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Overview

DSEM model

Estimation

DIC

Simulation Studies

Unevenly spaced and individual-specific times of observations

Almost everything in this talk is from the paper ”Dynamic Structural
Equation Models” to be on our web site with the release of V8.
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DSEM model

Merge ”time series”, ”structural equation”, ”multilevel” and
”TVEM(time varying effect modeling)” concepts in a
generalized modeling framework in Mplus V8

Yit, ηit and Xit - are the observed dependent variables, latent
factors and predictors for individual i at time t

Four distinct sources of correlation in such observed data:
- correlation due to individual specific effects (multilevel)
- correlation due to proximity of observations (time series)
- correlation between different variables (SEM)
- correlation due to the same stage of evolution (TVEM)

DSEM finds these correlations
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DSEM model

Main decomposition equation

Yit = Y1,it +Y2,i +Y3,t

Y2,i, Y3,t are the ”individual” and ”time” specific contribution.
These are latent variables. Y1,it is the residual.
Includes three separate models:

single level DSEM: type=general, N=1, Y2,i, Y3,t are removed
twolevel level DSEM: type=twolevel, Y3,t is removed
cross-classified DSEM: type=cross, full version

We describe the cross-classified DSEM as it is the most general
model, however ....
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DSEM model

Cross-classified DSEM requires that the time scale is aligned for
all individuals - not every data set is applicable, ex. observational
studies. Time t specific random effect apply for all individuals so
time t has to mean the same thing, ex second grade.
The two-level DSEM much simpler formulation
The two-level DSEM is the most common and introductory
model for applications
The two-level DSEM can be estimated with less data, fewer
requirements for size of N and T as compared to cross-classified
DSEM, for example unbalanced designs
The two-level DSEM easier to estimate as compared to
cross-classified DSEM: much fewer number of random effects
Mplus 8 speed for two-level DSEM always acceptable, Mplus 8
speed for cross-classified DSEM: depends on the model, some
models acceptable, models with random variances or random
autoregressive parameters can be very slow
Single level model - one individual modeled separately
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DSEM model

The within level model includes latent variables and observed
variables from the previous L (lag) periods

Y1,it = ν1 +
L

∑
l=0

Λ1,lη1,i,t−l +
L

∑
l=0

RlY1,i,t−l +
L

∑
l=0

K1,lX1,i,t−l + ε1,it

η1,it = α1 +
L

∑
l=0

B1,lη1,i,t−l +
L

∑
l=0

QlY1,i,t−l +
L

∑
l=0

Γ1,lX1,i,t−l +ξ1,it.

Note that all predictors are centered i.e. Y1,i,t−l is not Yi,t−l
(covariates X are optional)

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Part 4 Muthén & Muthén 6/ 69



DSEM model

The usual structural equations at level 2 and 3.

Y2,i = ν2 +Λ2η2,i + ε2,i

η2,i = α2 +B2η2,i +Γ2x2,i +ξ2,i

Y3,t = ν3 +Λ3η3,t + ε3,t

η3,t = α3 +B3η3,t +Γ3xt +ξ3,t

These include not just between parts of Yit but also observed
between level variables
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DSEM model

Random parameters on within level
intercepts
slopes
loadings
auto-regressive parameters
variances - new V8 feature available for DSEM and non-DSEM
random covariance? Only via random factor variances

We have not found an easy to interpret, random covariance
model, that is based on normally distributed random effects
which can be used in linear equations as predictors or to be
predicted by other variables
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DSEM model

Every within level random parameter s has an individual specific
part s2,i and time specific part s3,t

s = s2,i + s3,t

s2,i, s3,t are normally distributed random effects which are a part
of the between level latent variable vectors η2,i and η3,t

Random variances are special

s = Exp(s2,i + s3,t)

This way we always keep these positive
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DSEM model

The general model on the within level can now also be written
with indices i and t for all the possible random parameters

Y1,it = ν1 +
L

∑
l=0

Λ1,litη1,i,t−l +
L

∑
l=0

RlitY1,i,t−l +
L

∑
l=0

K1,litX1,i,t−l + ε1,it

η1,it = α1,it +
L

∑
l=0

B1,litη1,i,t−l +
L

∑
l=0

QlitY1,i,t−l +
L

∑
l=0

Γ1,litX1,i,t−l +ξ1,it
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DSEM model

The above model assumes normality

Ordered polytomous and Binary dependent variables using the
underlying Y∗ approach

Missing data: MAR likelihood based treatment via MCMC
estimation. If there is autocorrelation in the data the missing data
will be imputed from the neighbouring observations rather than
from the average for the person! Note that standard econometrics
methodology even for single level models does not include
missing data. Even for single level data with missing
observations this is new.
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DSEM Initial Conditions

At time t = 1, ...,L the DSEM model uses predictors with
negative time indices such as ηi,t=0, ηi,t=−1, Y1,i,t=0, Y1,i,t=−1,
Xi,t=0, Xi,t=−1. We treat these as auxiliary parameters with their
own prior.

If sequences are long such as T > 50 the prior does not affect the
results. For smaller time-series the priors may have minor effect.

Mplus implements 2 options

A. Mplus default: automatic priors, in the first 100 burnin
MCMC iterations we update the priors from the sample statistics
of ηit, Y1,it, or Xi,t, then we discard those 100 MCMC iteration,
and retain the constructed priors. Works quite well even for
small T .
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DSEM Initial Conditions

B. Specify a normal prior for these auxiliary parameters in model
prior. Difficult to use in practice especially when variables are
not standardized.
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DSEM features not available in Mplus 8

Non-recursive models Y1 on Y2, Y2 on Y1

R0 and Q0 can not be random

Λ1,l, B1,l and random variances, can be random but can not
include a time specific random effect

For categorical variables the lagged variables Y∗i,t−l are not a part
of the model. For categorical variables time series models can be
built only through latent variables measured by the categorical
variable or other continuous dependent or independent variables.
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DSEM Estimation

MCMC with Gibbs sampler. All latent variables, missing values,
initial conditions, random effects and model parameters, i.e., all
unknown quantities are placed in one of 13 blocks:

B1: Y2,i
B2: All random slopes s2,i
B3: Y3,t
B4: All random slopes s3,t
B5: Other latent variables η2,i and η3,t
B6: Latent variables η1,it, including initial conditions where t ≤ 0
B7: Missing variables Yit
B8: Initial conditions Y1,it and X1,it for t ≤ 0
B9: Threshold parameters for all categorical variables θ3
B10: Underlying variables Y∗it for all categorical variables
B11: Non-random intercepts, slope and loadings parameters θ1
B12: Non-random variance, covariance and correlation
parameters θ2
B13: Random variance parameters
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DSEM Estimation

Determine each block conditional distribution, given all other
blocks and the data
Update (generate new values for) each block from that
conditional distribution
Repeat cycling between the blocks until convergence and use the
generated values as the posterior distribution, point estimates, SE
Mplus mini-max strategy for block formation: minimize the
number of block while keeping conditional distributions explicit,
i.e., maximizing the blocks. Each block is further split into the
sub-blocks that are conditionally independent and update these
separately. Strategy for most efficient computation and mixing.
Blocks 3,6,7 sequentially updated.
Bayes estimation inheritance: DSEM algorithm is an extension
of Mplus 7.4, i.e., not developed from scratch.
As an illustration we provide the conditional distribution for
block 1
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DSEM Estimation, block 1 conditional distribution

Y ′1,it = Yit−Y3,t

Y ′1,it−Y2,i = (I−R0)
−1

ν1 +
L

∑
l=0

(I−R0)
−1

Λ1,lη1,i,t−l+

L

∑
l=1

(I−R0)
−1Rl(Y ′1,i,t−l−Y2,i)+

L

∑
l=0

(I−R0)
−1K1,lX1,i,t−l+(I−R0)

−1
ε1,it

(1)

Y ′1,it−(I−
L

∑
l=1

(I−R0)
−1Rl)Y2,i =(I−R0)

−1
ν1+

L

∑
l=0

(I−R0)
−1

Λ1,lη1,i,t−l+

L

∑
l=1

(I−R0)
−1RlY ′1,i,t−l +

L

∑
l=0

(I−R0)
−1K1,lX1,i,t−l +(I−R0)

−1
ε1,it

(2)
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DSEM Estimation, block 1 conditional distribution

F(Y2,i) = ∑
t

L(Y ′1,it|∗)+L(Y2,i|∗)

F is a quadratic function of Y2,i - because we split s2,i into a
separate block, which is specific for DSEM

Y2,i ∼ N(F′′−1F′(0),F′′−1)

Summary for the rest blocks can be found in the paper.
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DIC

DIC can be used to compare DSEM models. Implemented for
models with all continuous dependent variable (no categorical).

D(θ) =−2log(p(Y|θ))

pD = D̄−D(θ̄)

DIC = D(θ̄)+2pD

Despite the clear definition with the above formulas, there is
substantial variation in what DIC actually is. The source of the
variation is the definition of θ , and if it includes the latent
variables or not.
Different definitions of DIC are not comparable. You can
compare only if they are using the same likelihood [Y|θ ]
DIC most likely can not be used to compare models if the two
models use different θ
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DIC

In DSEM the following are used in the θ vector in addition to all
model parameters

Y2,i and all random effects s2,i
Y3,t and all random effects s3,t
Initial conditions
Latent variables η1,it if their lagged variables are used in the
model
Missing variables Yit if their lagged variable is used in the model

To compare two models with DIC all you need to verify is that θ

between the two models is ”the same”. Random effect with zero
variance is OK.
This list makes easy the computation of [Y|θ ]
pD - estimated number of parameters should generally be near
the size of the vector θ , i.e., should be near the count of the
above list
In DSEM pD is large and needs extra long MCMC sequence for
stable estimate
ARMA(1,1) model not comparable to AR(1) with DIC for V8.
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Model fit evaluation based on comparing sample and model
estimated statistics

Assuming stationarity of the DSEM model we compute subject
specific model estimated mean, variances, autocorrelations of lag
L. These can be compared to their sample counterparts.
Caution about non-stationary models where trend is in the
model: de-trending the data first, the Mplus residual output does
not apply directly. This applies only to the residual output in
Mplus and not to model results.
Model fit evaluation using MSE and correlation between sample
v.s. model estimated. These are in Mplus plot utilities. For
example, means.

R = Cor(µi,Yi∗) (3)

MSE =
N

∑
i=1

(µi−Yi∗)
2/N. (4)
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Time-series model estimated means, variance, correlations
using Yule-Walker

Zt = µ +
L

∑
l=1

AlZt−l +ζ

Σ = Var(ζ )

E(Zt) =

(
I−

L

∑
l=1

Al

)−1

µ

Γj = Cov(Zt,Zt−j)


Γ0 ΓT

1 ΓT
2 ... ΓT

L
Γ1 Γ0 ΓT

1 ... ΓT
L−1

Γ2 Γ1 Γ0 ... ΓT
L−2

... ... ... ... ...
ΓL ΓL−1 ΓL−2 ... Γ0




I
−AT

1
−AT

2
...
−AT

L

=


Σ

0
0
...
0
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Centering

Simulation example using two-level random autoregressive
AR(1) µ = 0,r = 0.3,σ11 = σw = 3,σ22 = 0.01,σ12 = 0

Mplus latent centering

Yit = µi + εit

εit = riεi,t−1 +ξit.

Observed centering
Yit = µi + εit

εit = ri(Yi,t−1−Yi∗)+ξit

Uncentered
Yit = µi + εit

εit = riYi,t−1 +ξit
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Centering

Nickell, S. (1981). Biases in dynamic models with fixed effects.
Econometrica: Journal of the Econometric Society, 1417-1426.

Hamaker E.L. and Grasman R.P.P.P. (2015) To center or not to
center? Investigating inertia with a multilevel autoregressive
model. Front. Psychol., 5, 1492.

Ludtke, O., Marsh, H.W., Robitzsch, A., Trautwein, U.,
Asparouhov, T., & Muthén, B. (2008). The multilevel latent
covariate model: A new, more reliable approach to group-level
effects in contextual studies. Psychological Methods,13,203-29.

Asparouhov, T. & Muthén, B. (2006). Constructing covariates in
multilevel regression. Mplus Web Notes: No. 11.
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Centering

Ludtke bias is for two-level models, involves 2 different
variables, and the bias is on the between

(βw−βb)ψw

Tψb +ψw

Nickell bias is for DSEM, involves 1 variable, and the bias is on
the within

− 1+ r
T−1

Both stem from not accounting for the error in the sample mean
estimate of the mean

Both disappear when cluster sample size T increases

Both can appear in parallel in the same example
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Centering

Note that observed centering or uncentered do not exist in case
there is missing data - listwise deletion is never ok

Simulation example for various N and T

Hamaker and Grasman (2015) show that the uncentered method
eliminates Nickell’s bias. It does create other bias however, ex
for σ11

Hamaker and Grasman (2015) show that using the true mean to
center still creates bias
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Centering - results

Table: Nickell’s bias for r=0.3

T N Latent centering Observed centering Nickell’s formula
10 100 0.025 -0.140 -0.144
20 50 0.006 -0.070 -0.068
30 30 0.008 -0.042 -0.045
50 50 0.000 -0.029 -0.027
100 100 -0.001 -0.014 -0.013

Nickell’s formula is very accurate. Latent centering eliminates
Nickell’s bias.
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Centering - results

Table: Bias for Var(µi) = 3

T N latent centering Uncentered
10 100 -0.015 -1.637
20 50 0.217 -1.483
30 30 0.645 -1.256
50 50 0.378 -1.361
100 100 0.096 -1.508

For latent centering bias on Var(µi) as N increases (or with using
weakly informative priors). For the uncentered method in will not
disappear even asymptotically as the fundamentals of the model are
wrong.
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Subject specific variance

Jongerling J, Laurenceau J.P., Hamaker E. (2015). A Multilevel
AR(1) Model: Allowing for Inter-Individual Differences in
Trait-Scores, Inertia, and Innovation Variance. Multivariate
Behav Res. 50(3), 334-349.

In this paper it is shown that if subject specific variances are
ignored - the structural parameters can be slightly biased. This
does not happen in regular two-level models.

Yit = µi + εit

εit = riεi,t−1 +ξit

vi = Log(Var(ξit))

The bias depends on how high the correlation is between ri and vi
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Subject specific variance -results

Table: Comparing the estimation with random variance and without random
variance (invariant variance): Bias(coverage)

parameter Cov(ri,vi) random variance invariant variance
E(ri) high .001(.97) .040(.35)
E(ri) medium .001(.98) .028(.65)
E(ri) low .001(.97) .017(.83)
E(ri) none .001(.96) .007(.92)

Var(ri) high .001(.97) -.012(.47)
Var(ri) medium .001(.93) -.007(.78)
Var(ri) low .001(.93) -.004(.88)
Var(ri) none .001(.94) -.001(.91)
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Subject specific variance - results

More detailed method for evaluation of model estimation

Cor(r̂i,ri)

SMSE =
√

(1/N)∑
i
(r̂i− ri)2

Cov(ri,vi) random variance invariant variance
SMSE high .255 .346
SMSE medium .293 .329
SMSE low .300 .316
SMSE none .300 .310

correlation high .96 .87
correlation medium .92 .89
correlation low .91 .90
correlation none .91 .90
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Subject specific variance - conclusions

Looking at the parameter estimates alone may not be enough
when comparing estimation methods. Distortion of structural
parameters due to ignoring subject specific variance is not simple
shift in the autoregressive parameter. Error is actually doubled
when looking at the random effects SMSE.

Even in standard two-level models, using cluster specific
variance is important if we use SMSE as a criterion

Subject specific variance extracts more information from the
data, yields more accurate estimation

More simulations are needed to evaluate this issue in multivariate
setting - study the effect of subject specific covariance. I was not
able to find further problems on that front.
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ARMA(1,1) and the measurement error AR(1) models

The ARMA(1,1) model

Yt = µ +βYt−1 + εt +θεt−1

σ = Var(εt)

The measurement error AR(1) = MEAR(1)
Yt = µ + ft +ξt

ft = β ft−1 + εt

σ1 = Var(ξt),σ2 = Var(εt)

The two models are equivalent

σ1 =−
θσ

β

σ2 = (1+θ
2)σ +

(1+β 2)θσ

β
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ARMA(1,1) and the measurement error AR(1) models

... as long as σ1 > 0 and σ2 > 0

The MEAR(1) shows how traditional SEM logic doesn’t hold for
DSEM: one indicator factor model is perfectly identified
Two reasons to prefer MEAR(1) v.s. AR(1,1)

More efficient Mplus estimation
Easier to interpret - SEM like flavor

Two reasons to prefer MEAR(1)/AR(1,1) v.s. AR(1)
AR(1) exponential decay of autocorrelation is not realistic
ARMA(1,1) is a two-parameter fit for the autocorrelation
function , v.s., AR(1) which is one parameter

Easy to test MEAR(1)/AR(1,1) v.s. AR(1) using significance of
parameter.
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AR(1) v.s. ARMA(1,1) autocorrelation decay
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ARMA(1,1) simulation study

Table: Bias(coverage) MEAR(1) / ARMA(1,1), N=1

parameter True value T = 100 T = 200 T = 300 T = 500
µ 0 -.09(.82) -.01(.89) -.04(.85) -.02(.87)
β .8 -.07(.96) -.04(.92) -.03(.87) -.01(.95)
σ1 1 -.10(.97) -.09(.94) -.08(.88) -.04(.90)
σ2 1 .25(.95) .17(.92) .14(.91) .08(.90)

T ≥ 200 recommended for small bias and acceptable coverage
levels

For two-level models smaller T are acceptable as long as not all
four parameters are subject specific - typically σ1 and σ2 will not
be subject specific
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ARMA(2,1) simulation study

Yt = µ +β1Yt−1 +β2Yt−2 + εt +β3εt−1
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ARMA(2,1) simulation study results
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Two-level ARMA(1,1)/MEAR(1) for categorical variables

Since the underlying variable of a categorical variable is not
available for lag modeling MEAR(1) is a good fit and allows
time series modeling with a single categorical variable

For binary variable

P(Yit = 1) = Φ(µi + fit)

fit = β fi,t−1 +ξit

µi ∼ N(µ,σb),σ2 = σw = Var(ξit),σ1 = 1

For ordered polytomous variable

P(Yit = j) = Φ(τj+1−µi− fit)−Φ(τj−µi− fit)

fit = β fi,t−1 +ξit

µi ∼ N(0,σb),σ2 = σw = Var(ξit),σ1 = 1

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Part 4 Muthén & Muthén 40/ 69



Two-level ARMA(1,1)/MEAR(1) for binary

Table: Two-level ARMA(1,1)/MEAR(1) with binary variable, N=100,
T=300

parameter True value Estimate(Coverage)
µ 0 0.00 (.95)
β .5 0.50(.78)
σw 1 1.01(.71)
σb 0.5 0.52(.94)
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Two-level ARMA(1,1)/MEAR(1) for ordered polytomous

Table: Two-level ARMA(1,1)/MEAR(1) with ordered polytomous, N=100,
T=100

parameter True value Estimate(Coverage)
τ1 -3 -3.06 (.87)
τ2 -1 -1.02 (.81)
τ3 0 -0.01 (.79)
τ4 1 1.01 (.75)
τ5 3 3.05 (.81)
β .5 0.50(.93)
σw 1 1.09(.83)
σb 0.5 0.54(.94)
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How to add a covariate in AR(1,1) and AR(1) models

The same applies for AR(1) and AR(1,1)/MEAR(1). Three ways
to do it

Direct model

Yt = µ + ft +β1Xt +ξt

ft = φ ft−1 + εt.

Indirect model

Yt = µ + ft +ξt

ft = φ ft−1 +β2Xt + εt.

Full model

Yt = µ + ft +β1Xt +ξt

ft = φ ft−1 +β2Xt + εt.
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How to add a covariate in AR(1,1) and AR(1) models

Consider the fundamental difference between the models by
what it implies for E(Yt|X)
Direct model - no effect beyond the last value of X

E(Yt|X) = µ +β1Xt.

Indirect model - accumulation effect of X with diminishing
effects

E(Yt|X) = µ +β2(Xt +φXt−1 +φ
2Xt−2 +φ

3Xt−3 + ...).

Full model - direct and accumulated effect

E(Yt|X) = µ +β1Xt +β2(Xt +φXt−1 +φ
2Xt−2 +φ

3Xt−3 + ...).
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How to add a covariate in AR(1,1) and AR(1) models. The
special case of Xt = t, linear growth model

Hamaker, E.L. (2005) Conditions for the equivalence of the
autoregressive latent trajectory model and a latent growth curve
model with autoregressive disturbances. Sociological Methods
and Research, 33, 3, 404 - 418.

It is shown in this paper that the direct and the indirect models
are equivalent, i.e., the full model is not identified
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How to add a covariate in AR(1,1) and AR(1) models. The
special case of Xt = t, linear growth model

The direct linear growth AR(1) model is

Yt = γ0 + γ1t+ξt

ξt = φξt−1 + εt

The indirect linear growth AR(1) model is
Yt = β0 +β1t+φYt−1 + εt

The two models are algebraically equivalent and the full model is
unidentified

γ0 =
β0

1−φ
− φβ1

(1−φ)2

γ1 =
β1

1−φ

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Part 4 Muthén & Muthén 46/ 69



AR(1) quadratic growth model, Xt = (t, t2)

The direct quadratic growth AR(1) model is
Yt = γ0 + γ1t+ γ2t2 +ξt

ξt = φξt−1 + εt

The indirect quadratic growth AR(1) model is
Yt = β0 +β1t+β2t2 +φYt−1 + εt

The two models are algebraically equivalent and the full model is
unidentified

γ0 =
β0

1−φ
− φβ1

(1−φ)2 +
β2φ(1+φ)

(1−φ)3

γ1 =
β1

1−φ
− 2φβ2

(1−φ)2

γ2 =
β2

1−φ
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Two-level AR(1,1) full model simulation study

Yit = µi + ft +β1Xit +ξit

fit = φ fi,t−1 +β2Xit + εit

µi ∼ N(µ,σb)

β1 = 0.3, β2 = 0.4, φ = 0.5, µ = 0, σb = 0.7,
Var(ξit) = Var(εit) = 1

The covariate is generated using AR(1) process with
Var(Xit) = 1 and autocorrelation rx = 0,0.5,0.8

We analyze the data using the full, direct and indirect models
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Two-level AR(1,1) simulation study - full model results

Table: Two-level full ARMA(1,1) with covariate, N=200, T=100

parameter rx True value Estimate(Coverage)
β1 0 .30 .30(.87)
β1 0.5 .30 .30(.96)
β1 0.8 .30 .31(.89)
β2 0 .40 .40(.87)
β2 0.5 .40 .40(.93)
β2 0.8 .40 .40(.90)
φ 0 .50 .50(.88)
φ 0.5 .50 .50( .93)
φ 0.8 .50 .50( .93)

No bias. Good coverage. Model is well identified.
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Two-level AR(1,1) simulation study - direct model results

Table: Two-level full ARMA(1,1) with covariate analyzed as direct, N=200,
T=100

parameter rx True value Estimate(Coverage)
β1 0 .70 .65(.00)
β1 0.5 .70 .74(.07)
β1 0.8 .70 .88(.00)
φ 0 .50 .50(.92)
φ 0.5 .50 .51(.85)
φ 0.8 .50 .52(.83)

Both parameters are biased. Coverage is low. Bias depends on rx.
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Two-level AR(1,1) simulation study - direct model results

Table: Two-level full ARMA(1,1) with covariate analyzed as indirect,
N=200, T=100

parameter rx True value Estimate(Coverage)
β2 0 .70 .69(.92)
β2 0.5 .70 .67(.21)
β2 0.8 .70 .65(.07)
φ 0 .50 .36(.00)
φ 0.5 .50 .38(.00)
φ 0.8 .50 .41(.00)

Both parameters are biased. Coverage is low. Bias depends on rx.
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Simulation Study - Twolevel DAFS Lag 3 model
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Results - Twolevel DAFS Lag 3 model
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Simulation Study - Twolevel WNFS Lag 5 model
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Results - Twolevel WNFS Lag 5 model
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Simulation Study - Twolevel DAFS-WNFS Combo Lag 1
model - ARMA(1,1) factor
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Results - Twolevel DAFS-WNFS Combo Lag 1 model -
ARMA(1,1) factor

Note that this is counterintuitive from SEM perspective, but not from
time series perspective. The model is essentially a factor analysis
model with ARMA(1,1) factor
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Subject-specific times of observations

The basic model assumes that observations are taken at equally
spaced time.

If times are subject-specific we slice the time grid in sufficiently
refined grid and enter missing data for the times where
observation is not taken.

For example if several observations are taken during the day, and
at different times for each individual, we slice the day in 24 hour
periods and place the corresponding observations in the hour
slots.

Data from the next simulation looks like this for day 1 for
individual 1 and 2.
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Subject-specific times of observations: subject 1 day 1
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Subject-specific times of observations: subject 2 day 1
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Subject-specific times of observations - simulation study
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Subject-specific times of observations - simulation study
results

80% missing values, 20% present, in hourly scale that means 4
or 5 observations a day
99% convergence rate, 96 minutes computation for 100
replications, 1 min per replication
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Subject-specific times of observations - summary of results

Similar results for 85% missing and 90% missing, however,
convergence is visibly slower for 90% missing values than for
80% missing values and non-convergence is more likely

It appears that optimal time discretization would be about 80% to
85% missing values inserted to represent the distance between
the observations

Very likely any information contained in the unequal distances in
the observations would be extracted well using the 80% to 85%
missing values.

It appears that this problem is solved with this simple setup and
there is no need to develop Brownian motion continuous
modeling.

Mplus now implements a utility that will setup the missing data
for you, given the precise times of observations
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Subject-specific times of observations algorithm

tinterval = t(0.1);

Split the time axis in bins of size 0.1. Then place each
observation in the correct bin

Repeat these steps until each bin contains no more than 1
observation

find a bin with more than 1 observations
locate the nearest empty bin (look up or down)
move one of the extra observation to fill in the the empty bin but
keep order of the observations so the extra observation bumps the
rest of the observations towards the empty bin

Fill in the remaining bins with missing values and set the time as
T=1,2, ... and T is the bin number.

Other algorithms are possible. The algorithm discretizes the time
scale and approximates the times of observations with times
from the discretized grid.
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Simulated Example Results. Continuous time modeling

Using one generated data set from the 80% missing simulation.
Consider the results for the autocorraltion parameter under
various analysis. True value=0.4. Note that AR meaning depends
on the time interval between observations. Note that the true grid
value that we know is sufficient is 1. Note that the model is
almost the same as the empirical example.

Grid size ρ implied |ρ - implied|
0.5 0.633 - -
1 0.398 0.401 0.003

1.5 0.303 0.254 0.049
2 0.229 0.161 0.068

ignore time 0.102 -

You can see in this controlled experiment that ”implied -
estimated” quantity clearly discovers the correct grid size
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Two-level AR(1) TVEM - simulated example

General TVEM framework: multivariate, multilevel, time-series,
continuous and categorical dependent variables.

Consider the following example N=500, T=50

Yit = µt +Yi +Fit

Fit = ρFi,t−1 +βtXit + εit

µt = f1(t) = log(t)

βt = f2(t) = a+bt+ ct2 = 0.001 · t · (50− t)

f1(t) and f2(t) are arbitrary functions of t - no specific functional
form is assumed in the model
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Two-level AR(1) TVEM - input file
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Two-level AR(1) TVEM - intercept results
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Two-level AR(1) TVEM - slope results
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