equation

(14)).
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LINKAGES AMONG MIXTURES 783

Combined Model

Similarly to the UFNM, using the law of total probability in Equation (1),

the marginal PDF for person i is obtained as a sum (across classes) of the

joint within-class density for the J variables weighted by the probability of

membership in that class:

f .yi / D
K
X

kD1

p.ci D k/f .yi jci D k/: (14)

Posterior Probabilities

As in the UFNM, in LPA applying Bayes’ rule in Equation (4) yields

p.ci D kjyi/ D p.ci D k/f .yi jci D k/

f .yi /
: (15)

Suppose each of person i’s depression symptom severity outcomes (in yi) falls

in a range of great overlap among the K D 3 class-specific densities in Fig-

ure 2. For instance, yi D 4:25, 2.5, 5.0, 3.75. Then, person i’s corresponding

posterior probabilities of class membership (.01, .67, .32 for Classes 1, 2, and 3,

respectively) will imply relatively large classification uncertainty. But if person

i’s yi falls in a range of little overlap in Figure 2 (say, yi D 1:5, 1.0, 2.0, 2.5),

his or her corresponding posterior probabilities (>.99, <.01, <.01 for Classes

1, 2, and 3, respectively) will imply relatively small classification uncertainty.

LATENT CLASS ANALYSIS (LCA)

As in the LPA, for LCA (e.g., Clogg, 1995; Lazarsfeld & Henry, 1968) data are

multivariate and cross-sectional. But now we have J categorical (here, binary)

outcomes, for instance, depression symptoms where yij D 1 if endorsed and

yij D 0 if denied. In LCA applications, binary outcomes are most common

(Collins & Lanza, 2010). These J outcomes are anticipated to be associated

in the population because they are all indicators of the same categorical latent

construct (e.g., depression), with K classes. LCA can account for the marginal

distribution of each outcome (described by its proportion endorsed) as well as

associations among outcomes (described by a contingency table). Recall that a

contingency table for binary outcomes has 2J cells. Each cell contains a count

of participants providing a certain response pattern (vector of 0 or 1 responses

to all J outcomes). Associations among outcomes give rise to patterns that occur
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784 STERBA

with disproportionate prevalence.7 Just as LPA accounted for covariances among

metric variables in the population at large using between-class mean differences,

LCA can account for marginal associations among categorical outcomes using

between-class differences in patterns of outcome endorsement probabilities.

Within-Class Model

In LCA with binary outcomes, a binary logistic within-class model can be

specified for the probability of endorsing outcome j within class k (denoted

 
.k/
j ):

 
.k/
j D 1=.1 C exp.£

.k/
j //: (16)

£
.k/

j is an estimated threshold for the jth outcome in class k; it can be considered

a cutpoint on an unobserved “underlying propensity” to endorse an outcome. If

one’s underlying propensity exceeds the threshold, one responds 1. If not, one

responds 0. Because this underlying propensity is unobserved, for identification

purposes its residuals are here assumed to follow a standard logistic distribution

(see Long, 1997, pp. 41–42). Consequently, in LCA, residual variances are not

free parameters and cannot vary across class as in LPA. In LCA, thresholds

£
.k/
j are allowed to differ across class. The jth variable in class k is Bernoulli

distributed; its within-class probability mass function (PMF) is

p.yij jci D k/ D . 
.k/
j /yij .1 �  

.k/
j /1�yij : (17)

According to the important assumption of local independence, responses are

assumed independent within class. This means if we were to construct a contin-

gency table just for persons in class k there should be no remaining association

among their depression symptoms. This assumption would be violated in a

binary depression symptom LCA if, within class k, persons still had a higher

probability of endorsing yi1 (say, fatigue) if they had endorsed yi2 (say, insom-

nia). Assuming local independence, the joint PMF of all outcomes in class k is

the product of the J outcome probabilities in class k, using the multiplication

rule for conditionally independent events in Equation (2):

p.yi jci D k/ D
J
Y

j D1

p.yij jci D k/: (18)

7Even when discrete subpopulations exist, many more response patterns than classes can arise

due to measurement error.
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LINKAGES AMONG MIXTURES 785

Between-Class Model

LCA’s between-class model is Equation (8), as in the UFNM and LPA.

Combined Model

The marginal (across-class) PMF8 of the response vector yi in the overall

population is constructed using the law of total probability, Equation (1), as

in the UFNM and LPA:

p.yi/ D
K
X

kD1

p.ci D k/p.yi jci D k/: (19)

Posterior Probabilities

As in previous models, posterior probabilities are calculated in LCA using Bayes’

rule (Equation (4)):

p.ci D kjyi/ D p.ci D k/p.yi jci D k/

p.yi /
: (20)

GROUPS-BASED TRAJECTORY (GBT) MODEL

Prototypical mixtures we have considered thus far—UNFM, LPA, and LCA—

all used cross-sectional data. For the GBT model (B. O. Muthén, 2001; Nagin,

1999; also called a latent class growth model) longitudinal panel data (J repeated

measures on a single outcome) are required. Most GBT applications employ

conditionally normal repeated measures (see Sterba, Baldasaro, & Bauer, 2012),

as we do here; however, it has been applied with other within-class distribu-

tions (e.g., Poisson or Bernoulli). The GBT model accounts for the pattern of

means and (co)variances of repeated measures in the population via a mixing of

homogeneous classes of persons who, within class, follow the same trajectory

of change apart from pure error. That is, the local independence assumption,

familiar from LPA and LCA, is imposed within trajectory-class. Because classes

can differ in mean trajectory parameters, they can differ in functional form.

For instance, in Campbell, Matestic, von Stauffenberg, Mohan, and Kirchner’s

(2007) GBT application for J D 7 repeated measures of a depressive symptom

scale, the best fitting K D 6 consisted of three nonlinear trajectories (cubic-

increasing, cubic-decreasing, cubic-unstable) and three linear trajectories (high-

chronic, moderate-decreasing, low-decreasing).

8When evaluated for a particular response pattern, it is a probability.

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 1

7:
59

 1
1 

D
ec

em
be

r 
20

13
 



786 STERBA

Within-Class Model

In each class, a model for change is specified, most commonly polynomial

change. However, in theory any change process could be specified (for other

examples see Dolan, Schmittmann, Lubke, & Neale, 2005; Grimm, Ram, &

Estabrook, 2010). The GBT extends the LPA’s within-class model in the manner

of a regression mixture (e.g., Wedel & DeSarbo, 2002) by structuring the means

�
.k/
j from Equation (11) to make them dependent on time, such as

�
.k/
j D ˜

.k/

0 C ˜
.k/

1 timeij C ˜
.k/

2 time2
ij : (21)

This yields a quadratic GBT model for the jth repeated measure on the ith person

in the kth class:

yij D ˜
.k/

0 C ˜
.k/

1 timeij C ˜
.k/

2 time2
ij C ©ij (22)

©ij � N.0; ¢
2.k/
j /: (23)

timeij is the measurement time for person i at time j, usually centered at a mean-

ingful value such as initial status. ˜
.k/
0 , ˜

.k/
1 , and ˜

.k/
2 are a fixed class-specific

intercept, linear slope, and quadratic slope, respectively. To facilitate interpreting

these slopes as indicating quantitative differences in the construct over time, for

class k, researchers typically assume the J outcomes are measurement invariant—

that they measure the same construct at all timepoints. ©ij is person i’s deviation

from his or her class trajectory, at time j, and ¢
2.k/
j is the within-class residual

variance at time j (often constrained equal across class and time: ¢2).

The within-class univariate normal PDF for repeated measure j is given in

Equation (7) with model-implied mean in Equation (21). The imposition of the

local independence assumption for GBT implies that, within class, residual co-

variances D 0, as in LPA. Under this assumption, the joint density of all repeated

measures for person i is constructed as in Equation (13), using a continuous-

variable analogue of the multiplication rule for conditionally independent events

(Equation (2)).

Between-Class Model

The between-class model is Equation (8), as in UFNM, LPA, and LCA.

Combined Model

The marginal density of the repeated measures in GBT, given in Equation (14),

is constructed using the law of total probability (Equation (1)), as for UFNM,

LPA, and LCA.
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LINKAGES AMONG MIXTURES 787

Posterior Probabilities

For the GBT model, posterior probabilities are computed as in Equation (15)

(Nagin, 2005), using Bayes’ rule (Equation (4)), as in previous models.

LATENT TRANSITION ANALYSIS (LTA)

The final prototypic mixture we consider is a member of the Markov model

family. Markov models in general allow (observed or latent) discrete states at

timepoint t to be regressed on discrete states at previous timepoint(s), usually just

timepoint t � 1. They can be fit with one outcome repeatedly measured at each

of T timepoints (e.g., Langeheine, 1994; Vermunt, Tran, & Magidson, 2006) or

J outcomes repeatedly measured at each of T timepoints—that is, multivariate

longitudinal data. Here we consider a Markov model involving J outcomes at T

timepoints that is particularly popular in psychology—termed Latent Transition

Analysis (LTA; e.g., Collins & Wugalter, 1992; Reboussin, Reboussin, Liang,

& Anthony, 1998). We index j D 1 : : : J and t D 1 : : : T . LTAs are usually

specified with categorical (here, binary) outcomes, although in principle Markov

models can be fit with different outcome types (e.g., Schmittmann, Dolan, van

der Maas, & Neale, 2005). Here, for outcome j at time t, suppose yij t D 1 if

endorsed and yij t D 0 if denied.

LTA employs a categorical latent variable at each timepoint ci1 : : : ciT . The ci t

explains associations among the J outcomes at time t. Latent classes at a given

timepoint are called latent states in LTA to underscore that their membership can

shift across time—for instance, from State 2 at Time 1 to State 3 at Time 2. To ex-

plain associations among the J outcomes across time, LTA regresses consecutive

categorical latent variables on each other. As such, LTA can capture qualitative,

state-sequential change patterns rather than quantitative change patterns, as in

the conventional GBT model. An LTA is also called a multiple indicator latent

Markov model (Langeheine, 1994) because it can be conceptualized as an LCA

measurement model at each time (relating multiple outcomes at time t to latent

states at time t) connected by a latent Markov structural model (regressing latent

state membership at time t on membership at time t � 1). LTA serves to account

for the marginal distribution of each binary outcome (described by the proportion

endorsed for each of the J � T outcomes) and associations among outcomes

(described by a contingency table with 2JT cells). Each contingency table cell

contains the number of participants providing a particular complete response

pattern—a vector of responses (0 or 1) to all J � T outcomes.

Within-State Model

In LTA we have a within-state model for each ci1 : : : ciT . Here consider T D 2

timepoints where ci1 has k D 1 : : : K states and ci2 has m D 1 : : : M states. (The
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788 STERBA

online appendix gives the model for T D 3). Although potentially K ¤ M , often

they may be equal. In our empirical LTA example (details given later), we have

K D M D 2 and have J D 4 binary depression symptoms measured at time t:

sad/depressed, slow-moving, irritability, and concentration problems. At Time 1,

these are denoted yi11 � yiJ1 and are indicators of ci1 (latent depression states at

Time 1). At Time 2, these are denoted yi12 �yiJ 2 and are indicators of ci2 (latent

depression states at Time 2). Equation (24) gives the within-state model at t D 1

for persons in state k, as does Equation (25) at t D 2 for persons in state m:

 
.k/
j1 D 1=.1 C exp.£

.k/
j1 // (24)

 
.m/
j 2 D 1=.1 C exp.£

.m/
j 2 //: (25)

 
.k/
j1 is the endorsement probability for the jth outcome at Time 1 given mem-

bership in state k.  
.m/

j 2 is the endorsement probability for the jth outcome at

Time 2 given membership in state m. For our LTA example, Figure 3 depicts

these endorsement probabilities at Time 1 (Panel 1) and Time 2 (Panel 2).

Figure 3 shows that at both times, persons in State 2 (solid line; “low risk”’)

have lower endorsement probabilities for all outcomes than persons in State 1

(dashed line; “clinical risk”). Also, at both times, persons in State 1 have much

higher probabilities of irritability and concentration problems.

In state k at Time 1, yij1 has a Bernoulli PMF, as does yij 2 in state m at

Time 2:

p.yij1jci1 D k/ D . 
.k/

j1 /yij1 .1 �  
.k/

j1 /1�yij1 (26)

p.yij 2jci2 D m/ D . 
.m/
j 2 /yij 2 .1 �  

.m/
j 2 /1�yij 2 : (27)

Outcomes at time t are assumed locally independent within state: hence, persons

within state at time t should have interchangeable responses. Reflecting the im-

position of this assumption, the multiplication rule for conditionally independent

events is used to calculate the joint density of outcomes at Time 1 (Equation

(28)) or Time 2 (Equation (29)):

p.yi1jci1 D k/ D
J
Y

j D1

p.yij1jci1 D k/ (28)

p.yi2jci2 D m/ D
J
Y

j D1

p.yij 2jci2 D m/: (29)

yi1 and yi2 are the response patterns for the J outcomes at Times 1 and 2, re-

spectively, for person i. Equations (24)–(29) look identical to the LCA Equations
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LINKAGES AMONG MIXTURES 789

FIGURE 3 Empirical example results: latent transition analysis of depressive symptoms.

Note. Depress D depressed; SlowMove D slow moving; ConcProb D concentration

problems.

(16)–(18) except for the time-specific subscript. Further increasing the similarity,

when K D M 9 the jth outcome threshold is commonly constrained equal

across time within state—hence removing the t subscript. If this constraint were

9Having K D M corresponds with configural invariance of the categorical latent variable across

time.
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790 STERBA

imposed in the LTA depicted in Figure 3, the line plots in Panel 1 versus Panel

2 would look identical. If this constraint is justified, measurement invariance

holds10 for the depression categorical latent variables across time, and transition

probabilities from state to state are easier to interpret.

Between-State Model

The between-state model in LTA determines the Time 1 latent state probabilities.

Additionally, by regressing ci2 on ci1, it determines the probabilities of longitudi-

nally transitioning from a given state to any other state.11 The same multinomial

logit model in Equation (8) is used to obtain the Time 1 latent state probabilities,

denoted p.ci1 D k/. Subsequent latent state probabilities can be solved for

from estimated parameters (Langeheine, 1994), as described in the Appendix.

Because ci2 has �2 nominal categories, to regress ci2 on ci1, a multinomial

logit specification is used. Because ci1 also has �2 nominal categories, a set of

K �1 dummy variables can be used to represent it (e.g., Asparouhov & Muthén,

2008; Nylund, 2007; Reboussin et al., 1998). To illustrate, if K D M D 3, the

multinomial regression of ci2 on ci1 is

p.ci2 D mjci1 D k/ D exp.’m C “m1di1 C “m2di2/

M
X

gD1

exp.’g C “g1di1 C “g2di2/

: (30)

p.ci2 D mjci1 D k/ is a transition probability—the probability of membership

in state m at Time 2 given membership in state k at Time 1. Dummy variable

di1 is set to 1 to represent k D 1 and di2 is set to 1 to represent k D
2. Different combinations of dummy variables are used to calculate different

transition probabilities. For instance, calculating p.ci2 D mjci1 D 1/ requires

substituting di1 D 1, di2 D 0. Calculating p.ci2 D mjci1 D 2/ needs di1 D 0,

di2 D 1. Calculating p.ci2 D mjci1 D 3/ needs di1 D di2 D 0. Terms involving

the reference state at Time 2 (here, State 3) are set to 0: ’3 D “31 D “32 D 0.

Equation (30) implies that everyone in state k at Time 1 has the same probability

of transitioning to state m at Time 2.

Even though the multinomial coefficients in Equation (30) are estimated, they

are usually not interpreted directly; rather, they are simply used to calculate

transition probabilities, which are then interpreted. These transition probabilities

are often presented in a K�M transition probability matrix (Collins & Wugalter,

10The testability of measurement invariance in the conventional LTA contrasts to its untestability

in the conventional GBT (unless extended to a second-order GBT, as in Grimm & Ram, 2009).
11If T > 2, it could be possible to regress latent states at time t on prior states at both t � 1

and t � 2.
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LINKAGES AMONG MIXTURES 791

1992). Because our depression LTA empirical example only has K D M D 2,

when using Equation (30) we can omit terms involving di2. The 2 � 2 transition

probability matrix for this example (bottom of Figure 3) shows considerable

stability in depression state membership. But when change occurs, it is more

likely to be into a high-risk state than out of it.

Combined Model

For a T D 2 LTA, the marginal PMF for a response pattern for J � T outcomes

for person i (denoted yi ) is typically given as in Equation (31); it is discussed

further in the next section.

p.yi / D
M
X

mD1

K
X

kD1

p.ci1 D k/p.ci2 D mjci1 D k/p.yi1jci1 D k/p.yi2jci2 D m/:

(31)

Posterior Probabilities

If T D 2, we can compute person i’s posterior probability of membership in

each of K � M patterns of state-to-state memberships (defined as a sequence in

the next section).

p.ci1 D k; ci2 D mjyi /

D p.ci1 D k/p.ci2 D mjci1 D k/p.yi1jci1 D k/p.yi2jci2 D m/

p.yi /
:

(32)

SUMMARY OF RELATIONSHIPS AMONG UFNM, LPA,

LCA, GBT, AND LTA

Table 1 summarizes parameters discussed here for the five prototypical mixtures.

All of these parameters may not be uniquely estimable in a given application.

For instance, if the membership probability for one class approaches 0 and/or

if the parameter estimates in one class nearly coincide with those of another

class, empirical underidentification issues can arise, necessitating additional

constraints on the Table 1 parameters. For other identification considerations,

see, for example, Frühwirth-Schnatter (2009) and Abar and Loken (2012).

Many interconnections among the five prototypical mixtures reviewed here

could be highlighted. For instance, removing the time covariate from a GBT

yields an LPA, removing all but one outcome from an LPA yields a UFNM,

changing the conditional distribution of the outcome from normal to Bernoulli
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792 STERBA

TABLE 1

Parameters in the Five Prototypical Mixture Models Reviewed

Model Maximum No. of Estimated Parametersa

UFNM K outcome means

K outcome variances

K � 1 multinomial intercepts

LPA K � J outcome means

K � J outcome variances

K � 1 multinomial intercepts

LCA (binary) K � J outcome thresholds

K � 1 multinomial intercepts

GBT K � .1 C b/ growth coefficients

K � J repeated measure variances

K � 1 multinomial intercepts

LTA (assuming #states, K, constant K � J � T outcome thresholds

over time) K � 1 multinomial intercepts, for initial latent states

.T � 1/K.K � 1/ multinomial coefficients, for transitions

Note. b D the order of the polynomial. UFNM D univariate finite normal mixture; LPA D

latent profile analysis; LCA D latent class analysis; GBT D groups-based trajectory model; LTA D

latent transition analysis. J , T , K, and M were defined in the text.
aFurther constraints are common for parsimony and/or to prevent empirical underidentification

(see text). Further constraints are also used to, for instance, impose threshold invariance within state

across time in LTA.

converts an LPA to a LCA, and an LCA for an initial timepoint is embedded in

the LTA. However, in this section we focus on three other relationships among

these models that pertain to their reliance on probability laws introduced earlier.

These relations are summarized in Table 2 and detailed here.

Combined Model and the Law of Total Probability

For UFNM, LPA, LCA, and GBT, the construction of the combined model

(marginal density) was a straightforward application of the law of total prob-

ability (Equation (1)). However, for LTA, the conventional representation of

the combined model needs to be rewritten to better see how this law is applied.

Specifically, Equation (31) may be expressed as a sum of within-sequence PMFs

weighted by respective sequence probabilities:

p.yi / D
M
X

mD1

K
X

kD1

p.ci1 D k; ci2 D m/p.yi jci1 D k; ci2 D m/: (33)
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LINKAGES AMONG MIXTURES 793

TABLE 2

Summary of Unifying Themes Among Mixture Models Illustrated in This Review

Theme

Pertinent

Equations

The marginal density of each mixture model is constructed using

the law of total probability, as a sum of within-class (-sequence)

densities weighted by class/sequence probabilities.

Equation (9)

Equation (14)

Equation (19)

Equation (33)

Posterior probabilities of class/sequence membership—widely

used in assessing classification accuracy—are computed for all

mixture models considered, by applying Bayes’ rule.

Equation (10)

Equation (15)

Equation (20)

Equation (34)

For LPA, LCA, GBT, and LTA, the assumption of local

independence implies that the joint density of responses within

class (-state/sequence) is constructed using the multiplication

rule for conditionally independent events.

Equation (13)

Equation (18)

Equations (28)–(29)

Hybrid mixtures relax the local independence assumption—using

an extension of the multiplication rule for conditionally

independent events—by conditioning on continuous latent

factor(s) in the within-class (-state) model.

Equations (35)–(42)

Parallel-process mixtures relax the local independence assumption

for outcomes from two processes by expanding the

between-class (-state) model using the multiplication rule for

dependent events.

Equation (43)

Equation (45)

Note. LPA D latent profile analysis; LCA D latent class analysis; GBT D groups-based

trajectory model; LTA D latent transition analysis.

A sequence probability is the joint probability of being in a particular state at

Time 1 and a particular state at Time 2. By the multiplication rule for dependent

events (Equation (3)) the sequence probability, p.ci1 D k; ci2 D m/, is the

product of the marginal probability p.ci1 D k/ and the conditional probability

p.ci2 D mjci1 D k/ from Equation (30). The within-sequence PMF, p.yi jci1 D
k; ci2 D m/, is the product of Equations (28) and (29) because of assumptions

that outcomes in yi are independent after accounting for Time 1 state .ci1 D k/,

outcomes in yi2 are independent accounting for Time 2 state .ci2 D m/, and yi1

and yi2 are independent after accounting for the sequence of ci1 D k, ci2 D m.

Note that instead of simply summing over classes of a single categorical latent

variable—as in UFNM, LPA, LCA, and GBT—we sum over all K�M sequences

in applying the law of total probability in LTA.
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794 STERBA

Also, each mixture’s combined model (marginal density) helps us understand

its “indirect” interpretation. Crucial to the “indirect” interpretation is the fact

that distributional assumptions are imposed only in the within-class (-state) and

between-class (-state) submodels and that no additional assumptions are placed

on the marginal density itself in Equations (9), (14), (19), or (31). Because of this

fact, the pooled across-class marginal density is allowed to flexibly approximate

a variety of shapes for the population as a whole. In contrast, for each mixture,

the “direct” interpretation does not focus on the marginal density but rather

focuses on interpreting parameters of the within-class (-state) and between-class

(-state) submodels as descriptive of corresponding discrete latent subpopulations

in the real world.

Posterior Probabilities of Class Membership and

Bayes’ Rule

Earlier, posterior probabilities from UFNM, LPA, LCA, and GBT were obtained

using Bayes’ rule in Equation (4) by multiplying the “prior” probability of class

membership (between-class model) by the conditional density of the outcome(s)

given class (within-class density) and dividing by the marginal density (com-

bined model). For LTA, Bayes’ rule can be similarly applied to obtain posterior

probabilities of sequence membership; this is more clearly seen if Equation (32)

is rewritten as

p.ci1 D k; ci2 D mjyi / D p.ci1 D k; ci2 D m/p.yi jci1 D k; ci2 D m/

p.yi /
: (34)

In UFNM, LPA, LCA, and GBT, the K posterior probabilities of class member-

ship for person i sum to 1. Likewise, in LTA the K � M posterior probabilities

of sequence membership for person i sum to 1. The fact that each person has a

nonzero posterior probability of being in each class (or each sequence) highlights

the probabilistic/fuzzy nature of class (sequence) membership in mixture models.

In Equations (10), (15), (20), and (34), yi has more influence on the posterior

probability for classes (sequences) with higher “prior” membership probabili-

ties.12 For example, consider a K D 2 LCA with J D 4 depression symptoms

where k D 1 is characterized by high symptom probabilities . 
.1/
1 D :8;  

.1/
2 D

:65;  
.1/

3 D :9;  
.1/

4 D :75/ and k D 2 by relatively low symptom probabilities

. 
.2/
1 D :3;  

.2/
2 D :15;  

.2/
3 D :25;  

.2/
4 D :2/. The posterior probability of

Class 1 membership for a person with a clinically extreme response pattern,

p.ci D 1jyi D 1; 1; 1; 1/, is .89 if the prior for the high endorsement class is

12Analogously, in continuous latent variable models, the posterior density can be “shrunk” toward

the mean of the prior density (Skrondal & Rabe-Hesketh, 2004).
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LINKAGES AMONG MIXTURES 795

very low, p.ci D 1/ D :05, but rises to p.ci D 1jy D 1; 1; 1; 1/ D :99 if instead

p.ci D 1/ D :50.

Posterior probabilities are used in assigning persons to classes (sequences),

usually using the modal assignment rule described earlier but sometimes using

a random allocation rule (e.g., Goodman, 2007; Vermunt, 2010a). Using the

random allocation rule with UNFM, LPA, LCA, or GBT, the class assign-

ment for person i is generated from a multinomial distribution with K category

probabilities set equal to person i’s own K posterior probabilities. Class k’s

expected assignment proportion approximates p.ci D k/ under the model. For

LTA, the same procedure would instead be done for the K � M sequences.

Modal class (sequence) assignment is a discrete latent variable analogue to

familiar continuous latent variable scoring procedures (Empirical Bayes Modal

or Modal a Posteriori; Skrondal & Rabe-Hesketh, 2004). The latter involve

assigning each person a score that is the mode of their continuous posterior

density. Imprecision of such assignments/scores is a concern. For mixtures,

it may be investigated within sample, conditional on the parameter estimates.

This may involve calculating the average posterior probability of belonging to

a class/sequence among persons assigned to that class/sequence (e.g., Nagin,

2005) or calculating entropy (e.g., Jedidi, Jagpal, & Desarbo, 1997).

Local Independence and the Multiplication Rule for

Conditionally Independent Events

Earlier, the multivariate mixtures LPA, LCA, and GBT were seen to impose

local independence within class, enabling the joint density of responses within

class to be computed using Equation (2). For LTA, because all across-time

dependencies among outcomes are exclusively accounted for in the between-

state model, local independence among outcomes is assumed to hold within

sequence. Additionally, for LTA, local independence for outcomes at time t

is assumed within-state at time t, as previously noted. These two assumptions

are used in calculating LTA’s joint within-sequence PMF from Equation (33)

as p.yi jci1 D k; ci2 D m/ D p.yi1jci1 D k; ci2 D m/p.yi2jci1 D k; ci2 D
m/ D p.yi1jci1 D k/p.yi2jci2 D m/, where the first assumption permits the

first equality (using an expansion of Equation (2)) and the second assumption

permits the second equality. These assumptions imply that, in LTA, temporal

relations among yi are solely accounted for by the mixing together of sequences

with different patterns of state-to-state change.

In all of these multivariate mixtures, the local independence assumption not

only simplifies estimation but also plays a key role in simplifying interpretation

of classes as homogeneous, with responses interchangeable within class. How-

ever, there may be circumstances necessitating further relaxation of this assump-

tion, such as when systematic individual heterogeneity within class/sequence is
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796 STERBA

posited. Two approaches13 for further relaxing local independence are considered

here (beyond simply increasing the number of classes or states, which effectively

makes this assumption less strict).

The first approach involves expanding the within-class (-state) model to

condition on additional variable(s) besides class/state membership. In terms

of general probability laws, this approach involves expanding Equation (2) as

in P.A; C jB; D/ D P.AjB; D/P.C jB; D/. This first approach is employed

in the hybrid mixtures section later, wherein the conditioning variable within-

class (-state) is a continuous latent factor, ˜i . Local independence is now im-

posed such that, when the latent factor is held fixed, outcomes need to be

independent conditional on class membership and factor score, for example,

f .yi jci D k; ˜i / D
QJ

j D1 f .yij jci D k; ˜i / (Bartholomew & Knott, 1999).

Hybrid mixtures marginalize over ˜i to get back to a representation of f .yi jci D
k/ (e.g., B. O. Muthén, Asparouhov, & Rebollo, 2005). This generally involves

integration, except when outcomes are normal within class; then a closed-form

solution is available.

The second approach for relaxing local independence of outcomes involves

expanding the between-class (-state) model to allow class membership to itself

depend on another classification variable. Outcomes are then assumed locally

independent given a particular combination of memberships on the classification

variables. Incidentally, LTA already employed this second approach to some

degree when accommodating across-time dependency for yi1 and yi2 exclu-

sively through state-to-state autoregressions in the between-state model. This

second approach is further applied in the parallel-process mixture section later

to accommodate across-process dependency among outcomes in two processes.

Specifically, the between-state (-class) model is further expanded using the

multiplication rule for dependent events in Equation (3) to make state/class

membership in one process (say, depression) conditional now on state/class

membership of another process (say, oppositional defiant behavior). The parallel-

process GBT will, as one of its assumptions, require local independence of

outcomes given the combination of class memberships in both processes. The

parallel-process LTA will, as one of its assumptions, require local independence

of outcomes given the combination of sequence memberships in both processes.

EXTENSION: HYBRID MIXTURE MODELS

The recent extension called hybrid mixtures (Muthén, 2008) employs the first

approach discussed earlier to further relax local independence. Outcomes within

13A third approach, not discussed here, is unavailable for LCA and LTA but available for LPA

and GBT. It involves estimating residual covariances within class; estimating many such covariances

and/or allowing them to differ across class can incur estimation problems (Lubke & Neale, 2006).
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LINKAGES AMONG MIXTURES 797

class can mutually depend on continuously distributed latent factor(s) to ac-

commodate associations among responses within class and represent systematic

individual variability within class. This extension has appeared under separate

names; for LPA it is called a factor mixture model (e.g., Lubke & Muthén,

2005; Yung, 1997); for GBT, a growth mixture model (e.g., Muthén & Shedden,

1999; Verbeke & Lesaffre, 1996); for LCA, a categorical-item factor mixture or

IRT mixture model (Lubke & Neale, 2008; Mislevy & Verhelst, 1990; Muthén

& Asparouhov, 2006; Rost, 1990); and for LTA, LTA with a categorical-item

factor/IRT measurement model (Cho, Cohen, Kim, & Bottge, 2010; Nylund,

2007). Here we highlight the similarity of this extension across multivariate

mixtures by reviewing the inclusion of one factor per class/state .q D 1/ in LPA,

LCA, GBT, and LTA. For each such hybrid version, the between-class model

and combined model are unchanged; only the within-class model changes.

LPA ! Factor Mixture Model

To convert an LPA into a factor mixture model (Lubke & Muthén, 2005; Yung,

1997) within class k, outcome j is regressed on latent factor(s)—here a single

factor ˜i with factor loading (regression weight) œ
.k/
j . Within class k, the factor

has mean ’.k/ and normally distributed individual deviation from the mean —i .

Rather than estimating a mean and variance for the jth outcome, as in the

unconditional LPA, we estimate an intercept �
.k/
j and residual variance ™

.k/
©j :

yij D �
.k/
j C œ

.k/
i ˜i C ©ij

˜i D ’.k/ C —i

(35)

where

—i � N.0; §.k// (36)

©ij � N.0; ™
.k/

©j /: (37)

For identification we may, for instance, fix ’.k/ D 0 and estimate all intercepts

and fix §.k/ D 1 and estimate all factor loadings. Now that outcomes within

class depend on a factor, local independence is relaxed and Equation (13) no

longer holds. Because ©ij and —i are both normal, the within-class PDF for yi ,

marginalizing over the factor, has a closed-form expression as a multivariate

normal PDF:

f .yi jci D k/ D

D 1

.2 /J=2j†.k/j1=2
exp

�

�1

2
Œ.yi � �.k//0.†.k//�1.yi � �.k//�

�

:
(38)
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798 STERBA

A prototypic element of the model-implied mean vector �.k/ is �
.k/
j D �

.k/
j C

œ
.k/
j ’.k/ and prototypic elements of the covariance matrix †.k/ are ¢

.k/
jj D

œ
2.k/
j §.k/ C ™

.k/
©j and ¢

.k/

jj 0 D œ
.k/
j §.k/œ

.k/

j 0 where j ¤ j 0.

GBT ! Growth Mixture Model

To convert the GBT model into a growth mixture model (e.g., Muthén &

Shedden, 1999), one or all of the fixed growth coefficients within class are

replaced with continuously distributed growth factors within class. Here, we do

so for the intercept only.

yij D ˜0i C ˜1i timeij C ˜2i time2
ij C ©ij

˜0i D ’
.k/
0 C —0i

˜1i D ’
.k/
1

˜2i D ’
.k/

2 :

(39)

Class-specific growth factor means are ’
.k/
0 , ’

.k/
1 , and ’

.k/
2 for the intercept,

linear slope, and quadratic slope. Within class, systematic individual deviations

in intercepts, —0i , and residuals, ©ij , are distributed as in Equations (36) and (37).

Given the relaxation of local independence, the within-class PDF, f .yi jci D k/,

is Equation (38), as in the factor mixture—with the exception that outcome

intercepts .�
.k/
j / are now fixed to 0 and fixed time scores take the place of

estimated factor loadings.

LCA ! Categorical-Item Factor Mixture Model

To relax the local independence assumption for the LCA (e.g., Lubke & Neale,

2008; Rost, 1990) we can also allow the probability of endorsing an outcome

to depend on a latent factor ˜i with loading œ
.k/
j .

 
.k/
j D 1=.1 C exp.£

.k/
j C œ

.k/
j ˜i //

˜i D ’.k/ C —i :

(40)

The individual deviation —i from the factor mean is distributed as in Equation

(36). For identification we may, for instance, fix ’.k/ D 0 and estimate all J

thresholds and fix §.k/ D 1 and estimate all J factor loadings. Because local

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 1

7:
59

 1
1 

D
ec

em
be

r 
20

13
 



LINKAGES AMONG MIXTURES 799

independence is relaxed, Equation (18) no longer holds. Further, the within-

class PMF for yi does not have a closed form solution; obtaining it requires

integrating over the factor:

p.yi jci D k/ D
Z

0

@

J
Y

j D1

p.yij jci D k; ˜/f .˜/

1

A d˜: (41)

This involves numerical integration (one dimension per factor) and is compu-

tationally intensive compared to fitting hybrid mixtures with normal outcomes

within class.

LTA ! LTA With Categorical-Item Factor Measurement Models

The approach to relaxing local independence from the LCA is used per timepoint

in the LTA (Cho et al., 2010; Nylund, 2007). Equation (24) can be expanded

to depend on ˜1i at Time 1 and Equation (25) can be expanded to depend on

˜2i at Time 2. These factors may have means ’
.k/

1 D ’
.m/

2 D 0 and normally

distributed individual deviations

�

—1i

—2i

�

� N

 

�

0

0

�

;

"

§
.k/
11

§12§
.m/

22

#!

with variances

usually fixed to 1. Often covariances (here, §12) are fixed to 0 so all across-time

associations are conveyed through transition probabilities, from regressing ci2

on ci1. The within-sequence PMF in Equation (33) becomes

p.yi jci1 D k; ci2 D m/ D (42)

“

0

@

J
Y

j D1

p.yij1jci1 D k; ˜1/

J
Y

j D1

p.yij 2jci2 D m; ˜2/f .˜1/f .˜2/

1

A d˜1d˜2

thus involving integration over two dimensions (one for each factor per time-

point).

This section highlighted similarities in how prototypical mixtures LPA, LCA,

GBT, and LTA are extended to hybrid versions to relax local independence. In

these hybrid mixtures, factor(s) are sometimes added within class simply to par-

simoniously accommodate atheoretic residual associations. Other times, “direct”

interpretations of hybrid mixtures involve theoretically meaningful within-class

factor structures, and measurement invariance of these factor structures can be

tested across classes/states (see Lubke & Muthén, 2005; Lubke & Neale, 2008).

Particular issues arise in hybrid mixtures concerning whether to impose con-

straints on the factor structure within class before or after choosing the number

of classes (see Bauer & Curran, 2003, 2004). Finally, hybrid mixtures may
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800 STERBA

be further extended to allow structural relations among latent and/or observed

variables within class (Arminger & Stein, 1997; Dolan, 2009; Dolan & van der

Maas, 1998; Muthén, 2002).

EXTENSION: PARALLEL-PROCESS MIXTURE MODELS

Whereas the first approach we discussed for relaxing local independence, hybrid

mixtures, involved an extension of the within-class model, the second approach,

used in parallel-process mixtures, involves an extension of the between-class

model. Parallel-process mixtures are used when interest lies in relating latent

class membership on more than one construct over time. This extension has

been presented differently for change processes that are continuous (joint GBT

models; Nagin & Tremblay, 2001) versus stage sequential (associative LTA

models; Bray, Lanza, & Collins, 2010; Flaherty, 2008; see relatedly Vermunt,

2010b). However, here these extensions are shown to be closely related.

Denote the process for one construct the y-process and for the other the

z-process. Parallel-process GBT and LTA account for dependency of outcomes

across process by regressing classes/states for one process on classes/states of the

other process. The specification of parallel-process mixtures can be summarized

in terms of a between-, within-, and combined-model, as done earlier. The

between-model is a joint probability of membership in classes/states from both

processes, calculated using the multiplicative rule for dependent events in Equa-

tion (3). Note that in the between-model, there are alternative ways to express

the joint probability depending on the manner in which z-process classes/states

are regressed on y-process classes/states, or vice versa. One such alternative is

shown here, which can be used to solve for probabilities of interest from other

alternatives (see Appendix), so respecification is not necessary. In the within-

model, local independence of outcomes across process is relaxed in the following

respect. For GBT, local independence of outcomes across process now requires

that responses be independent within a particular combination of z-process class

and y-process class membership. Likewise, for LTA, local independence of

responses across process is now required within a particular combination of

z-process sequence and y-process sequence membership. The combined-model

(i.e., marginal density of y’s and z’s) can be written to highlight its construction

using the law of total probability in Equation (1), as shown further here.

Parallel-Process GBT Model

For the y-process, denote the outcome vector yi and latent classification variable

c
y
i with classes k D 1 : : : K; corresponding quantities for the z-process are zi
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LINKAGES AMONG MIXTURES 801

and cz
i , with classes q D 1 : : : Q. The marginal PDF (combined model) is

f .yi ; zi / D
Q
X

qD1

K
X

kD1

p.cz
i D q/p.c

y
i D kjcz

i D q/f .yi jcy
i D k/f .zi jcz

i D q/:

(43)

Terms in Equation (43) can be defined using previously presented equations as

follows (and are written out in full in the online appendix). The between-model

consists of the probability of z-process class membership, p.cz
i D q/, computed

as in Equation (8), and the conditional probability of y-process class membership

given z-process class membership, p.c
y
i D kjcz

i D q/. The latter is computed

using the multinomial logit specification as in Equation (30), only now Q � 1

dummy predictors are used to represent latent states in the z-process. The within-

model consists of the joint PDFs of yi given c
y
i membership, f .yi jcy

i D k/,

and zi given cz
i membership, f .zi jcz

i D q/. Each is computed as in Equation

(13) with parameters defined in Equations (21) and (23). Finally, given that the

parallel-process GBT imposes local independence of y-outcomes within class k,

z-outcomes within class q, and all outcomes within each k, q class pair, we can

rewrite the within-model as f .yi ; zi jcy

i D k; cz
i D q/ D f .yi jcy

i D k/f .zi jcz
i D

q/. Using the multiplication rule for dependent events, we can also rewrite the

between-model. Doing so, the combined model in Equation (43) becomes a sum

of within k, q class pair densities weighted by the probability of each k, q pair,

following the law of total probability:

f .yi ; zi / D
Q
X

qD1

K
X

kD1

p.c
y
i D k; cz

i D q/f .yi ; zi jcy
i D k; cz

i D q/: (44)

Parallel-Process LTA

For the y-process, denote response pattern for person i as yi , Time 1 latent

classification variable as c
y
i1 with states k D 1 : : : K, and Time 2 latent classifi-

cation variable as c
y

i2 with states m D 1 : : : M . Corresponding quantities for the

z-process are zi ; cz
i1, with states q D 1 : : : Q; and cz

i2, with states s D 1 : : : S .

The marginal PMF (combined model) for a T D 2 parallel-process LTA is

f .yi ; zi / D
S
X

sD1

M
X

mD1

Q
X

qD1

K
X

kD1

p.cz
i1 D q/p.c

y
i1 D kjcz

i1 D q/

p.cz
i2 D sjcy

i1 D k; cz
i1 D q/p.c

y
i2 D mjcz

i1 D q; c
y
i1 D k; cz

i2 D s/

p.yi1jcy
i1 D k/p.yi2jcy

i2 D m/p.zi1jcz
i1 D q/p.zi2jcz

i2 D s/:

(45)
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802 STERBA

Terms in Equation (45) can be defined using previously presented equations,

as follows (and are written in full in the online appendix). The between-model

consists of the following four terms. The marginal probability of Time 1 z-

process state membership, p.cz
i1 D q/, is computed as in Equation (8). The

conditional probability of Time 1 y-process state given Time 1 z-process state,

p.c
y
i1 D kjcz

i1 D q/, is specified using a multinomial logit as in Equation (30)

with Q � 1 dummy variable predictors used to represent latent states in the

z-process at Time 1. The conditional probability of Time 2 z-process state given

Time 1 y and z state, p.cz
i2 D sjcy

i1 D k; cz
i1 D q/, also is specified as in

Equation (30) but now with K � 1 dummy predictors representing latent states

in the y-process at Time 1 and Q � 1 representing latent states in the z-process

at Time 1. Finally, the conditional probability of Time 2 y-process state given

Time 1 y- and z-process states and Time 2 z-process state, p.c
y

i2 D mjcz
i1 D

q; c
y

i1 D k; cz
i2 D s/, also uses Equation (30). But now there are K � 1 dummy

predictors for y-process states at Time 1, Q � 1 for z-process states at Time

1, and S � 1 for z-process states at Time 2. The within-model consists of the

Time 1 PMFs of yi1 given c
y
i1 membership, p.yi1jcy

i1 D k/, and zi1 given cz
i1

membership, p.zi1jcz
i1 D q/, specified as in Equation (28). The within-model

also includes Time 2 PMFs of yi2 given c
y

i2 membership, p.yi2jcy

i2 D m/, and

zi2 given cz
i2, p.zi2jcz

i2 D s/, that are specified as in Equation (29).

Finally, similar to parallel-process GBT, because local independence is im-

posed here within each state k, m, q, and s; within each sequence km and

qs; and within each sequence-pair km, qs, we can rewrite the within-model as

p.yi ; zi jcy

i1 D k; c
y

i2 D m; cz
i1 D q; cz

i2 D s/ D p.yi1jcy

i1 D k/p.yi2jcy

i2 D
m/p.zi1jcz

i1 D q/p.zi2jcz
i2 D s/. We again rewrite the between-model using

the multiplication rule for dependent events. Doing so, the combined model

becomes a sum of within km, qs sequence densities weighted by the probability

of each km, qs sequence pair, following the law of total probability:

f .yi ; zi / D
S
X

sD1

M
X

mD1

Q
X

qD1

K
X

kD1

p.c
y
i1 D k; c

y
i2 D m; cz

i1 D q; cz
i2 D s/

p.yi ; zi jcy
i1 D k; c

y
i2 D m; cz

i1 D q; cz
i2 D s/:

(46)

In sum, modeling architecture and assumptions used to link together longitudinal

processes specific to subgroups of persons are very similar in the parallel-process

GBT versus LTA. The main substantive difference lies in whether interest is

in linking subgroup-specific continuous trajectory or state-sequential patterns

of change for two constructs. All across-process associations are accounted

for by a mixing together of subgroups with particular k, q class combina-

tions in the parallel-process GBT and are accounted for by a mixing together

of subgroups with particular km, qs sequence combinations in the parallel-
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LINKAGES AMONG MIXTURES 803

process LTA. There can be different numbers of trajectories with different

functional forms across processes in the GBT framework, just as there can

be different numbers of sequences with different transition probabilities across

processes in the LTA framework. In each parallel-process mixture, interest often

focuses on particular probabilities in the between-model: marginal probabilities

of class, state, or sequence membership in one process; conditional probabilities

of class/state/sequence membership in one process given class/state/sequence

membership in the other process; and joint probabilities of class/state/sequence

membership in both processes. Also, just for the parallel-process LTA, interest

may lie in conditional probabilities of membership in a current state on one

process given previous states on both processes and current state on the other

process. Although not all of these probabilities are represented in Equations

(43)–(46), others are solvable from them, as shown in the Appendix.

SUMMARY OF EXTENSION MODELS AND THEIR

RELATIONSHIP

As summarized in Table 2, the first extension section on hybrid mixtures covered

relaxing local independence of outcomes by adding factor(s) within class (state).

The second extension section, on parallel-process mixtures, covered relaxing

local independence of outcomes from two different constructs by expanding the

between-class (-state) model to create dependency among classification variables

for each construct.

Hence, at this point we are positioned to consider the combination of both

approaches for relaxing local independence—in the within-model and in the

between-model. Here, we do so by considering a hybrid parallel-process LTA

(for a hybrid parallel-process GBT, see, e.g., Muthén, 2001). To formulate a

hybrid parallel-process LTA, one possibility is to include factor(s) within-state

(akin to Equation (42) inside a process of a parallel-process LTA). However,

an integrative perspective on mixture models can suggest combining features

in ways not necessarily transparent when focusing on one model’s literature.

In particular, there is substantive motivation for accommodating a different

kind of dependency in longitudinal studies of psychiatric syndromes, for in-

stance. Many syndromes share symptoms (including oppositional defiant and

conduct disorder syndromes, generalized anxiety and depression syndromes,

and oppositional defiant and depression syndromes). When studying longitu-

dinal associations among psychiatric syndromes, overlapping symptoms can

be a methodological confound if unaccounted for (see Angold, Costello, &

Erkanli, 1999; Sterba et al., 2010). Overlapping symptoms could induce across-

process local dependence among outcomes in a conventional parallel-process

LTA. This in turn can inflate or alter across-process conditional probabilities of
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804 STERBA

state (or sequence) membership—thus interfering with their interpretability. To

accommodate across-process dependency induced by overlapping symptom(s),

we can expand the parallel-process LTA to include factor(s) within-time-but-

across-process. This will further relax local independence among outcomes

(from either process) within a pair of km, qs sequences. The latter integrative

model is illustrated in a longitudinal analysis of psychiatric symptoms in the

next section.

EMPIRICAL EXAMPLE

This example concerns the longitudinal association between oppositional defiant

and depressive syndromes in early childhood. Longitudinal comorbidity and

temporal sequencing of these syndromes are of considerable interest in clinical

psychology (e.g., Boylan, Vaillancourt, Boyle, & Szatmari, 2007; Lavigne et al.,

2001). An overlapping symptom arises when considering these syndromes in

children. Irritability is a symptom of childhood depression, whereas a con-

siderably overlapping oppositional defiant symptom is temper tantrums. Re-

searchers may intend to model longitudinal associations among depression and

oppositional defiant syndromes using, for instance, parallel-process LTA. They

would encounter the obstacle that the local independence assumption imposed

within each pair of sequences, km, qs (one pair from each process), is likely

violated due to the overlapping symptom. A parallel-process LTA that allows

for local dependence by including an across-process factor in the within-state

model at each timepoint is depicted in Figure 4. One outcome from each process

(irritability and temper tantrums) loads on the factor. Here, each factor’s loadings

are constrained equal across state for parsimony, and factors do not correlate

across time, although the model does not require this. Also, for identification,

one loading per factor as well as the factor variances are fixed to 1.

Outcomes were binary maternal-reported symptoms (1 D sometimes or al-

ways; 0 D never) for N D 1,113 children at first and fourth grades (see National

Institute of Child Health and Human Development Early Child Care Research

Network [NICHD-ECCRN], 2004, for study details). The J D 4 depression

symptoms were feeling sad/depressed, slow moving, concentration problems,

and irritability. The J D 4 oppositional defiant symptoms were temper tantrums,

disobedience, whining, and lack of guilt/responsibility for misbehavior. First,

single-process LTAs were fit. Using BIC, the best fitting oppositional defiant LTA

had K D M D 2, and depression LTA (discussed earlier) also had Q D S D 2.

The state-specific symptom endorsement probabilities per timepoint are plotted

in Figure 3 for depression and Figure 5 for oppositional defiant behavior;

transition probability matrices are shown at the bottom of each figure. Imposing

measurement invariance on each symptom threshold within state across time
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LINKAGES AMONG MIXTURES 805

FIGURE 4 Path diagram for the hybrid parallel-process LTA empirical example model.

Note. z-process is oppositional defiant behavior, with 4 measured symptoms (boxes) at 2

timepoints; y-process is depression, with 4 measured symptoms (boxes) at 2 timepoints.

“Overlapping” symptoms across syndromes at each timepoint are z2 (temper tantrums) and

y3 (irritability). Solid circles denoted with c correspond with a categorical latent variable.

Dashed circles ˜ correspond with a continuous latent factor or deviation. Other notation was

described in the text. LTA D latent transition analysis.

did not decrease fit according to BIC for the depression or oppositional defiant

behavior LTAs. This indicates that states retain their interpretation over time. The

measurement invariant LTAs for each process were then combined into a parallel-

process LTA. Parallel-process LTAs were fit either allowing versus not allowing

for local dependence between overlapping symptoms. The model allowing for

symptom local dependence across process (BIC D 16,123.80, df D 28) fit better

than the model requiring symptom local independence across process (BIC D
16,138.41, df D 26). In the locally dependent model, the estimated factor loading

was significant at each timepoint .œ1 D 1:42; p < :01I œ2 D 1:54; p < :01/.

Whereas many kinds of within- and across-process conditional and joint

probabilities (calculable using formulas in the Appendix) may be of substantive

interest to report in this example, we focus on one kind in Table 3: the conditional

probability of sequence membership in one process given sequence membership

in the other process. Estimated multinomial coefficients that can be used to solve

for other probabilities of interest are provided in the online appendix. Note that

in Table 3, for both processes at both times, State 1 corresponds with elevated

problems and State 2 corresponds with low risk. Conditional probabilities in

Table 3 are for the locally dependent parallel-process LTA from Figure 4. For

the local independence counterpart model, these probabilities differed often by
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806 STERBA

FIGURE 5 Empirical example results: latent transition analysis of oppositional defiant

symptoms.

.01–.02 but up to .07. The predominant pattern in Table 3 is that persons have the

highest probability of sequence membership in a given process for the same se-

quence they followed in the other process. As an example, persons in an elevated-

problems state at both timepoints for oppositional defiant behavior (oppositional

defiant sequence 1,1) have the highest probability (.83) of being in an elevated-

problems state at both timepoints for depression (depression sequence 1,1). One

clinically interesting exception to this pattern is that persons transitioning from

low to elevated depression over time (depression sequence 2,1) are most likely
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LINKAGES AMONG MIXTURES 807

TABLE 3

Empirical Example Parallel-Process LTA With Across-Process Local Dependence for

Irritability/Temper Symptom: Conditional Probability of Sequence Membership on One

Process Given Sequence Membership on the Other Process

Note. y-process is oppositional defiant behavior and z-process is depression. Conditional

probabilities within the left table describe the probability of being in a z-process sequence given

y-process sequence membership. Conditional probabilities within the right table describe the

probability of being in a y-process sequence given z-process sequence membership. For both

processes, State 1 is elevated problems and State 2 is low risk. For a given process, sequences

are denoted as, for example, (1,1), meaning membership in State 1 at Time 1 and State 1 at Time 2.

LTA D Latent Transition Analysis.

(.54 probability) to stably be in elevated-problems oppositional defiant states

over time. That is, perhaps persistence of oppositional defiant problems is a

risk factor for onset of depressive symptoms. The reverse phenomenon is not

prominent; those transitioning from low to elevated oppositional defiant behavior

are unlikely to be stably in an elevated depressive state (.06 probability).

To our knowledge, previous studies have not relaxed local independence

across process in mixture models. Yet the integrated model is clearly relevant

to studying longitudinal comorbidity.

DISCUSSION

Interest in mixture models continues to increase. However, even for psycholo-

gists acquainted with one or a pair of mixture models, there is currently a limited

foundation for understanding shared features uniting mixture models generally.

This article focused on concretely bridging understanding among five often-

applied mixture models by presenting the specification of each in a unified format

with incremental complexity while highlighting their shared reliance on familiar

probability laws (summarized in Table 2). For instance, because the traditional

presentation format for LTA did not strongly emphasize its relation to mixture

models in general, it was reexpressed in order to make this connection. The

integrative presentation of the five mixtures clarified common assumptions and

aspects of interpretation. Additionally, these prototypic mixtures were extended
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808 STERBA

in two alternative ways—to form hybrid mixtures and parallel-process mixtures.

Both extensions accomplished the same goal—relaxing the key assumption

of local independence—but did so using different approaches. Popular im-

plementations of each approach were seen to have similar construction and

interpretation. Finally, an example illustrated how an integrative perspective on

mixtures affords insight into new ways to combine both approaches. In the

remainder of this section, other applications of these two approaches for relaxing

local independence in mixtures are described. We also briefly mention other

connections among mixture models that are deserving of increased emphasis in

the future.

Additional Mixture Models Using the Two Approaches for

Relaxing Local Independence

Our review of two common approaches for relaxing local independence in

mixtures provides a foundation for understanding more advanced models, such

as multivariate multilevel mixtures (e.g., Henry & Muthén, 2010; Vermunt,

2008). In such mixture models, there are similarly two options for relaxing local

independence within Level 1 latent classes to account for the fact that outcome

scores from persons sharing a cluster (e.g., a school) may be more similar to

each other, even after accounting for Level 1 class membership. For instance, per

the first approach discussed earlier, random effect(s) (i.e., factor(s)) can be added

within Level 1 class. Or, per the second approach discussed earlier, another latent

classification variable can be added—here, a Level 2 classification variable—and

Level 1 latent class membership can be made dependent on Level 2 latent class

membership. This implies local independence of outcomes per person given a

combination of Level 1 and Level 2 class membership (Lukociene, Varriale, &

Vermunt, 2010). It is also possible to use these two approaches in one model.

Addition of Observed Covariates

Modal class assignments—calculated from posterior probabilities of class mem-

bership, as described earlier—are commonly used in subsequent analyses pre-

dicting class membership. However, this procedure ignores measurement error

involved in modal assignments. A second option is to directly add observed pre-

dictors of class membership to the between-class (-state) model to explain who

is more likely to be in which class (also see the measurement error correction

proposed by Vermunt, 2010a). For UFNM, LPA, LCA, and GBT this second

option entails adding K�1 multinomial slopes for each predictor to Equation (8)

(e.g., Muthén, 2002). For LTA, the researcher may choose to allow the predictor

to predict initial latent state, and/or predict subsequent state controlling for initial
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state, in Equation (30) (see Muthén & Asparouhov, 2011). Mixture models also

allow the possibility of adding observed predictors within class (state) in the

manner that timeij was incorporated as a covariate in Equation (22). The slope

of such predictors could be allowed to differ across class (state).

Addition of Within-Class and/or Between-Class Constraints

For the prototypical mixtures considered here, constraints on parameters within

class (sequence) can be useful in evaluating more specific or parsimonious

patterns. For example, in LTA it is common to compare unrestricted versus

forward-only (or backward-only) versus no state-to-state change by imposing

constraints14 on multinomial coefficients in Equation (30) (see Kaplan, 2008).

Likewise, in GBT it is common to compare flat (no-change) trajectories to

linear or higher order change among some or all classes (by testing zero-

constraint(s) on slope(s) of time within class in Equation (22); Nagin, 2005). For

each parallel-process mixture, researchers may be interested in testing whether

certain conditional probabilities of class/state membership in one process given

class/state membership in the other process are 0 (e.g., Bray et al., 2010).

This may be done by testing corresponding constraints on the multinomial

coefficients used to calculate these probabilities. Also, constraints placed within

class in modified15 growth mixture models can test for regime switching—

wherein persons are allowed to toggle between different continuous curves

(regimes) at each timepoint (e.g., Dolan et al., 2005). The number of classes is

fixed to the number of regime sequences, and local independence is imposed

within sequence.

Limitations

Two common within-class outcome distributions were illustrated here, although

mixtures have been fit with a variety of other within-class distributions (e.g.,

McLachlan & Peel, 2000). Further, space limitations prevented considering other

important mixture models (e.g., SEM mixtures or survival analysis mixtures). In

principle, virtually any existing whole-population model could be converted to a

mixture by specifying it as a within-class model and allowing certain parameters

14For instance, in a K D M D 2 LTA, testing forward change (below-diagonal elements of the

transition probability matrix D 0) requires fixing ’1 to a large negative number. Testing no-change

(off-diagonal elements of transition probability matrix D 0) requires also fixing “11 to a very large

positive number.
15Within class, the number of growth coefficients is .1Cb/�r (where b is the polynomial curve

degree and r is the number of regimes). At timepoints where a particular regime goes off-line, its

growth coefficients are fixed to 0 (for details see Dolan, Schmittmann, Lubke, & Neale, 2005).
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to differ across class. Unifying principles in Table 2 would generally apply to

other examples.

Conclusions

By supplying pedagogical detail on linkages among classic mixture models and

recent extensions, this article bridges historically diffuse literatures on mixture

modeling. This article clarified how features of existing models build on each

other and can be combined in new ways, which can serve as a foundation for

conceptualizing new mixture modeling developments.
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APPENDIX

The Appendix reviews how probabilities appearing in the marginal density func-

tions for latent transition analysis (LTA), parallel-process groups-based trajectory

model (GBT), and parallel-process LTA—themselves a function of multinomial

intercepts and slopes as described in the text—can be used to solve for other

probabilities of interpretational interest. For each model, Equations (1)–(4) and
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the definition of conditional probability are used in computing additional prob-

abilities. Some mixture modeling software computes these automatically.

LTA. We adopt the following shorthand for this appendix section: K D
.ci1 D k/. M D .ci2 D m/.

Already given in marginal model: p.K/ and p.MjK/. Also potentially of

interest:

p.M/ D
K
X

p.MjK/p.K/ p.K; M/ D p.K/p.MjK/:

Parallel-process GBT. Shorthand adopted for this appendix section: K D
.c

y
i D k/. Q D .cz

i D q/. Given in marginal model for 2 timepoints: p.Q/ and

p.KjQ/. Also may be of interest:

p.K/ D
Q
X

p.KjQ/p.Q/ p.K; Q/ D p.Q/p.KjQ/

p.QjK/ D p.K; Q/=p.K/

Parallel-process LTA. Shorthand adopted for this appendix section: Q D
.cz

i1 D q/. K D .c
y

i1 D k/. M D .c
y

i2 D m/. S D .cz
i2 D s/. Already given in

marginal model for 2 timepoints: p.Q/, p.KjQ/, p.SjK; Q/ and p.MjK; Q; S/.

Also potentially of interest:

Marginal: Conditional:

p.K/ D

Q
X

p.KjQ/p.Q/ p.QjK/ D p.K; Q/=p.K/

p.M/ D

S
X

Q
X

K
X

p.MjK; Q; S/p.K; Q; S/ p.SjM/ D p.S; M/=p.M/

p.S/ D

Q
X

K
X

p.SjK; Q/p.K; Q/ p.MjS/ D

Q
X

K
X

p.MjK; Q; S/p.K; QjS/

p.MjK/ D

Q
X

p.MjK; Q/p.QjK/

Joint:

p.K; M/ D p.MjK/p.K/ p.SjQ/ D p.Q; S/=p.Q/

p.Q; S/ D

M
X

K
X

p.Q; SjK; M/p.K; M/ p.MjK; Q/ D

S
X

p.MjK; Q; S/p.SjK; Q/

p.K; Q/ D p.KjQ/p.Q/ p.SjK; Q; M/ D p.K; Q; M; S/=p.K; Q; M/

p.S; M/ D p.MjS/p.S/ p.K; MjQ; S/ D p.K; Q; M; S/=p.Q; S/

p.K; Q; M; S/ D p.Q/p.KjQ/p.SjK; Q/ p.Q; SjK; M/ D p.K; Q; M; S/=p.K; M/

p.MjK; Q; S/ p.S; MjK; Q/ D p.K; Q; M; S/=p.K; Q/

Not usually of substantive interest but used earlier:

p.K; Q; M/ D p.MjK; Q/p.K; Q/ p.K; QjS/ D p.SjK; Q/p.K; Q/=p.S/

p.K; Q; S/ D p.SjK; Q/p.K; Q/

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 1

7:
59

 1
1 
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