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Abstract

Recently structural equation modeling software packages have implemented more

accurate statistical methodology for analyzing complex survey data. The computa-

tional algorithms however vary across the packages and produce different results even

for simple models. In this note we conduct simulation studies to compare the per-

formance of the methods implemented in Mplus and LISREL. The Mplus algorithm

produced more accurate results.
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Recently several structural equation modeling and multilevel software packages have

implemented more accurate statistical methodology for analyzing complex survey data.

Despite these improvements large differences in the results obtained from different pack-

ages are being reported in practical applications, see Chantala and Suchindran (2006)

for example. In this note we conduct simulation studies to evaluate the performance of

the methods implemented in Mplus 4.1 and LISREL 8.8. Mplus is published by Muthen

& Muthen and LISREL is published by Scientific Software International. First we con-

duct a simulation study on a two-level random effect regression model estimated from

data that includes within level sampling weights. In a second simulation study we

evaluate the performance of the chi-square test statistic for complex survey data using

a simple bivariate mean, variance and covariance model.

TWO-LEVEL REGRESSION

For analyzing two-level models with complex survey data Mplus 4.1 implements the

multilevel pseudo maximum likelihood (MPML) estimation method, see Asparouhov

(2006) and Asparouhov and Muthen (2006). This method allows us to estimate two-

level models when the data is obtained from a multistage stratified sampling design

and the sampling units at each sampling level are selected with unequal probabilities.

Sampling weights at both the within and the between level can be used with this

estimator. The sampling weights on the cluster (between) level are obtained by

wj =
1
pj

(1)

where pj is the probability that cluster j is included in the sample. The sampling

weights on the individual (within) level are obtained by

wji =
1
pi|j

(2)

where pi|j is the probability that individual i in cluster j is selected, given that cluster

j is selected. Using the unscaled within level weights in the estimation method can

lead to bias in the parameter estimates. A number of different scaling methods have

been proposed in Pfeffermann et al. (1998). The choice of scaling method affects the
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parameter estimates to some extent. The simulation studies in Pfeffermann et alt.

(1998) and Asparouhov (2004) conclude that scaling to cluster sample size tends to

have the most robust performance. With this scaling method the scaled within level

weights w∗
ji are obtained by

w∗
ji = wji

nj∑
iwji

(3)

where nj is the size of cluster j. Note that
∑

iw
∗
ji = nj . Mplus 4.1 uses the total

combined weight variable, which is the product of the within and the between level

weight variables

wjw
∗
ji. (4)

LISREL 8.8 implements the PWIGLS method described in Pfeffermann et alt.

(1998) using the scaling to cluster sample size for the within level weights as well.

We conduct a simulation study on a two-level regression model with a normally

distributed dependent variable Y and two normally distributed independent variables

X and Z. The covariate Z has a fixed effect on Y while the covariate X has a random

effect on Y . This two-level regression model is described as follows

Yji = αj + βjXji + γZji + εji (5)

where αj and βj are normally distributed cluster level random effects with means

α = 0.5 and β = 0.1 and variances ψα = 1 and ψβ = 0.2 and covariance ρ = 0.3. The

residual effect εij is a mean zero independent normal random variable with variance

θ = 1. The covariates Xji is generated from a normal distribution with mean 3 and

variance 2 while Zji is generated from a standard normal distribution. The fixed effect

γ is set at 0.5. The model has a total of seven parameters. We generate 100 samples of

size 25000. Each sample has 1000 clusters of size 25. To introduce unequal probability

sampling on the within level we retain each observation in the sample with probability

pi|j =
1

1 + Exp(−Yij/2)
. (6)

For all observations in the sample we compute the weight variable as

wji =
1
pi|j

= 1 + Exp(−Yij/2). (7)
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Consequently we rescale the within level weights using formula (3). To introduce

unequal probability sampling on the between level we retain clusters in the sample

with probability

pj =
1

1 + Exp(−αj)
. (8)

For all clusters in the sample we compute the between level weight as

wji =
1
pj

= 1 + Exp(−αj). (9)

We estimate model (5) for each sample using Mplus and LISREL. Within the LISREL

software package this kind of models are estimated by the MULTILEV module.

Table 1 contains the bias, the mean squared errors (MSE) and the confidence inter-

val coverage for both software packages. The Mplus bias for all parameters is very close

to 0, however the LISREL bias is relatively large for the α and ψα parameters. When

conducting the simulation study with informative selection on the within level only or

on the between level only the parameter estimates and standard errors between Mplus

and LISREL are identical. The differences reported in Table 1 occur only when we use

sampling weights at both levels. The LISREL bias is also directly affected by the infor-

mativeness of the selection on the between level. The stronger the association between

αj and the probability of selection the bigger the bias is. This fact also explains why

only the mean and the variance parameters αj have this bias. If the selection on the

between level was associated with βj we would see this bias for the mean and variance

of βj . The LISREL bias also resulted in larger MSE when compared to Mplus MSE.

The coverage probabilities were overall better in Mplus although both packages were

far from the nominal 95% probability. The ratio between the standard deviation of the

parameter estimates and the standard errors were close to 1 in both programs. This

means that the drop in the coverage is caused primarily by the bias in the parameter

estimates, which tends to disappear as the number of clusters in the sample and the

cluster sample sizes increase.

Even though in our simulation study the results obtained with Mplus were some-

what more accurate than those obtained with LISREL, there is no guarantee that this

will be the case for other simulation studies or in specific practical applications. When

5



the data is obtained via simple random sampling the maximum likelihood estimator

(MLE) is known to be the most accurate estimator at least when the sample size is

sufficiently large. Consequently most software packages are based on the MLE and the

applied researchers are accustomed to obtaining the same results from different statis-

tical packages. When the data is obtained from a complex survey design however, there

is no one estimator that is always more accurate than all other estimators. Such most

accurate estimator does not exist even for the most basic estimation problems with

sampling weights. Consider for example the case when the sampling weights are non-

informative. An estimator that completely ignores the weights will be more accurate

than an estimator that facilitates the weights. However this will not be the case if the

weights are informative. Because there is no one estimator that is the most accurate

in all cases, the applied researchers should not expect to obtain identical results from

different software packages since the packages could be based on different estimators.

In cases when the software packages show critical differences, the applied researcher

should conduct a simulation study similar to the one described in this note to evaluate

the accuracy of the different packages. Note however that even if all software packages

show identical results, these results may still not be very accurate. One example is

the case of uninformative sampling weights. Thus the applied researcher should always

include sampling weights analysis as an essential part of their overall data analysis.

Stephen Du Toit communicated to the authors that it is possible to obtain the

results given by Mplus within LISREL as well by using the total weight (4) as the

within level weight and not using between level weights. Indeed using this approach

LISREL will produce results very close to those obtained in Mplus.

CHI-SQUARE ADJUSTMENTS

In structural equation modeling chi-square tests are used to evaluate the overall fit

of the model. Typically the chi-square test of fit is simply the likelihood ratio test (LRT)

for the structural model against the unrestricted means, variance and covariance model.

The test statistic is computed as twice the difference between the log-likelihoods of the

two nested models. When we analyze complex survey data with a single or multilevel
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Table 1: Bias and MSE of parameter estimates for two-level regression.

Para- True Mplus LISREL Mplus LISREL Mplus LISREL

meter Value Bias Bias MSE MSE Coverage Coverage

α 0.5 0.03 0.10 0.004 0.013 0.94 0.51

β 0.1 0.02 0.01 0.001 0.001 0.88 0.94

γ 0.05 -0.01 -0.01 0.000 0.000 0.88 0.90

ψα 1.0 0.03 -0.12 0.011 0.019 0.98 0.61

ψβ 0.2 -0.01 -0.02 0.000 0.001 0.81 0.64

ρ 0.3 -0.03 -0.03 0.002 0.002 0.78 0.67

θ 1.0 -0.03 -0.02 0.001 0.001 0.61 0.79

model we use the weighted pseudo log-likelihood. Using the pseudo log-likelihood we

can again perform the LRT, however the distribution of this test statistic is no longer

a chi-square distribution. This distribution depends on the entire sampling design,

including the sampling weights, the stratification and the cluster sampling.

In Asparouhov and Muthen (2005) we describe an adjustment of the single level

LRT statistic which takes into account the sampling design and produces a test statistic

which has approximately a chi-square distribution. This adjustment is constructed

similarly to the adjustments of the Yuan-Bentler (2000) and the Satorra-Bentler (1988)

robust chi-square tests for mean and variance structures. Similar first and second order

adjustments are described also in Rao-Thomas (1989) for contingency tables.

Consider a general hypothesis testing for two nested models M1 and M2. Let θi be

the true parameter values and θ̂i the parameters estimates for model Mi that maximize

the pseudo log-likelihood function Li. Let di be the number of parameters in model

Mi. The adjusted LRT statistic given in Asparouhov and Muthen (2005) is

T ∗ = c · 2(L1 − L2), (10)
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where c is the correction factor

c =
d1 − d2

Tr((L′′
1)−1V ar(L′

1))− Tr((L′′
2)−1V ar(L′

2))
(11)

where L′
i and L′′

i are the first and second derivatives of the pseudo log-likelihoods. The

effect of the sampling design on the correction factor is summarized in the score variance

terms V ar(L′
i). The statistic T ∗ has approximately a chi-square distribution with

d1 − d2 degrees of freedom. The components Tr((L′′
i )

−1V ar(L′
i)) are easily available

since they are part of the asymptotic covariance for the parameter estimates. The

adjusted LRT test performs well also in multilevel analysis of complex survey data, see

Asparouhov and Muthen (2006).

When complex survey data is analyzed in Mplus 4.1 the chi-square test of fit are

automatically adjusted using formula (10). Note however that LRT testing is of interest

not only to conduct chi-square test of fit but also for testing between two nested models.

For many advanced latent variable models such as random slope or mixture models

there is no naturally defined unconstrained model that can be used to evaluate model

fit. In such cases it is important to be able to conduct LRT testing between competing

nested models. When we analyze complex survey data it is important to use the

adjusted LRT. Mplus 4.1 computes the following log-likelihood correction factors for

every likelihood based model estimation

ci =
Tr((L′′

i )
−1V ar(L′

i))
di

. (12)

Using the log-likelihood correction factors c1 and c2 for two nested models one can

compute the LRT correction factor

c =
d1 − d2

c1d1 − c2d2
. (13)

The LRT adjustment corrects not only for complex survey designs but also for non-

normality and other distributional misspecifications. Thus the likelihood correction

factors have now enabled us to conduct robust chi-square testing not just for models

that have well defined chi-square test of fit but for any latent variable models.

An alternative LRT adjustment has been proposed and implemented in LISREL

8.8. As described in the LISREL documentation (2005) accompanying the software
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package, the adjustment is given again by equation (10) but the correction factor c is

computed by

c =
d2

Tr((L′′
2)−1V ar(L′

2))
. (14)

This formula can also be found in Stapleton (2006). This adjustment is available in

LISREL for single level models.

We explore the differences between the adjustments implemented in Mplus and

LISREL with a simple simulation study. We generate a target population of size

5000 with two observed variables Y1 and Y2 from a bivariate normal distribution with

means µ1 = µ2 = 0, variances ψ1 = ψ2 = 1 and covariance ρ = 0. We reorder the

target population so that the values of Y1 are in ascending order. Clusters of size 10

are then constructed as follows. The first 10 observations are placed in cluster 1, the

next 10 observations are placed in cluster 2, etc. The target population then contains

500 clusters. We select 100 samples from the target population by cluster sampling,

i.e., for each sample we select at random L clusters and use all observations from that

cluster. Thus the sample size is 10L. Using the entire target population we estimate

the population values µ1 = −0.018, µ2 = 0.014, ψ1 = 1.011, ψ2 = 1.041 and ρ = 0.025.

The LRT is used to test between the following two models, the saturated model where

all 5 parameters are estimated and a restricted model where the parameters µ1, ψ1

and ρ are fixed to their population values. Since the model restrictions are correct the

LRT test should have a rejection rate of approximately 5%. The test between the two

models has 3 degrees of freedom and thus the mean value of the LRT statistic should

be approximately 3. Table 2 shows the rejection rates for the three LRT statistics,

the Mplus LRT adjustment, the LISREL LRT adjustment and the unadjusted LRT.

Tables 3 shows the average values of these test statistics. It is clear from these results

that the Mplus LRT adjustment performs very well in all cases, the rejection rates are

close to the nominal 5% value and the average test statistic values is close to 3. In

contrast the LISREL LRT adjustment and the unadjusted LRT produced incorrectly

large rejection rates and inflated test statistic values.

In some cases the Mplus approach (11) and the LISREL approach (14) will produce

the same results. If the effect of the complex sampling design is similar across all
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Table 2: LRT Rejection Rates

Test L=50 L=100 L=200

Mplus LRT adjustment 10% 5% 6%

LISREL LRT adjustment 66% 67% 65%

Unadjusted LRT 68% 69% 67%

Table 3: LRT Average Values

Test L=50 L=100 L=200

Mplus LRT adjustment 3.2 2.7 2.8

LISREL LRT adjustment 19.7 16.3 16.7

Unadjusted LRT 21.0 18.3 18.6

variables and parameters in the model then c1 ≈ c2, which in turn implies that formulas

(11)and (14) produce the same result.

CONCLUSION

In this note we conducted simple simulation studies to evaluate the estimation

methods available in Mplus and LISREL for complex survey data analysis. We found

substantial differences between the two software packages. In our simulations studies

the results obtained in Mplus 4.1 were more accurate than those obtained in LISREL

8.8.

The simulation studies presented here have limited implications in practice. There

are a number of factors that have a substantial impact on the quality of the estima-

tion, see Asparouhov (2006). Four known factors in order of importance are the cluster

sample size, the informativeness of the within level weights, the ICC (intra class corre-

lation) and the UWE (unequal weighting effect). This study was not intended to give

a complete account on all possible situations but to provide a simple comparison in
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somewhat artificial settings to evaluate the methodological differences implemented in

the two software packages.

In a specific practical situation it is still unclear what the best estimation approach

is. In Asparouhov (2006) a six step procedure is recommended as an optimal estimation

strategy, however the procedure does not cover all possible practical aspects. For

example the situation of large UWE such as the one found in Chantala and Suchindran

(2006) is not covered. Additional simulation studies should be conducted to evaluate

the quality of the estimation techniques. In addition, simulation study procedure based

on the actual data should be developed to incorporate more data specific features.
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