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Background: The ultimate goal of alcohol treatment research is to develop interventions that
help individuals reduce their alcohol use. To determine whether a treatment is effective, research-
ers must then evaluate whether a particular treatment affects changes in drinking behavior after
treatment. Importantly, drinking following treatment tends to be highly variable between individ-
uals and within individuals across time.

Method: Using data from the COMBINE study (COMBINE Study Group, 2003), the current
study compared 3 commonly used and novel methods for analyzing changes in drinking over
time: latent growth curve (LGC) analysis, growth mixture models, and latent Markov models.
Specifically, using self-reported drinking data from all participants (n = 1,383, 69% male), we
were interested in examining how well the 3 estimated models were able to explain observed
changes in percent heavy drinking days during the 52 weeks following treatment.

Results: The results from all 3 models indicated that the majority of individuals were either
abstinent or reported few heavy drinking days during the 52-week follow-up and only a minority
of individuals (10% or fewer) reported consistently frequent heavy drinking following treatment.
All 3 models provided a reasonably good fit to the observed data with the latent Markov models
providing the closest fit. The observed drinking trajectories evinced discontinuity, whereby indi-
viduals seem to transition between drinking and nondrinking across adjacent follow-up assess-
ment points. The LGC and growth mixture models both assumed continuous change and could
not explain this discontinuity in the observed drinking trajectories, whereas the latent Markov
approach explicitly modeled transitions between drinking states.

Conclusions: The 3 models tested in the current study provided a unique look at the observed
drinking among individuals who received treatment for alcohol dependence. Latent Markov mod-
eling may be a highly desirable methodology for gaining a better sense of transitions between
positive and negative drinking outcomes.
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B ETWEEN 2005 AND 2007, more than 2.2 million indi-
viduals were admitted for alcohol treatment in the

United States (Substance Abuse and Mental Health Services
Administration, 2009). Once admitted for treatment, contin-
uing to drink during treatment or returning to drinking after
a period of abstinence has been the modal outcome across
numerous treatment studies (see McKay and Weiss, 2001 for
a review). The high rates of lapses, defined as the return
to problem drinking following a period of abstention or
nonproblem drinking, following treatment has led many to

propose that alcohol use disorders are chronic, relapsing con-
ditions (McLellan, 2007).
Over the past 20 years, alcohol researchers have recognized

the existence of multiple pathways in the relapse process,
defined as the process of returning to problematic alcohol use,
as well as the risk factors that are often related to relapse.
Oftentimes researchers and clinicians are interested in what
predicts a good outcome following alcohol treatment, without
forcing the definition of outcome to be drinking or not-
drinking (Maisto et al., 2003). Thus, researchers and clinicians
are often interested in understanding how drinking behavior
changes over time. Notably the observed changes in drinking
behavior following treatment do not follow a linear, continu-
ous trend, and it has been observed that there is significant
variation in the observed drinking trajectories both between
individuals and within individuals over time (Gueorguieva
et al., 2010; Witkiewitz and Masyn, 2008; Witkiewitz et al.,
2007). Given the considerable heterogeneity of post-treatment
drinking, it has been suggested (Hser et al., 2001; McKay
et al., 2006; Stout, 2007) and demonstrated (Witkiewitz et al.,
2007) that the statistical methods used to analyze treatment
outcome data need to accommodate this variability.
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STATISTICAL METHODS FOR ANALYZING CHANGE
ACROSS TIME

The simplest approach to analyze treatment outcome data
is to calculate a change score, which is the mean difference
between post-treatment and pretreatment alcohol use. Analy-
sis of covariance (ANCOVA) can also be used to test mean
differences on post-treatment alcohol use between groups,
while controlling for pretreatment alcohol use. Note that both
of these methods characterize average change and do not pro-
vide information about within person change across time.
Repeated measures analysis of variance (ANOVA) and multi-
variate ANOVA provide estimates of both the average
change over time (i.e., fixed effect), as well as variability
around the average change (i.e., random effects). ANOVA
and MANOVA approaches are widely used; however, they
are also very limited. The ANOVA model assumes the vari-
ances for each pair of difference scores are equal (i.e., spheric-
ity), which is often violated with repeated measures data. The
MANOVA model has a more general variance–covariance
structure but requires equally spaced measurement occasions
and does not allow for missing data. These limitations are
particularly relevant when examining the clinical course of
alcohol use following treatment, given measurement occa-
sions are often not equally spaced and there are often missing
data.
Two alternatives to the ANOVA andMANOVA approach

are the latent growth curve (LGC) model and longitudinal
mixture models (including both latent growth mixture models
[LGMM] and latent Markov models), which will be the focus
of the current study because of their increasing popularity in
the literature. LGC models and longitudinal mixture models
are particularly valuable because they can allow for missing
data, can accommodate violations of sphericity, and do not
require equal measurement occasions. Most importantly,
both LGC models and longitudinal mixture models take
advantage of individual variability in drinking trajectories
across time.

MOTIVATION FOR CURRENT STUDY

The goal of the current study was to review 3 separate
methods that could be used to examine post-treatment drink-
ing changes and when each of the methods might be most use-
ful. In doing so, we were specifically interested in reviewing
and examining the following substantive questions. What sta-
tistical methods are useful when trying to evaluate continuous
population-based changes in drinking behavior? What meth-
ods can be used when there are differences in the ways that
individuals change over time? In other words, what methods
can accommodate heterogeneity in drinking changes across
time? What statistical methods are most appropriate when
drinking changes are discontinuous and individuals tend to
transition in and out of abstinence?
In addition, we were interested in how the models com-

pared with one another and how each model could be used to

evaluate treatment outcomes. As described in more detail
later, longitudinal mixture models (including LGMM and
latent Markov models) provide the opportunity to examine
subpopulations (i.e., classifications) of individuals who have
similar patterns of drinking outcomes. Thus, we were inter-
ested in whether the latent growth mixture and latent Markov
models resulted in similar subpopulations. Finally, we were
interested in whether drinking outcomes derived from the
methods used in the current study corresponded with the con-
clusions derived from previous analyses of drinking outcomes
using the same data (Anton et al., 2006; Donovan et al.,
2008).

MATERIALS AND METHODS

Design Overview

The data for this study are from the COMBINE study (‘‘Com-
bined Pharmacotherapies and Behavioral Interventions for Alcohol
Dependence;’’ COMBINE Study Research Group, 2003), a multi-site
randomized trial. A total of 1,383 subjects across 11 research sites
were randomized into 9 treatment groups, described in the following
paragraph. Treatment was provided for 16 weeks and participants
were followed for 1 year following treatment.

Participants

The sample was recruited from inpatient and outpatient referrals
at the study sites and throughout the community. Prior to baseline,
4,965 volunteers were screened by telephone to determine whether
the individual met eligibility criteria. Participants were excluded if
they were dependent on another drug besides alcohol, nicotine, or
cannabis, recently used opioids, had a serious mental illness, had any
other medical condition that could disrupt study participation, had
taken one of the study medications 30 days prior to baseline, or took
medication that could raise the potential risks of the study. To be
included in the study, subjects needed to have a minimum of 14
drinks (females) or 21 drinks (males) average per week over a succes-
sive 30 days in the 90-day period prior to beginning abstinence. Addi-
tionally, participants needed to have 2 or more days of heavy
drinking in the 90-day period with the last drink being within 21 days
of enrollment. Heavy drinking days was defined as 4 drinks for
women and 5 drinks for men. Following meeting eligibility criteria,
subjects were required to produce a breath alcohol level of zero
before completing consent and baseline assessments.
The final sample included 1,383 participants from 11 sites through-

out the United States. Within the study group, 31% were women
and 69% were men with alcohol use disorders that had been drinking
90 days prior but were abstinent for at least 4 days at the time of ran-
domization. Ethnic minorities constituted 23% of the study popula-
tion. Ethnic composition was as follows: 76.3% Non-Hispanic
White, 11.6% Hispanic American, 7.8% African American, and
4.1% others. The subjects’ median age was 44 years, 71% had at
least 12 years of education, and 42% were married. Research reten-
tion rates did not differ significantly between groups even though
a number of people did not complete portions of treatment.
Within treatment, 94% completed all drinking data, while 1 year
post-treatment 82.3% completed the drinking data.

Procedures

Upon meeting inclusion and exclusion criteria, subjects completed
a baseline measures assessment and were randomly assigned to 1 of 9
treatment groups. The Medical Management groups (n = 607)
included: Naltrexone, Acamprosate, Naltrexone + Acamprosate,
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and Placebo. The Medical Management with combined behavioral
intervention (CBI) groups (n = 619) consisted of the following: Nal-
trexone+CBI,Acamprosate+CBI,Naltrexone+Acamprosate +
CBI, Placebo + CBI. The final group, CBI only (n = 157), was
included to examine the effects of pill taking on outcomes with
only CBI (COMBINE Study Group, 2003).
Subjects received treatment for a total of 16 weeks; participants

receiving study medication were offered 9 Medical Management vis-
its during weeks 0, 1, 2, 4, 6, 8, 10, 12, and 16. Those who received
CBI had a maximum of 20 sessions available to them over the
16 weeks. Participants were subsequently followed for 52 weeks
post-treatment and seen at the site on weeks 26, 52, and 68 for assess-
ments. Both study participants and researchers were blinded to treat-
ment group assignments during treatment and throughout the 1-year
post-treatment assessment period.

Measures

The drinking outcome percent heavy drinking days (PHD) was
used as the primary outcome variable in the current study because it
combines both frequency and intensity of drinking. The Form-90
interview (Miller and Del Boca, 1994) was used to calculate PHD. At
all assessment time-points, percentage of heavy drinking days was
computed for each consecutive 1-month period following treatment.
A heavy drinking day was defined as 4 or more drinks per day for
women and 5 or more drinks per day for men. The primary outcome
in the current study, PHD was calculated by dividing the number of
heavy drinking days during a 1-month period by 30. In the
COMBINE study, drinking measures were derived in the 30 days
prior to baseline and during the 30 days prior to each of the post-
treatment assessment visits, which occurred immediately post-
treatment (16 weeks postbaseline), 10 weeks following treatment (26
weeks postbaseline), 36 weeks following treatment (52 weeks postbas-
eline), and 52 weeks following treatment (68 weeks postbaseline).

Statistical Analyses

All models were estimated using Mplus version 5.21 (Muthén and
Muthén, 2007). Considering the complex sampling design in the
COMBINE study (participants recruited from 11 academic sites), all
parameters were estimated using a weighted maximum likelihood
function and all standard errors were computed using a sandwich
estimator1 (the MLR estimator in Mplus). MLR provides the esti-
mated variance–covariance matrix for the available data, and there-
fore, all available data were included in the models. Maximum
likelihood is a preferred method for estimation when some data are
missing, assuming the data are missing at random (Schafer, 1997).
Attrition analyses revealed no significant differences on any study
variables between those with missing data and those with complete
data.

Latent Growth Curve Models

LGCmodels have been increasingly used to model inter- and intra-
individual change across time.2 The basic LGC model, for person i
with repeated measures variable y measured over time-points t is
defined by

yti ¼k0tg0iþk1tg1iþeti ð1Þ

with k1t denoting the factor loadings that indicate time of mea-
surement for repeatedly measured yti and k0t is a constant equal
to the value of 1. The latent variables (g0i, g1i) are identified by

g0i¼m0 þ f0 ð2Þ

g1i ¼ m1 þ f1 ð3Þ

denoting the individual intercept (g0i; i.e., starting value or ini-
tial level) and slope (g1i; i.e., change over time) and random var-
iance around the individual intercept and slope (f0 and f1,
respectively). The means of the growth factors are defined by m0
and m1 for the intercept and slope, respectively. Time-specific
deviations are represented by the independent and identically
standard normally distributed eti with variance r2e. The residuals
eti, f0, f1 are assumed normally distributed with zero means.
In the current study, LGC models were defined by linear and qua-

dratic slope effects with the intercept centered at the first assessment
following treatment (26 weeks). Model fit of the LGC models was
evaluated by v2 values, the Root Mean Square Error of Approxima-
tion (RMSEA; Browne and Cudeck, 1993), and the Comparative Fit
Index (CFI; Bentler, 1990). Models with nonsignificant v2, RMSEA
<0.06 and CFI >0.95 were considered a good fit to the observed
data (Hu and Bentler, 1999).

Longitudinal Mixture Models

In the specification of the latent growth model, it is assumed that
the latent variables represent an underlying continuous growth pat-
tern, in other words the latent variables are assumed to be continuous
and normally distributed. The growth pattern can be linear, qua-
dratic, polynomial, or any other functional form that provides a mea-
sure of change over time, but the growth must follow a continuous
distribution. This assumption might not always be appropriate, par-
ticularly when change over time differs across individuals or is dis-
continuous. Latent class models incorporate a categorical latent
variable, which represents an unobserved variable that is assumed to
be a mixture of subpopulations (Clogg, 1995). In other words, a cate-
gorical latent variable is an unobserved measure that is assumed to
be categorical in nature, such that the underlying distribution of the
latent measure is assumed to be discrete.
The basic latent class model is a measurement model where the

classes are defined by an individual’s pattern of responses to each
item and individuals with similar patterns of responding are consid-
ered part of the same subpopulation. The parameters of the latent
class model help to define the latent classes: (i) latent class propor-
tions indicate how many people are expected to be in each class; (ii)
response probabilities are the probabilities of responding to an item,
given one is expected to be in each latent class (probabilities closer to
1.0 indicate a strong correspondence between latent class member-
ship and endorsement of the item). It is assumed that the latent class
variable explains all of the variation between variables within each
class (i.e., within each class the variables are uncorrelated) an
assumption called conditional independence. The current study high-
lights 2 types of longitudinal mixture models (growth mixture and
latent Markov models), described later; however, several extensions
of the latent class model exist and the interested reader is referred to
Hagenaars and McCutcheon (2002) for more information.
LGMM combine the LGC with a categorical latent variable

(Muthén and Shedden, 1999). The latent categorical variable is used
to identify discrete subgroups of individuals who follow a similar pat-
tern of change over time. Each individual has their own unique
growth curve, and the heterogeneity in growth curves across individ-
uals is summarized by a finite number of growth trajectory classes.
The latent class growth model specifies continuous latent growth fac-
tors (intercept and slope), as described in the prior section, and the

1Given the lack of substantive reasons for differences across sites, we did not

use a multilevel modeling framework.
2In the current study, we focus on a structural equation modeling approach to

LGC analyses (Bollen and Curran, 2006) because of the natural extension

to more complicated latent growth models, however it is important to note

that multilevel models for change are a powerful alternative approach

(Raudenbush, 2001; Singer andWillet, 2003).
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continuous growth factors are indicators of a categorical latent vari-
able, k. LGMM is an extension of Eqs. 2 and 3, where Eqs. 2 and 3,
can be described for class k (k = 1, 2, 3, …, K),

g0i¼m0kþf0 ð4Þ

g1i ¼ m1k þ f1: ð5Þ

The residuals fi in LGMM have a 3 · 3 covariance matrix Wk,
which can be specified to vary across k classes. In addition, the resid-
uals of Eq. 1 eti can vary across trajectory classes. Variances and co-
variances can be estimated within each class, thus individual
differences in change over time are decomposed into a between-class
component and a within-class component.
In the current study, LGMM were estimated by including a cate-

gorical latent variable as a predictor of the LGC intercept, linear
slope, and quadratic slope factors. The variance of the quadratic
growth effect was constrained to zero (for model convergence), and
the variances and covariances of the intercept and linear slope were
estimated. In the current analyses, we estimated class-invariant
growth factor variances and covariances (i.e., the variances and
covariance were constrained to be equal across classes), although this
restriction can be relaxed. The number of classes was determined by
multiple indices of model fit and classification precision: Bayesian
information criteria (BIC; Schwarz, 1978), the Lo Mendell Rubin
likelihood ratio test p-value (LRT; Lo et al., 2001), classification pre-
cision (defined by entropy, a summary measure of the estimated pos-
terior class probabilities), and interpretability of latent classes.
Nylund and colleagues (2007) showed superior performance of the
BIC in correctly identifying the correct number of classes most of
the time, with a lower BIC indicating a better fitting model. The
LRT provides a test of the improvement in fit for each additional
estimated class (k), thus testing whether a k class model fits signifi-
cantly better than a k)1 class model. The bootstrapped likelihood
ratio test (BLRT), which has been shown to be a superior method
for determining class enumeration compared to the LRT in simula-
tion studies (Nylund et al., 2007), is not available for complex survey
analyses, in which standard errors are adjusted for the potential
correlation between observations within treatment site.
Latent Markov modeling (LMM) is also a mixture model, in

which change over time is modeled by estimating the probabilities of
transitioning between discrete states (or classes) across time (Vermunt
et al., 1999). Random effects at each point in time include the varia-
tion around the outcome variable, the probability of belonging to a
particular state, the probability of belonging to that state given the
previous state, and the amount of time spent in a particular state.
Using the terminology of Böckenhölt (2005) and the example of
drinking states, the transition rate is defined xs1s2 as the probability
of transitioning from state s1 to s2 at the current point in time, t,
given that the state s1 was observed at time t)Dt:

xs1s2 ¼ lim
Dt!0

Pr½transitionS1!S2inðt; tþ DtÞ�
Dt

ð6Þ

The sequence of states follow a first-order Markov chain with:

ss1s2 ¼ xs1s2=xs1 : ð7Þ

Thus, ss1s2 represents the probability of transitioning to heavy
drinking (s1), given an individual is currently classified in the light
drinking (s2) state.
In the current study, latent Markov models were conducted using

2 steps. First, latent profile measurement models (i.e., latent class
models in which the observed indicators are continuous, rather than
categorical) of PHD were estimated at each time-point, and the BIC,

LRT, and classification precision were used to determine the ideal
number of classes for each point in time. The latent profile models at
each time-point were then combined into a single model that included
the estimation of the transition probabilities, which are the estimates
of the probability of transitioning between adjoining latent classes
across time.

RESULTS

At baseline, the average percentage of heavy drinking days
(PHD) was 65.52% (SD = 28.57%), all participants drank
on at least 1 day in the 30 days prior to baseline and only
0.9% of the sample (n = 12) did not engage in a heavy drink-
ing day during the prebaseline period. In the 30 days prior to
the end of treatment, 53.1% of the sample did not engage in a
heavy drinking day and the average PHD was 16.78%
(SD = 28.61%). The average PHD increased to 21.98%
(SD = 31.43%) during the 30 days prior to the 2.5-month
follow-up, and by the 9- and 12-month follow-ups, the aver-
age PHD was approximately 26% [26.40% (SD = 33.40%)
at 9 months and 26.20% (SD = 34.27%) at 12 months].
More than 1 ⁄3 of the sample did not engage in any heavy
drinking days across the first year following treatment (32%
and 38% at 9 and 12 months, respectively). Fit statistics for
all models, described below, provided in Table 1.

Latent Growth Curve Models

First, a LGC model with linear and quadratic effects was
estimated. The model provided a good fit to the data based
on CFI (CFI = 0.997) but did not fit well based on v2

[v2(1) = 14.78, p < 0.001] or RMSEA [RMSEA = 0.10
(90% CI 0.06–0.15)]. As seen in Table 2, the average intercept
was 21.21 with a significantly positive linear slope [B = 3.67
(SE = 0.31), p < 0.001] and negative quadratic slope
[B = )0.62 (SE = 0.06), p < 0.001], indicating an increase
in PHD initially with a deceleration of PHD over time. The
variances around the growth factors (also in Table 2)
indicate significant variability around the mean growth curve.

Latent Growth Mixture Models

A series of analyses were conducted to examine the optimal
class solution for the LGMM based on the BIC, LRT

Table 1. Fit Statistics and Classification Precision Across Models

Model
No. of

parameters LL BIC Entropy

LGC 13 )22700.5 45494.3 1.00
LGMM (2-class) 14 )22251.8 44603.9 0.97
LGMM (3-class) 18 )21907.1 43943.2 0.98
LGMM (4-class) 22 )21717.0 43591.7 0.95
LGMM (5-class) 26 )21599.0 43384.4 0.95
LMM (3-classes
each time)

27 )20468.7 41130.9 0.95

LGC, latent growth curve model; LGMM, latent growth mixture
model; LMM, latent Markov model; LL, log likelihood; BIC, Bayes
Information Criteria.
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p-value, classification precision, and interpretability of latent
classes. The 3-class model provided the best balance of parsi-
mony and model fit, with a significant improvement in fit over
the 2-class model (LRT = 666.21, p = 0.0006). The 4-class
models did not significantly improve model fit (LRT =
367.36, p = 0.10), and the addition of the 4th class did not
add significantly to the substantive interpretation of the mod-
els. The classification quality was excellent (entropy = 0.98),
and there was clear distinction between classes (average latent
class probabilities for most likely class ranged from 0.96 to
1.00). The 3 classes could be described as: non- or infrequent
heavy drinking (mean intercept = 9.61, linear slope = 5.37,
quadratic slope = )0.83), occasional heavy drinking with
a nonsignificant increase in heavy drinking over time
(mean intercept = 46.14, linear slope = 3.53, quadratic
slope = )0.72), and frequent heavy drinking (mean inter-
cept = 82.36, linear slope = )7.60, quadratic slope = 0.83).
It is important to note that the estimated classes do not
explain all of the heterogeneity in PHD over time. As seen in
Fig. 1A–1C, the estimated classes (thick lines) only explain a
general trend in the observed data (thin lines) and there are
many individuals who are most likely classified as ‘‘infrequent
heavy drinkers’’ who are engaging in heavy drinking 100% of
days in a given month.

Latent Markov Models

First, we conducted a latent profile analysis at each time-
point. At all time-points, the LRT identified the 7-class mod-
els as the best fitting models; however, across all time-points 4
of the 7 classes had class proportions <5%. Given prior
research supporting 3-class solutions for both growth mixture
models (Witkiewitz and Masyn, 2008; Witkiewitz et al., 2007)
and latent transition analyses (Witkiewitz, 2008), as well as
considerations of the size of the model when incorporating
multiple classes across 4 time-points, we opted for a 3-class
model for each time-point. For example, with 3-classes per
time-point and 4 time-points, there are 34 = 81 latent class
patterns. With 7-classes per time-point and 4 time-points,
there would be 74 = 2,401 latent class patterns, which would
be more class patterns than participants. Across all time-
points, the 3-class models yielded significant improvements in

fit over the 2-class models (16 weeks: LRT = 638.40,
p < 0.005; 26 weeks: LRT = 562.65, p < 0.005; 52 weeks:
LRT = 492.75, p < 0.005; 68 weeks: LRT 462.86, p <
0.005). For all time-points, the 3 classes could be described as
infrequent heavy drinking (approximately 64.1% of the sam-
ple), frequent heavy drinking (approximately 17.0% of the
sample), and occasional heavy drinking (approximately
18.9% of the sample).
The latent Markov model was then estimated to examine

the transitions between latent classes across time-points.

Table 2. Class Proportions, Means, and Variances of Growth Factors,
Based on Estimated Model

Means (variances)

Intercept Linear slope Quadratic slope

LGC (100%) 21.21* (725.08*) 3.67* (91.28*) )0.62* (3.56*)
LGMM

Infrequent (78%) 9.61* (86.39*) 5.37* (26.45*) )0.83* (0.00a)
Increasing (12%) 46.14* (86.39*) 3.53* (26.45*) )0.72* (0.00a)
Frequent (10%) 82.36* (86.39*) )7.60* (26.45*) 0.83* (0.00a)

*p < 0.05.
aQuadratic slope variance constrained to zero in LGMM.
LGC, latent growth curve; LGMM, latent growth mixture models

(A)

(B)

(C)

Fig. 1. (A) Estimated means and observed individual values based on
most likely class membership for the infrequent heavy drinking class in the
latent growth mixture model (n = 1,011). (B) Estimated means and
observed individual values based on most likely class membership for the
occasional heavy drinking class in the latent growth mixture model
(n = 156). (C) Estimated means and observed individual values based on
most likely class membership for the frequent drinking class in the latent
growth mixture model (n = 129).
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First-order autoregressive paths were estimated. The model
had good classification precision based on entropy = 0.95.
Latent transition probabilities (P), shown in Table 3, indicate
the most likely transitions were from occasional to frequent
heavy drinking (week 16 to 26: P = 0.24; week 26 to 52:
P = 0.24; week 52 to 68: P = 0.16) and from occasional to
infrequent heavy drinking (week 16 to 26: P = 0.18; week 26
to 52: P = 0.17; week 52 to 68: P = 0.30). The joint proba-
bilities (a summation of conditional probabilities for each
latent class pattern) of remaining in the same class across
every time-point (not shown in the table) was highest for
infrequent heavy drinkers (P = 0.51), then frequent heavy
drinkers (P = 0.05), and occasional heavy drinkers (P =
0.03). The joint probability of transitioning from frequent
heavy drinking or occasional heavy drinking to infrequent
heavy drinking was 0.14, whereas the joint probability of
transitioning from infrequent or occasional heavy drinking to
frequent heavy drinking was 0.17. Figure 2A–2C provide the
estimated profiles (thick lines) and the observed individual
trajectories (thin lines) for the 3 most common latent class
patterns, which can be described as an infrequent heavy
drinking pattern, a frequent heavy drinking pattern, and an
infrequent-to-occasional heavy drinking pattern. As seen in
these figures, the estimated patterns provided an excellent fit
to the observed drinking trajectories.

Correspondence Between Models and Previous COMBINE
Analyses

The similarities between the LGC model and the longitudi-
nal mixture model can be evaluated by considering the aver-
age intercept and slope in the LGC model and the most
common trajectories ⁄patterns in the longitudinal mixture
models. The average PHD for the growth curve models was
around 20%. In the latent growth mixture model, the infre-
quent heavy drinking class was the largest class (approxi-
mately 64% of the sample most likely classified), which had
an average trajectory of <20% heavy drinking days. The
latent Markov model indicated that the largest response pat-
tern (n = 675) was an infrequent heavy drinking pattern,
where no individual’s PHD exceeded 30% and the average
PHD for that response patterns was around 5%.
The correspondence between the latent growth mixture and

latent Markov models was estimated by examining the

Table 3. Class Proportions and Latent Transition Probabilities, Based on Latent Markov Model

Week 0

Week 16

Week 10

Week 26

Week 26

Week 52

Infreq. Occas. Freq. Infreq. Occas. Freq.
Infreq.

(n = 831)
Occas.

(n = 239)
Freq.

(n = 226)

Infreq. (n = 1,006) 0.84 0.13 0.03 Infreq. (n = 887) 0.85 0.11 0.04 Infreq. (n = 822) 0.90 0.09 0.01
Occas. (n = 162) 0.18 0.58 0.24 Occas. (n = 238) 0.17 0.59 0.24 Occas. (n = 256) 0.30 0.54 0.16
Freq. (n = 128) 0.08 0.13 0.79 Freq. (n = 171) 0.11 0.13 0.76 Freq. (n = 218) 0.08 0.15 0.77

Infreq., infrequent heavy drinking class; Occas., occasional heavy drinking class; Freq., frequent heavy drinking class.

(A)

(B)

(C)

Fig. 2. (A) Estimated means and observed individual values based on
most likely class membership for the frequent drinking pattern in the latent
Markov model (n = 70). (B) Estimated means and observed individual val-
ues based on most likely class membership for the infrequent-to-occasional
heavy drinking pattern in the latent Markov model (n = 54). (C) Estimated
means and observed individual values based on most likely class member-
ship for the infrequent heavy drinking pattern in the latent Markov model
(n = 675).
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overlap among individuals who were most likely classified as
infrequent, occasional, and frequent drinkers across both
models. In general, cross-classification tests indicated signifi-
cant overlap between growth mixture classes and Markov
class patterns [v2 (4) = 787.25, p < 0.001]. Sixty-seven per-
cent of those who were likely classified as infrequent heavy
drinkers by the latent growth mixture model had an infre-
quent drinking pattern based on the latent Markov models,
whereas 100% of individuals who were expected to follow an
infrequent drinking pattern based on the latent Markov
model were also likely to be classified as an infrequent heavy
drinker by the latent growth mixture model. All individuals
who were classified as frequent heavy drinkers by the LGMM
were not expected to follow an infrequent drinking pattern.
Finally, results from the mixture models tested in the cur-

rent study were compared to the conclusions derived from
prior analyses of treatment effects on drinking outcomes in
the COMBINE study (Anton et al., 2006; Donovan et al.,
2008). These previous studies of the COMBINE outcomes
utilized mixed effects general linear models to assess time-by-
treatment effects, with planned comparisons of treatment
interactions. Results from these analyses indicated that indi-
viduals who received naltrexone and those who received the
CBI in combination with active treatment or placebo had the
best clinical outcomes, defined by more abstinent days and
lower rates of relapse, and were less likely to return to heavy
drinking. The percentage of individuals with a good clinical
outcome, defined as abstinence or moderate drinking without
alcohol-related problems [with moderate drinking defined as
a maximum of 11 (women) or 14 (men) drinks per week, with
no more than 2 days on which more than 3 drinks (women)
or 4 drinks (men) were consumed, and alcohol-related prob-
lems defined as endorsing 3 or more consequences on the
Drinker Inventory of Consequences] were estimated for each
treatment group (Anton et al., 2006) and are presented in
Table 4 alongside the percentages of individuals most likely
classified as infrequent heavy drinking based on the latent

growth mixture and Markov models in the current study. As
seen in Table 4, the overall conclusions across definitions of
outcomes are consistent; individuals who received naltrexone
or CBI in combination with active treatment or placebo had
the best outcomes. The expected pattern of infrequent heavy
drinking, as defined by the latent Markov models, was the
strictest criterion of good outcomes (i.e., lower percentage of
individuals across treatment groups were expected to be
classified in the infrequent heavy drinking pattern), and the
infrequent heavy drinking class, as defined by the latent
growth mixture model, was the least strict criterion of good
outcomes.

DISCUSSION

The current study examined 3 different methods for exam-
ining drinking trajectories following treatment using a latent
variable modeling approach. The LGC model was the most
parsimonious and provided a reasonable fit to the observed
data. The LGMM indicated a 3-class model provided the best
fit to the observed data; however, there was generally a trend
for some misclassification as seen in Fig. 1A–1C. The LMM
provided an excellent fit to the observed data.
The results from all 3 models were relatively consistent.

The majority of individuals did not engage in frequent heavy
drinking in the first year following treatment. These results
contradict the notion that a single episode of heavy drinking
(i.e., a ‘‘lapse’’) following treatment is a treatment failure.
Rather, individuals who engage in some heavy drinking can
return to abstinence or nonheavy drinking. That being said,
the consequences that occur during a single episode of heavy
drinking can be severe and treatment researchers should con-
tinually seek to develop interventions that target the preven-
tion of any heavy drinking episodes.

Strengths and Limitations of Each Model

LGC modeling would be particularly useful in situations
where the data are continuously normally distributed and the
researcher is interested in making population-based infer-
ences. In other words, the researcher is interested in describing
the average changes in drinking for an entire group of individ-
uals. The LGC model also naturally extends to a multiple
group situation, where the researcher might be interested in
describing the average drinking for a particular treatment
group or across treatment groups. Covariates (e.g., individual
characteristics, within treatment characteristics) can easily be
incorporated into LGC models, which is a major advantage
of the approach. The primary limitation of traditional LGC
models is that they cannot accommodate discontinuity in
individual drinking and thus are not useful for making spe-
cific statements about discrete changes in individual drinking
states over time. Therefore, LGC modeling may be much less
useful for evaluating individual clinical course. Piecewise
LGC models may be able to accommodate some discontinu-
ity by estimating trajectories across discrete time periods (e.g.,

Table 4. Percentage of Individuals With Good Clinical Outcomes,
as Defined by Anton and Colleagues (2006) and the Results From the

Current Study

Treatment group

Good clinical
outcome
based

on Anton et al.

Infrequent
drinking class

based
on GMM

Infrequent
drinking
pattern

based on LMM

Placebo + MM 58.2 68.3 38.0
Naltrexone + MM 73.7 83.9 55.9
Acamprosate + MM 60.8 68.1 47.9
Naltrexone +
Acamprosate + MM

78.4 85.8 54.6

Placebo + CBI 71.3 82.1 57.2
Naltrexone + CBI 74.4 80.3 57.1
Acamprosate + CBI 74.4 78.5 55.6
Naltrexone +
Acamprosate + CBI

73.5 82.5 57.3

CBI only 60.6 72.8 44.9

CBI, combined behavioral intervention; MM, medication manage-
ment; LMM, latent Markov modeling.
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during treatment vs. post-treatment); however, the ‘‘jumping’’
between drinking and nondrinking across time could not be
accommodated by a piecewise model because at least 3 time-
points are needed to estimate a LGC model.
LGMM can be useful when the researcher suspects that the

individuals in a particular sample might be changing in quali-
tatively distinct ways. For example, if the researcher suspects
that there is a group of treatment responders who all experi-
ence reductions in drinking over time and a group of treat-
ment nonresponders who experience no change or increases
in drinking over time. By assuming the responders and non-
responders come from the same population of drinkers could
lead to the erroneous conclusion that, on average, there were
no changes in drinking behavior following treatment.
Whereas estimating a categorical latent variable that rep-
resents 2 classes of individuals (e.g., responders and non-
responders) provides an opportunity to model these 2
trajectories separately. Covariates can also be incorporated as
predictors of within-class trajectories (i.e., predicting intercept
and slope within each class) or can be incorporated as predic-
tors of class membership (e.g., odds of being classified as a
heavy vs. light drinker). There are numerous problems with
the application of LGMM in the field and researchers are
encouraged to proceed with caution in using these models.
Several methodological papers have addressed these prob-
lems, and all users of LGMM are encouraged to read these
papers prior to estimating a model (Bauer, 2007; Bauer and
Curran, 2003; Hipp and Bauer, 2006; Sampson and Laub,
2005). In brief, the primary concerns are the tendency for
overextraction of latent classes (Bauer and Curran, 2003),
reification of groups that do not exist (Raudenbush, 2005),
loss of power because of artificially dividing growth trajecto-
ries into classes and detecting spurious covariate by class
interactions that do not exist (Bauer and Curran, 2003). In
the current study, we observed the LGMM classified (incor-
rectly) a number of individuals as infrequent heavy drinkers
who engaged in frequent heavy drinking at some occasions.
Thus, latent growth mixture modeling could be a very danger-
ous tool if being used to make decisions about whether a par-
ticular treatment is effective in producing good outcomes,
when it is important for ‘‘good drinking outcomes’’ to mean
few episodes of frequent heavy drinking.
LMM, and variants of LMM (e.g., latent transition analy-

sis for categorical indicators, see Witkiewitz, 2008), can be
useful when there are discontinuous changes in drinking
across time. There were many instances where individuals
transitioned from 0 to 100% abstinent between each measure-
ment occasion. Using a continuous LGC or a LGMM (in
which the growth functions are estimated as continuous
within class), we would be unable to capture this discontinu-
ity, whereas LMM provided an excellent representation of the
observed transitions across measurement occasions. Unlike
the LGMM, the LMM provided a more accurate classifica-
tion of individuals who followed an infrequent heavy drinking
pattern and could be very useful for individuals needing a
high degree of specificity in identifying whether individuals

respond well to a particular treatment. It is important to note
that while the current study focused on frequency of heavy
drinking, LMM could also be used to identify patterns of
moderate drinking, drinking-related problems, or other types
of outcomes (e.g., quality of life) Unfortunately, LMM is a
much more idiographic technique, which requires the estima-
tion of large contingency tables. Thus, the estimation of
LMM often requires extensive computational power, particu-
larly when covariates are included in the model.

Similarities and Differences Between Mixture Models in
Prediction of COMBINE Outcomes

Cross-classification tests indicated significant overlap in the
likelihood of individuals being classified as most likely to be
infrequent heavy drinkers and frequent heavy drinkers. The
LGMM classified more individuals as infrequent heavy
drinkers than the latent Markov models, and based on the
observed trajectories seen in Fig. 1A, some of the individuals
classified as infrequent heavy drinkers by the growth mixture
models reported 100% frequent heavy drinking days at some
assessment points.
With respect to the COMBINE treatment outcomes, the

results from the latent growth mixture and Markov models
were entirely consistent with the findings of previous
COMBINE analyses (Anton et al., 2006; Donovan et al.,
2008) in suggesting that individuals who received naltrexone
with or without the CBI and those who received the CBI with
active treatment or placebo were more likely to be classified
as infrequent heavy drinkers who followed an infrequent
drinking pattern. These analyses were based on post hoc clas-
sification of individuals into their most likely latent class or
latent class pattern, and future research could be conducted
to evaluate whether treatment group predicts different likeli-
hood of class membership or most likely class pattern. For
example, recent analyses of the COMBINE data by Gueor-
guieva and colleagues (2010) examined whether treatment
condition predicted likelihood of membership in distinct
drinking trajectories that were derived using latent class
growth analysis. Latent class growth analysis is a special case
of latent growth mixture modeling in which the variances of
the growth trajectories are constrained to zero. Results from
the study indicated that individuals who received naltrexone
had a lower probability of following a ‘‘nearly daily’’ drinking
trajectory and receiving the CBI predicted a lower probability
of following an ‘‘increasing to nearly daily’’ trajectory of any
drinking (Gueorguieva et al., 2010).

Limitations

There are several notable limitations of the current study.
The most important limitation is that all of the models were
wrong and there is unlikely to ever be a ‘‘right’’ model.
Rather, the goal of this study was to determine which
model provided the closest representation of reality. Using
simulated data could have provided more insight into what
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model was most appropriate for the underlying distribution
in the population, but our goal was to generalize the find-
ings from previous mixture model simulation studies (Bauer,
2007; Bauer and Curran, 2003) to the estimation of real
data. One primary problem with all of the models tested in
the current study was the use of arbitrarily selected time-
points for the assessment of drinking outcomes. Significant
within-individual variability could be observed between
these discrete time-points, and it is unclear to what extent
the current results would change if different assessment
points were selected.
Second, the models did not include covariates that might

have influenced drinking patterns over time. For example,
previous work has indicated the importance of alcohol depen-
dence in the prediction of drinking classes (Witkiewitz and
Masyn, 2008) and drinking patterns (Witkiewitz et al., 2007).
Including covariates in growth curve and mixture models pro-
vides an added level of complexity that was beyond the scope
of the current study. In addition, the methodological research
on these methods has provided little guidance on how to
incorporate covariate predictors within growth mixture and
latent Markov models (with the exception of Vermunt et al.,
1999). Finally, we did not examine other potential problems
with mixture models that have been described. Notably, it is
impossible to test the assumption that data were missing at
random. And although we established that missing data did
not influence the study variables, future research should
examine the extent to which nonignorable missing data could
impact the model results.

CONCLUSIONS

The current study sought to examine the differences in
model fit and utility using different modeling specifications
with real data. In particular, our goal was to determine
whether disaggregating the continuous growth curves esti-
mated using a LGC model, by estimating mixtures, provides
any additional information or utility. In our prior work (Wit-
kiewitz, 2008; Witkiewitz and Masyn, 2008; Witkiewitz et al.,
2007), we have argued that mixture models have been useful
to disaggregate the heterogeneity in drinking trajectories fol-
lowing treatment. And, in the words of Bauer (2007), ‘‘there
are some situations in which groups exist, or at least puta-
tively exist, for which mixture analyses may be appropriate
and valuable.’’
Based on the current results, it is suggested that latent

Markov modeling (including latent transition analyses for
categorical data) may be a highly desirable methodology for
gaining a better sense of transitions between positive and
negative drinking outcomes; however, more research on the
use of latent Markov models with alcohol use data is neces-
sary. In general, methodological research examining different
mixture modeling assumptions and problems with the viola-
tions of assumptions has yet to be conducted. Future
research may also benefit from a systematic approach to
examining drinking trajectories. For example, one could

start with a latent Markov model to determine the most
common drinking patterns and then examine whether
certain covariates predict those patterns. Once patterns are
identified, a latent growth model of individuals within each
pattern could be estimated with covariates predicting varia-
tion in intercept and slope among those who follow a partic-
ular drinking pattern.
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