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Cluster Randomized Trials with Treatment Noncompliance

Abstract

Cluster randomized trials (CRT) have been widely used in field experiments

treating a cluster (or group) of individuals as the unit of randomization. This

study focuses particularly on situations where CRT are accompanied by a com-

mon complication in field experiments, namely treatment noncompliance. In

CRT, compliance behavior may be related not only to individual characteris-

tics of study participants, but also to the environment of clusters individuals

belong to. Therefore, analyses ignoring the connection between compliance and

CRT may not provide valid results. Although randomized field experiments often

suffer from both noncompliance and clustering of the data, these features have

been studied as separate rather than concurrent problems. On the basis of Monte

Carlo simulations, this study demonstrates how CRT and noncompliance may

affect statistical inferences and how these two complications can be accounted for

simultaneously. In particular, the effect of randomized intervention on individuals

who abide by the intervention assignment (complier average causal effect: CACE)

will be the focus of the study. For estimation of intervention effects considering

both noncompliance and CRT, an ML-EM estimation method is employed.
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Introduction

Individual-level randomization is not always possible in field experiments for practical

or ethical reasons. Therefore, instead of standard randomized controlled trials, cluster

randomized trials (CRT) have been widely used in practice, treating a cluster (or group)

of individuals as the unit of randomization. For example, in primary care settings, the

randomization unit is often a doctor or a clinic (e.g., Dexter et al., 1998), where a

number of patients belong to each doctor. In school settings, the randomization unit is

often a classroom, where a number of students belong to each teacher (e.g., Ialongo et

al., 1999). In CRT settings, individuals belonging to the same cluster are likely to show

resemblance due to various factors such as common environment (e.g., clinic, classroom)

and common deliverer of intervention treatment (e.g., doctor, teacher). If resemblance

in outcomes among individuals in each cluster is ignored in analyzing outcomes in CRT,

standard errors are usually underestimated, which results in inflation of a type I error.

That is, one may overestimate the significance of treatment effects, or falsely conclude

that treatment effects are significant when they are not. Previous studies have shown

how design and analysis strategies need to be adjusted for efficient and fair evaluation

of treatment effects in CRTs (e.g., Donner & Klar, 1996; Murray, 1998; Raudenbush,

1997). Multilevel analysis techniques developed in various statistical frameworks (e.g.,

Aitkin & Longford, 1986; Goldstein, 1986; Longford, 1993; McCulloch, 1997; Muthén &

Satorra, 1995; Raudenbush & Bryk, 2002; Raudenbush, Yang, & Yosef, 2000; Stiratelli,

Laird, & Ware, 1984; Wong & Mason, 1985; Zeger & Karim, 1991) provide relevant

tools for analyzing data accounting for nested data structures.

Another common complication in randomized studies is treatment noncompliance.

Unlike in laboratory experiments or on-site randomized studies, compliance behavior is

often hard to control in larger scale field experiments with intensive treatment regimes.
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Study participants’ compliance behavior can be associated with various factors such as

background characteristics and motivation. For example, people who are highly moti-

vated or have a special interest in the treatment will be more likely to comply with the

treatment. In estimating intervention effects in this situation, intention to treat (ITT)

analysis has been considered a gold standard, where randomized groups are compared

regardless of compliance status. As secondary analyses to complement ITT analysis

results, as-treated or per protocol analyses have been widely used, if the effect of treat-

ments when actually received is of interest. However, these secondary analysis methods

may yield seriously biased estimates of treatment effects. Given the questionable va-

lidity of these analyses, statistical methods such as CACE (complier average causal

effect) estimation have been developed to better estimate treatment efficacy taking into

account noncompliance (e.g., Angrist, Imbens & Rubin, 1996; Bloom, 1984; Frangakis

& Rubin, 1999; Goetghebeur & Molenberghs, 1996; Hirano, Imbens, Rubin, & Zhou,

2000; Imbens & Rubin, 1997; Jo, 2002a; Little & Yau, 1998).

Further statistical challenges arise when CRTs are accompanied by noncompliance.

What is interesting with compliance behavior in the CRT setting is that it may be

influenced not only by individual characteristics, but also by characteristics of the clus-

ter an individual belongs to. For example, in the Johns Hopkins University Preventive

Intervention Research Center’s (JHU PIRC) school intervention trial (Ialongo et al.,

1999), which was used as a prototype for the Monte Carlo simulations reported in this

study, the unit of randomization was a classroom. In particular, in the Family-School

Partnership (FSP) intervention, poor compliance of parents was one of the major com-

plications. Further, parents’ compliance with the intervention activities substantially

varied depending on the classroom their children belonged to. When compliance is de-

fined as completion of at least two thirds of intervention activities, average compliance
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rate in each classroom ranged from 5% to 100%. One possible explanation for this phe-

nomenon would be that some teachers communicated better with parents and/or were

more eager to encourage parents. Another possibility is that children in some classrooms

were more ready and willing to collaborate with their parents due to their teachers’ char-

acteristics and/or due to other classroom environment (e.g., proportion of aggressive

children). Resemblance in compliance behavior in the same cluster unit is a unique,

but common, problem that did not receive proper attention until Frangakis, Rubin, and

Zhou (2002) demonstrated the possibility of estimating intervention effect accounting

for both noncompliance and clustering within a Bayesian analysis framework. However,

there is still little recognition among researchers that these two complications are often

closely related, creating unique problems that cannot be handled without concurrent

consideration of clustering and noncompliance.

This study intends to promote an understanding of CRT and noncompliance as

simultaneous complications and to facilitate joint analyses that consider both problems.

In particular, the effect of intervention treatments on individuals who would abide by the

intervention assignment (CACE) will be the focus. The difference from the previous

study (Frangakis et al., 2002) is that the current study puts its main emphasis on

understanding the mechanisms in which simultaneous complications affect the quality

of causal effect estimates and how serious the impact is, and in which conditions the

impact is greater. Further, this study employs a maximum likelihood estimation method

(built in Mplus version 4 and higher; Muthén & Muthén, 1998-2006), which is more

accessible to many applied researchers. Not covered by this study is ITT analysis with

these complications. A failure to consider both complications has different consequences

in ITT analysis, which is dealt with in another manuscript in preparation (Jo, 2006).

This paper is presented in the following order. First, the CACE estimation method is
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briefly reviewed. Second, analytical complications from the simultaneous presence of

noncompliance and CRT are defined by extending the conventional notion of intraclass

correlation. Third, various consequences of these complications are demonstrated using

Monte Carlo simulation studies. Fourth, a joint modeling of CRT and compliance

within a multilevel mixture analysis framework is presented. Finally, implications and

limitations of the study are discussed.

Complier Average Causal Effect (CACE)

In randomized field experiments, it is not rare to have a situation where a substantial

number of study participants fail to receive the assigned treatment. In this case, if the

effect of treatment when actually received (i.e., efficacy) is of interest, both as-treated

analysis, which considers treatment receipt but ignores treatment assignment status,

and per-protocol analysis, which excludes individuals who failed to receive the treat-

ment, have been commonly applied as ways of adjusting for noncompliance. However,

the results of these analyses are not only hard to interpret as causal effects, but also

subject to substantial bias (Robins & Greenland, 1994; Sheiner & Rubin, 1995). This

study employs the CACE estimation method, which is considered a better alternative

to as-treated or per-protocol analysis. The key advantage of the CACE estimation

method is that causal effect is defined on the basis of individuals’ potential outcomes

under every treatment assignment status (Angrist et al., 1996; Frangakis & Rubin,

2002). Given that, causal interpretation is possible with clarified assumptions, and

sensitivity analysis is feasible if these assumptions are likely to be violated.

Assuming binary treatment assignment (treatment or control) and binary treatment

receipt (receive or not) status, Angrist et al. (1996) defined four potential compliance
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types. Compliers are individuals who receive treatment only if they are assigned to

the treatment condition. Never-takers are individuals who do not receive the treatment

even if they are assigned to the treatment condition. Defiers are individuals who do

the opposite of what they are assigned to do. Always-takers are the individuals who

always receive the treatment no matter which condition they are assigned to. Among

these four potential types of individuals, emphasis is often given to compliers and the

rest are considered noncompliers. The current study considers the two most common

types, compliers and never-takers, which is the case when individuals assigned to the

control condition do not have access to the treatment (e.g., JHU PIRC trial: Ialongo et

al., 1999). Since there is only one type of noncomplier (i.e., never-takers), noncomplier

will be used in this paper to refer to never-taker.

If compliance status is observed both in the treatment and control conditions, the

causal effect of treatment can be estimated for any potential types of individuals defined

by Angrist et al. (1996). However, in practice, compliance status is not observed com-

pletely (and is often unobserved among individuals assigned to the control condition),

which complicates the estimation of causal effects given compliance types. In identifying

causal effects of treatment assignment for compliers, having no defiers (the assumption

of monotonicity: Imbens & Angrist, 1994) is crucial, whereas having noncompliers or

always-takers is not. Along with the assumption of monotonicity, the assumption of the

exclusion restriction (Angrist et al., 1996; Hirano et al., 2000; Imbens & Rubin, 1997;

Jo, 2002a, b) plays a critical role in identifying CACE. Under this assumption, the effect

of treatment assignment is allowed for compliers, but disallowed for always-takers and

never-takers. For general discussion on underlying assumptions of CACE estimation,

see, for example, Angrist et al. (1996), Jo (2002c), Little and Yau (1998), and West

and Sagarin (2000).
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Assuming only two compliance types (compliers and noncompliers) and the ex-

clusion restriction, a continuous outcome Y for individual i (i = 1, 2, 3,..., n) can be

expressed as

Yi = αn ni + αc ci + γc ci Zi + εni ni + εci ci, (1)

where ci = 0 and ni = 1 if individual i is a noncomplier, and ci = 1 and ni = 0 if

individual i is a complier. The treatment assignment status Zi = 0 if assigned to the

control condition and Zi = 1 if assigned to the treatment condition. The mean potential

outcome when Z = 0 is αn for noncompliers, and αc for compliers. The average effect of

treatment assignment for compliers is γc (CACE). A normally distributed residual for

noncompliers is εni, which has zero mean and the variance σ2
n. A normally distributed

residual for compliers is εci, which has zero mean and the variance σ2
c .

In the absence of covariates that predict compliance, the proportions of compliers

and noncompliers can be expressed in the empty logistic regression as

P (ci = 1) = πci,

P (ci = 0) = 1 − πci,

logit(πci) = β0, (2)

where πci is the probability of being a complier for individual i, and β0 is the logit

intercept.

Based on Equations 1 and 2, three directly estimable population means can be

expressed in terms of model parameters as

µ1n = αn, (3)

µ1c = αc + γc, (4)

µ0 = (1 − πc)αn + πc αc, (5)
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where πc is the mean proportion of compliers in the population, which is directly es-

timable (i.e., there is a corresponding sample statistic) from the observed data assuming

random assignment of treatments. The population mean potential outcome when Z = 1

is µ1n for noncompliers and µ1c for compliers. Both µ1n and µ1c are directly estimable

from the observed data. The population mean potential outcome when Z = 0 is µ0n

(i.e., αn) for noncompliers and µ0c (i.e., αc) for compliers. Under the assumption of the

exclusion restriction, the effect of treatment assignment is disallowed for never-takers.

Therefore, αn is directly identified as µ1n as shown in Equation 3.

Then, from Equations 3 and 5, αc can be identified as

αc =
µ0 − πn µ1n

πc
. (6)

From Equations 4 and 6, γc (CACE) can be identified as

γc = µ1c −
µ0 − πn µ1n

πc
=

µ1 − µ0

πc
. (7)

Under the condition that treatment assignment is random and that potential out-

comes for each person are unrelated to the treatment status of other individuals (Stable

Unit Treatment Value: Rubin, 1978, 1980, 1990), a large-sample based estimator of

CACE is then formulated as

γc = ȳ1c −
ȳ0 − pn ȳ1n

pc
=

ȳ1 − ȳ0

pc
, (8)

where ȳ1c is the sample mean outcome of the treatment group compliers, ȳ1n is the

sample mean outcome of the treatment group never-takers, ȳ1 is the sample mean

outcome of the treatment group, ȳ0 is the sample mean outcome of the control group,

and pc is the proportion of compliers in the treatment condition.
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CACE in the CRT Setting

Let us assume a CRT where some study participants do not comply with the given

treatment. Individual i (i = 1, 2, 3,..., mj) now belongs to cluster j (j = 1, 2, 3,..., G).

The expression in Equation 1 is modified as

Yij = αn nij + αc cij + γc cij Zj + εnbj nij + εnwij nij + εcbj cij + εcwij cij, (9)

where Zj denotes the cluster-level randomization status. The macro-unit residuals εnbj

(noncompliers) and εcbj (compliers) represent cluster-specific effects given Z, and are

assumed to be normally distributed with zero mean and the between-cluster variances

σ2
nb (noncompliers) and σ2

cb (compliers). The micro-unit residuals εnwij (noncompliers)

and εcwij (compliers) are assumed to be normally distributed with zero mean and the

within-cluster variance σ2
nw (noncompliers) and σ2

cw (compliers), which are equal across

clusters. The total residual variance is the sum of the between- and within-cluster

variances.

The logistic regression in Equation 2 is modified as

P (cij = 1) = πcij,

P (cij = 0) = 1 − πcij,

logit(πcij) = β0 + εcj . (10)

where the between-cluster residual εcj has zero mean and a variance of ζ2
b . The logit

value varies across clusters (β0 + εcj), meaning that the proportion of compliers differs

across clusters.
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Defining Complications in CRT with Noncompliance

In cluster randomized trials, inflation of variance is usually expected due to similarity

among individuals in the same cluster. If data are appropriately analyzed considering

inflation of variance, the resulting statistical power is usually lower than that in trials

with individual-level randomization. If data are analyzed ignoring inflation of variance,

the resulting type I error rate will be incorrectly inflated. Intraclass correlation (ICC)

has been commonly used to gauge possible inflation of variance in CRTs.

Conventionally, ICC represents the level of resemblance among individuals belong-

ing to the same cluster in terms of outcomes. However, ICC defined in this way may

not well represent resemblance among individuals in CRTs accompanied by noncompli-

ance. That is, individuals in the same cluster are likely to show resemblance not only in

terms of outcomes, but also in terms of compliance. Further, the level of resemblance

in outcomes may vary across different compliance types. In this case, the conventional

ICC may not be informative in evaluating the impact of clustering on type I error rates.

Given that, the definition of ICC is extended in this study to properly reflect situations

where both clustering and noncompliance are present.

Outcome Intraclass Correlation

In the presence of noncompliance, outcome ICC can differ across compliance types. For

example, in the FSP intervention condition in the JHU PIRC trial, when compliance is

defined as completion of at least two thirds of intervention activities, the ICC estimate

among noncompliers was much higher (0.25) than that of compliers (0.05) in terms of the

shy behavior outcome at Grade 2. In other words, children’s shy behavior outcome was

more sensitive to teacher or classroom environment when parents complied poorly with
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the intervention activities, which may be interpreted as an indicator of low level parental

involvement in general. The overall ICC (0.13) does not reflect this heterogeneity in

resemblance across compliers and noncompliers.

From Equation 9, the intraclass correlation coefficient in outcome Y for noncom-

pliers given Z is

ICCY n =
σ2

nb

σ2
nb + σ2

nw

, (11)

where σ2
nb denotes the between-cluster variance and σ2

nw denotes the within-cluster vari-

ance for noncompliers given Z. The total variance is the sum of the between- and

within-cluster variances (σ2
n = σ2

nb + σ2
nw).

The intraclass correlation coefficient in outcome Y for compliers given Z is

ICCY c =
σ2

cb

σ2
cb + σ2

cw

, (12)

where σ2
cb denotes the between-cluster variance and σ2

cw denotes the within-cluster vari-

ance for compliers given Z. The total variance is the sum of the between- and within-

cluster variances (σ2
c = σ2

cb + σ2
cw).

Compliance Intraclass Correlation

In CRTs, not only outcomes, but also compliance can be similar among individuals in

the same cluster. Consequently, the compliance rate may vary across different clusters.

There are several ways to present heterogeneity across clusters in proportions (Agresti,

1990; Commenges & Jacqmin, 1994; Haldane, 1940; McCullagh & Nelder, 1989; Snijder

& Bosker, 1999). In line with McKelvey and Zavoina (1975), the intraclass correlation

coefficient in compliance can be defined from Equation 10 as

ICCC =
ζ2
b

ζ2
b + π2/3 ,

(13)
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where ζ2
b is the between-cluster variance and π2/3 is the variance for the within-cluster

residual in the logistic distribution. ICCC represents the degree of resemblance in

compliance among individuals belonging to the same cluster. For example, in the

FSP intervention condition in the JHU PIRC trial, the ICCC estimate is 0.37, which

reflects a substantial variation in the average compliance rate across classrooms (average

compliance rate ranged from 5% to 100%).

Consequences of Simultaneous Complications

Intraclass correlations shown in Equations 11, 12, and 13 raise some new questions that

used to be irrelevant in the CRT setting until we started considering noncompliance,

such as 1) whether ICCC alone has any impact on variance misestimation (inflation

of the type I error rate), 2) whether different combinations of ICCY n and ICCY c dif-

ferently influence variance misestimation, and 3) whether the impact of ICCY n and

ICCY c varies depending on the level of ICCC. These speculations, if they turn out to

be true, will provide compelling reasons for the simultaneous consideration of CRT and

noncompliance in the analysis. This section explores various settings to examine which

of these interactions between noncompliance and CRT have actual impact on variance

misestimation, and in what conditions the impacts are more substantial. Monte Carlo

simulations are employed for this purpose, since it is not straightforward to analytically

derive possible inflation of the type I error rate, given missing compliance information

and mixture distributions of different compliance types.
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Data Generation

The Monte Carlo simulation results presented in this study are based on 500 replications.

The size of each cluster (m) is either 20 or 40, and the total number of clusters (G) is

100 (50 in the control and 50 in the treatment condition). Although simulation settings

are mostly based on the JHU PIRC FSP school intervention trial, a larger number of

clusters (100 in this study compared to 18 in the JHU Study) is employed to avoid

another source of variance misestimation and to focus on variance misestimation only

due to intraclass correlations. The true ratio of the treatment and control groups is

50%:50% and the true compliance rate is 50% in all simulation settings.

Outcome ICC values are decided on the basis of the JHU Study (ICCY n = 0.25

and ICCY c = 0.05 for the shy behavior outcome at Grade 2). To examine the impact

of different outcome ICC compositions, four different combinations of outcome ICC

values are considered. They are 1) when neither noncompliers nor compliers have any

outcome ICC (ICCY n = 0.0 and ICCY c = 0.0), 2) when only noncompliers have a

substantial outcome ICC (ICCY n = 0.2 and ICCY c = 0.0), 3) when only compliers have

a substantial outcome ICC (ICCY n = 0.0 and ICCY c = 0.2), and 4) when noncompliers

and compliers have the same moderate level of ICC (ICCY n = 0.1 and ICCY c = 0.1).

The first setting (ICCY n = ICCY c = 0.0) is considered to examine whether there is a

pure impact of ICCC in the absence of outcome ICC.

The true compliance ICC value ranges from 0.0 to 1.0 (In the JHU Study, ICCC

was about 0.37 in the intervention condition). The zero ICCC indicates that compliance

behavior is independent of the clusters individuals belong to. This setting is considered

to examine whether different compositions of ICCY n and ICCY c have different impact

on variance inflation and the subsequent variance misestimation in the absence of ICCC.

The perfect ICCC (i.e., 1.0) is the other extreme situation, where every individual in
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the same cluster shows the same compliance behavior. This could be a possible scenario

depending on how compliance is decided and how intervention treatments are delivered.

For example, if a teacher or a doctor, who represents the unit of randomization, delivers

the intervention and if study participants do not have much room for independent

decision on compliance, it is likely that compliance is decided at the cluster level.

Another key component of the simulation settings is the distributional distance

between compliers and noncompliers. Given missing compliance information, precision

of the CACE estimate depends on how well the mixtures of distributions are separated.

Therefore, the distance between the two groups normally improves the estimation qual-

ity (i.e., the farther apart the distributions, the better the precision; Jo, 2002c). In the

CRT setting, however, having a farther distance does not necessarily have a positive

impact on variance estimation. To represent the distance between the two distributions,

three conditions are considered. Given Z, noncompliers and compliers are 1) 0.0 SD

(standard deviation) apart, 2) 0.5 SD apart, or 3) 1.0 SD apart. In the JHU Study,

noncompliers and compliers were approximately 1.0 SD apart in the FSP intervention

condition.

Data were generated according to Equations 9 to 10. Specifically, the true within-

cluster variances σ2
nw and σ2

cw take values of 1.0, 0.9, and 0.8. The true between-cluster

variances σ2
nb and σ2

cb take values of 0.0, 0.1, and 0.2 to reflect ICCY n and ICCY c of

0.0, 0.1 and 0.2 given the total variance of 1.0. The true control condition noncomplier

mean αn is 1.0, and the true control condition complier mean αc takes values of 1.0, 1.5,

and 2.0 to reflect the distance between noncompliers and compliers (0.0, 0.5, and 1.0

SD apart). The true treatment assignment effect for compliers γc (i.e., CACE) is 0.6

(effect size of 0.6 on the basis of the total variance), and the true treatment assignment

effect for noncompliers is zero (i.e., exclusion restriction holds). The true logit intercept
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β0 is zero (i.e., 50% compliance) and the true between-cluster compliance variance ζ2
b

takes values of 0.00, 0.82, 2.19, 13.15, and 10000 on the logit scale to reflect ICCC of

0.0, 0.2, 0.4, 0.8 and 1.0 according to Equation 13.

CACE Estimation without Considering CRT

Data were analyzed on the basis of Equations 1 and 2, which represent the standard

CACE model without considering the fact that randomization was done at the cluster

level. As in the data generation step, the exclusion restriction is assumed.

The current study employs a maximum likelihood estimation approach. Given

that compliance type cannot be observed in the control condition, the observed-data

likelihood function based on treatment assignment (Z = 1: treatment condition, Z = 0:

control condition) and observed treatment receipt status (D = 1: received, D = 0: not

received) is

L(θ | data) ∝
∏

i⊂{Zi=1,Di=0}
(1 − πc) f(yi | µ1n, σ2

n) ×
∏

i⊂{Zi=1,Di=1}
πc f(yi | µ1c, σ

2
c )

×
∏

i⊂{Zi=0,Di=0}
[(1− πc) f(yi | µ0n, σ2

n) + πc f(yi | µ0c, σ
2
c )], (14)

where θ = (πn, πc, µ1n, µ1c, µ0n, µ0c, σ
2
n, σ2

c ) is the set of parameters in the model, and

f(yi | µ, σ2) denotes the probability density of a normal distribution with mean µ and

variance σ2, and πc denotes the proportion of compliers in the population.

By maximizing the likelihood in Equation 14 with respect to the parameters of

interest θ, ML estimates are obtained. The unknown compliance status in the control

condition is handled as missing data via the EM algorithm (Dempster, Laird, & Rubin,

1977; Little & Rubin, 1987; McLachlan & Krishnan, 1997; Tanner, 1996). The E step

computes the expected values of the complete-data sufficient statistics given data y and

current parameter estimates θ. The M step computes the complete-data ML estimates



CRT with Noncompliance 17

with complete-data sufficient statistics replaced by their estimates from the E step.

This procedure continues until it reaches optimal status. Parametric standard errors

are computed from the information matrix of the ML estimator using both the first- and

the second-order derivatives under the assumption of normally distributed outcomes. In

the current study, ML-EM estimation of CACE was carried out by the Mplus program

version 4.1 (Muthén & Muthén, 1998-2006).

Impact of Compliance Intraclass Correlations

In CRTs, individuals in the same cluster may resemble each other not only in terms

of outcomes, but also in terms of compliance behavior. In particular, the Monte Carlo

simulation results presented in this section is based on a hypothetical setting, where

individuals in the same cluster are similar in terms of compliance behavior, but not in

terms of outcomes. Though quite unrealistic, this setting is important to consider to

examine whether ICCC alone has any impact on variance misestimation in the absence

of outcome intraclass correlations, which is an intriguing question that has not been

explicitly considered in CRT data analysis practice.

[Figure 1]

Panel (a) in Figure 1 shows how the coverage of the CACE estimate decreases

as ICCC increases. In the simulations for (a), the cluster size is 20. The nominal

95% confidence interval coverage rate is 0.95 (or nominal type I error rate is 0.05). A

coverage rate below 0.95 indicates that standard error estimates do not appropriately

reflect variance inflation due to clustering of compliance behavior. In other words,

the level of significance of the treatment effect is overstated. When compliers and

noncompliers have homogeneous distributions (0.0 SD apart), the coverage rate stays



CRT with Noncompliance 18

close to the nominal level irrespective of the change in ICCC . When compliers and

noncompliers are 0.5 SD apart, the coverage rate begins to be affected especially by

high ICCC such as 0.8 and 1.0. When compliers and noncompliers are 1.0 SD apart,

the coverage rate decreases substantially with moderate to high ICCC .

The simulation results shown in Panel (b) in Figure 1 are based on the same settings

as those of (a), except that the cluster size is 40 instead of 20. It is well known that

the cluster size affects the magnitude of variance inflation due to outcome intraclass

correlation (Donner, Birkett, & Buck, 1981; Kish, 1965). Panel (b) shows that the

same rule applies to compliance intraclass correlation. As the cluster size increases

from 20 to 40, the impact of ICCC becomes more prominent, resulting in substantial

deterioration of the coverage rate even with low levels of ICCC . As in (a), the coverage

rate stays close to the nominal level irrespective of the change in ICCC when compliers

and noncompliers have homegenous distributions.

The interesting phenomenon shown in Figure 1 can be explained by variance infla-

tion in compliance, which consequently leads to variance inflation in parameters that

involve outcome and compliance. However, as compliers and noncompliers have more

homogeneous outcome distributions, variance inflation in compliance has less impact on

variance inflation in those parameters. For example, in Equation 9, compliance status

can be thought of as a between-cluster covariate (not fully observed) if ICCC = 1.0. In

this case, if compliers and noncompliers are homogeneous given Z (i.e., αn − αc = 0),

variance inflation in compliance does not influence the between-cluster variance of the

outcome. However, as αn and αc have some distance between them, the between-cluster

compliance status actually produces between-cluster variance in the outcome. In analy-

ses ignoring CRT, this variance inflation cannot be taken into account and consequently

causes variance misestimation of key parameters such as CACE.
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Impact of Outcome Intraclass Correlations

The Monte Carlo simulation results in this section are presented to show whether dif-

ferent combinations of ICCY n and ICCY c differently influence variance misestimation,

and whether the impact of ICCY n and ICCY c varies depending on the level of ICCC.

As in Figure 1, the distance between compliers and noncompliers is included as one of

the key factors that influence variance inflation. In Figures 2 and 3, the first outcome

ICC pattern (i.e., ICCY n = ICCY c = 0) is included as a reference setting, where only

the impact of ICCC can be observed as in Figure 1. The other three patterns repre-

sent the overall outcome ICC of 0.1, and therefore should have the same influence on

variance misestimation unless heterogeneity in the outcome ICC across compliers and

noncompliers plays a role. The evidence of interaction between ICCC and ICCY can be

found when the impact of ICCY changes as ICCC changes.

Panel (a) in Figure 2 shows how the coverage of the CACE estimate changes depend-

ing on ICCY n, ICCY c, and ICCC when compliers and noncompliers have homogeneous

distributions. The pure impact of the outcome ICC can be observed when ICCC = 0.

It is shown that different patterns of ICCY have a similar impact on variance infla-

tion, and the impact of ICCY on variance misestimation increases as ICCC increases,

although the change is not dramatic. As compliers and noncompliers are farther apart

from each other as shown in (b) and (c), the coverage rate, in general, decreases faster

as ICCC increases. It is also shown that different patterns of ICCY show different cov-

erage rates (i.e., have different impact on variance misestimation). It becomes clear in

(c) that ICCY has the greatest impact on variance inflation when ICCY is concentrated

among compliers (i.e., ICCY n = 0.0, ICCY c = 0.2) and the smallest impact when it is

concentrated among noncompliers (i.e., ICCY n = 0.2, ICCY c = 0.0), though the overall

ICC is the same.
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[Figure 2]

The simulation results shown in Figure 3 are based on the same settings as those

of Figure 2, except that the cluster size is 40 instead of 20. Figures 2 and 3 show

similar trends, though the coverage rate change has, in general, steeper slopes across

varying levels of ICCC when the cluster size is larger. It is also shown that the pattern

of ICCY matters more as the cluster size increases. That is, as the cluster size increases

and compliers and noncompliers are farther apart from each other, ICCY has a much

greater impact on variance inflation when ICCY is concentrated among compliers (i.e.,

ICCY n = 0.0, ICCY c = 0.2) than when it is concentrated among noncompliers (i.e.,

ICCY n = 0.2, ICCY c = 0.0) or evenly distributed across noncompliers and compliers

(i.e., ICCY n = 0.1, ICCY c = 0.1). The results imply that the coverage rate may

detriorate at an alarming rate in CRTs that employ large cluster sizes (e.g., 100 per

cluster) even when compliers and noncompliers have moderate distributional differences.

[Figure 3]

The results reported in Figures 1, 2, and 3 are subject to change if the exclusion

restriction assumption does not hold. However, including violation of the exclusion

restriction as an additional factor results in high dimensional interactions among com-

pliance ICC, outcome ICC, and the exclusion restriction. In other words, it is unlikely

that consistent conclusions can be reached about the simultaneous impact of these three

factors. Besides, violation of the exclusion restriction influences not only the standard

error, but also point estimates of the CACE, further complicating the evaluation of the

varaince estimation quality. One accessible way of checking sensitivity to violation of the

exclusion restriction assumption is to use pretreatment covariates that are predictors of

compliance (Jo, 2002a, 2002b). However, this method is not recommended for analyses
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of CRT data ignoring clustering, because both within- and between-cluster covariates

lose predicting power as ICCC increases. For example, if ICCC = 1.0, within-cluster

covariates, which have only within-cluster variances, cannot predict compliance (i.e.,

logit coefficients are zero), which is a cluster-level variable. Between-cluster covariates

cannot predict compliance either because any kind of between-cluster variance cannot

be taken into account in the analysis ignoring clustering. However, in the analyses

simultaneously considering CRT and noncompliance, both within- and between-cluster

covariates can be properly handled as predictors of compliance, alleviating the potential

impact of the exclusion restriction violation.

Simultaneous Consideration of Clustering and

Noncompliance

Simulation studies shown in the previous section emphasized the unique portion of

variance inflation when CRTs are accompanied by noncompliance. To appropriately

reflect this inflation, CRT and noncompliance need to be considered simultaneously in

the analysis. On the basis of Monte Carlo simulations, this section demonstrates the

joint analysis that considers both complications. Pretreatment covariates are added to

data generation and analysis models employed in the previous section. As clustering of

data is considered, between- and within-cluster covariates can be properly handled in the

joint analysis given compliance and outcome ICCs. For example, in the JHU PIRC Trial,

teacher characteristics or classroom environment (e.g., average level of aggression) can

be treated as between-cluster or contextual-level variables, whereas students’ baseline

behavioral measures can be treated as within-cluster or individual-level variables.
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Data Generation

In the presence of covariates, the expression in Equation 3 is modified as

Yij = αn nij + αc cij + γn nij Zj + γc cij Zj +

λ′
nb nij xbj + λ′

nw nij xwij + λ′
cb cij xbj + λ′

cw cij xwij +

εnbj nij + εnwij nij + εcbj cij + εcwij cij, (15)

where xbj is a vector of between-cluster covariates and xwij is a vector of within-cluster

covariates. The vectors of logit coefficients λnb and λnw represent between- and within-

cluster covariate effects on Y for noncompliers. The vectors of logit coefficients λcb and

λcw represent between- and within-cluster covariate effects on Y for compliers. It is

assumed that the effect of treatment assignment does not vary across different values

of covariates (additivity: Jo, 2002a), and the main effect of treatment assignment for

noncompliers γn (NACE: noncomplier average causal effect) is allowed. In other words,

the exclusion restriction is not imposed.

In the presence of pre-treatment covariates, the probability that individual i in

cluster j will comply (πcij) varies depending on the influence of covariates. The logistic

regression in Equation 4 is modified as

P (cij = 1 | xbj,xwij) = πcij,

P (cij = 0 | xbj,xwij) = 1 − πcij,

logit(πcij) = β0 + β′
1b xbj + β′

1w xwij + εcj , (16)

where the vector of logit coefficients β1b indicates the level of association between com-

pliance and between-cluster covariates, and the vector of logit coefficients β1w indicates

the level of association between compliance and within-cluster covariates. Nonzero

variance of εcj (i.e., ζ2
b ) means that the proportion of compliers differs across clusters

conditional on these covariates.
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The Monte Carlo simulation results presented in this section are based on 500

replications. The size of each cluster (m) is 40, and the total number of clusters (G)

is 100. Data were generated on the basis of Equations 15 and 16. The true within-

cluster residual variances σ2
nw and σ2

cw are 0.9 and 0.8 respectively. The between-cluster

residual variances σ2
nb and σ2

cb are 0.1 and 0.2, reflecting ICCY n of 0.1 and ICCY c of 0.2

given the total residual variance of 1.0. The control condition noncomplier mean αn is

1.0, and the control condition complier mean αc is 2.0. The treatment assignment effect

for noncompliers γn (i.e., NACE: noncomplier average causal effect) is −0.2, and the

treatment assignment effect for compliers γc (i.e., CACE) is 0.6. One covariate (X1)

with zero mean and within-cluster variance of 1.0 was generated to represent within-

cluster covariates. Another covariate (X2) with zero mean and between-cluster variance

of 1.0 was generated to represent between-cluster covariates. For these covariates, the

within-cluster regression coefficients are −0.1 for noncompliers (λnw X1) and −0.2 for

compliers (λcw X1). The between-cluster regression coefficients are 0.1 for noncompliers

(λnb X2) and 0.2 for compliers (λcb X2). The logit intercept β0 is zero (50% compliance)

and the between-cluster compliance residual variance ζ2
b is 2.191 on the logit scale to

reflect ICCC of 0.4 conditioning on covariates. Both within- and between-cluster logit

coefficients (β1w X1
and β1b X2

) are 0.7 (odds ratio of approximately 2.0).

CACE Estimation without Considering CRT

First, data were analyzed ignoring CRT as in the previous section. That is, the model

used for data analysis can be described as

Yi = αn ni + αc ci + γn ni Zi + γc ci Zi + λ′
n ni xi + λ′

c ci xi + εni ni + εci ci, (17)

logit(πci) = β0 + β′
1 xi, (18)
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where cluster-level parameters and variances are completely removed from the data

generation model described in Equations 15 and 16. The vector of covariates xi consists

of the within- (X1) and the between-cluster (X1) covariates and both of them are

treated as individual-level variables in the analysis. As in the data generation model,

the exclusion restriction is relaxed (i.e., γn is freely estimated), relying on the additivity

assumption and covariates that are good predictors of compliance. True values for

noncomplier and complier residual variances (σ2
n and σ2

c ) are set at 1.0 in Table 1 by

combining between- and within-cluster residual variances. For other parameters, true

values in the data generation model were used, though between- and within-cluster

paremters are not distinguished in the analysis (Mplus input and output available at:

URL to be provided).

Table 1 shows the results from the analysis using the CACE model ignoring CRT.

As in the CACE estimation presented in the previous section, an ML-EM estimation

method is used. It is demonstrated that the average standard error (SE) estimates

do not capture variance inflation of many parameters. In particular, the average SE

estimate of CACE is about half of the standard deviation of CACE estimates from

500 replications (i.e., empirical SD), indicating poor estimation of the variance of the

CACE estimate. As a result, the 95% confidence interval coverage rate of CACE is

only 0.662. In other words, the type I error rate is 0.338, which is more than six

times the nominal rate. Low coverage rates are also evident among other cluster-level

parameters. In the logistic regression of compliance on covariates, bias is observed not

only in SE estimates, but also in point estimates. Logit coefficient estimates for both

the within- and the between-level covariate (β1X1
and β1X2

) are noticeably biased by

ignoring compliance ICCC . In this example, covariates still have reasonable predicting

power to support the identification of γn (NACE). The results, however, imply that
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relying on covariate information to relax the exclusion restriction can be risky in CRTs

with potentially high ICCC.

[Table 1]

CACE Estimation Considering CRT

Simulation results presented in Table 2 are based on the analysis using the same model

used for data generation, described in Equations 15 and 16. To estimate this model, we

employed a formal multilevel mixture analysis (Asparouhov & Muthén, 2006; Muthén,

2004). For ML-EM estimation of CACE in this framework, the Mplus program (Muthén

& Muthén, 1998-2006) version 4.1 was used (Mplus input and output available at: URL

to be provided). Estimation details are given in the Appendix.

Table 2 shows the results from the CACE analysis considering both clustering and

noncompliance. Within-cluster residual variances (σ2
nw, σ2

cw) are now separated from the

between-cluster variances, allowing for a better comparison between compliance types.

In the logistic regression of compliance, the within-cluster covariate logit coefficient

(β1w X1
) estimate is close to the true value with a reasonable coverage rate. It is also

shown from the logit intercept (β0) estimation that compliance type is estimated prop-

erly taking into account ICCC. Fixed effect between-cluster parameters show reasonable

coverage rates. In particular, the coverage rate of the CACE is 0.952 (compared to 0.662

in the anlysis ignoring CRT). Noncomplier and complier intercepts (αn, αc) also show

good point estimates and coverage rates. In the logistic regression of compliance, the

average between-cluster covariate logit coefficient (β1b X2
) estimate is close to the true

value with a reasonable coverage rate. Given correctly estimated covariate effects on

compliance (β1w X1
, β1b X2

), average treatment assignment effects for compliers (CACE)

and for noncompliers (NACE) are more likely to be successfully separated in the analysis
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considering CRT than in the analysis ignoring CRT. Between-cluster residual variances

(σ2
nb, σ2

cb) are separated from the within-cluster residual variances, revealing the fact

that between-cluster variance is more concentrated among compliers given covariates

and treatment assignmnet. However, these random effect between-cluster parameters

show somewhat low coverage rates. The results imply that, unless large numbers of

clusters are available, the level of significance of between-cluster random effects should

be interpreted with caution. We expect that the quality of standard error estimates

will improve as the number of clusters increases (the number of clusters is currently 50

per compliance type). And finally, in the logistic regression of compliance, between-

cluster variation of compliance is captured by the between-cluster residual variance (ζ2
b ),

indicating a sizable ICCC given covariates.

[Table 2]

Conclusions

This study demonstrated the impact of intraclass correlations on variance inflation

in the estimation of CACE in diverse CRT settings. The Monte Carlo simulation

results showed various types of variance inflation that are unique to CRTs accompanied

by treatment noncompliance. First, it was demonstrated that compliance intraclass

correlation (ICCC) itself can cause serious variance inflation in trials where cluster

memebership is likely to influence individuals’ compliance behavior. Second, given

the same overall outcome intraclass correlation, the impact of clustering may differ

substantially depending on how the intraclass correlation is spread across compliance

types. Further, the impact of outcome intraclass correlations (ICCY n, ICCY c) may

vary depending on the level of ICCC . Whether compliers and noncompliers are similar
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or different in the control condition turned out to be an important factor that affects

variance inflation. The higher the level of heterogeneity across complier and noncomplier

distributions, the larger the impact of compliance and outcome intraclass correlations

on variance inflation. The Monte Carlo simulation results indicate that the conventional

intraclass correlation, which is limited to outcome with no distinction between compliers

and noncompliers, may not be a sufficient indicator of how serious variance inflation is

in CRTs with noncompliance.

A formal multilevel analysis combined with the mixture analysis was suggested as

a way of dealing with both data clustering and noncompliance. On the basis of the

formal multilevel analysis approach, between- and within-cluster-level parameters can

be explicitly specified and estimated. On the basis of the the mixture model approach,

compliance-class-specific parameters, such as CACE, can be estimated, considering mix-

ture distributions of compliers and noncompliers. The interaction between data clus-

tering and noncompliance can be explicitly modeled in the analysis that combines the

two approaches. Another useful feature of the joint analysis is that it allows a flexible

modeling of covariate effects. Considering the complex influence of covariates may help

in better understanding intervention mechanisms. The ML-EM estimation of the multi-

level mixture models has been implemented in the Mplus program (Muthén & Muthén,

1998-2006), providing an accessible tool for a wide range of researchers.

On the basis of incorrectly estimated standard errors, gauging statistical power is

meaningless. Therefore, power was not explicitly discussed in the study, though power

is of great concern in planning randomized trials. However, once variance inflation is

properly taken into account, as demonstrated in the multilevel mixture analysis that

considers both CRT and noncompliance, statistical power regains its validity. How sta-

tistical power varies depending on various settings of CRTs with noncompliance remains
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as a topic for future study. Another major limitation of the current study is that the

proposed multilevel mixture analysis tends to provide biased standard error estimates

when the number of clusters is small (e.g., 18 in the JHU PIRC Trial), which is a

well-known problem in multilevel modeling. To avoid an additional source of variance

misestimation and to focus on variance misestimation only due to intraclass correlations,

a large number of clusters (i.e., 100 clusters) was considered in this study. However,

small numbers of clusters are often employed in psycho-social intervention trials, and

therefore the subsequent variance inflation is an important matter to be resolved. Fur-

ther investigation is needed in this area to provide methods to improve the quality of

standard error estimates given small numbers of clusters.
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Appendix: ML-EM Estimation of CACE in the

Multilevel Mixture Model Framework

The observed-data two-level likelihood function is based again on the treatment as-

signment Z and the observed treatment receipt status D. The likelihood for the j−th

cluster is

Lj(θ | data) ∝
∫ ( ∏

i⊂{Zij=1,Dij=0}
(1 − πcij) fn(yij | data, εnbj) ×

∏

i⊂{Zi=1,Di=1}
πcij fc(yij | data, εcbj) ×

∏

i⊂{Zi=0,Di=0}
[(1 − πcij) fn(yij | data, εnbj) + πcij fc(yij | data, εcbj)]

)
φ(εcbj, εnbj, εcj)dεcbjdεnbjdεcj ,

where fn and fc are the probability density of a normal distribution

fn(yij | data, εnbj) = Exp

(
− (yij − αn − γnZij − λ′

nbxbj − λ′
nwxwij − εnbj)

2

2σ2
nw

)
/(
√

2πσnw)

fc(yij | data, εcbj) = Exp

(
− (yij − αc − γcZij − λ′

cbxbj − λ′
cwxwij − εcbj)

2

2σ2
cw

)
/(
√

2πσcw)

πcij is the probability of compliance

πcij =
Exp(β0 + β ′

1bxbj + β ′
1wxwij + εcj)

1 + Exp(β0 + β ′
1bxbj + β ′

1wxwij + εcj)
.

and φ(εcbj, εnbj , εcj) is the joint density function for the random effects

φ(εcbj, εnbj , εcj) = Exp
(
− ε2

cbj/(2σ
2
cb) − ε2

nbj/(2σ
2
nb) − ε2

nbj/(2ζ
2
b )
)
/((2π)1.5σcbσnbζb).

The total likelihood function is

L(θ | data) =
∏

j

Lj(θ | data).

The parameters in the model are

θ = (αc, αn, σnw, σcw, σnb, σcb, ζb, λnw, λcw, λnb, λcb, β0, β1w, β1b).
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By maximizing the total likelihood function with respect to the parameters of in-

terest θ, ML estimates are obtained. Numerical integration is used to approximate the

integration over the between level random effects. The unknown compliance status in

the control condition and the between level random effects are handled as missing data

via the EM algorithm. Parametric standard errors are computed from the information

matrix of the ML estimator using both the first- and the second-order derivatives un-

der the assumption of normally distributed outcomes. In the current study, ML-EM

estimation of CACE was carried out by the Mplus program version 4.1 (Muthén &

Muthén, 1998-2006).
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Table 1. Simulation: estimation of CACE ignoring CRT

(100 clusters, 40 per cluster)

True Average Empirical Average 95% CI
Parameter Value Estimate SD SE Coverage

γn (NACE) -0.200 -0.212 0.121 0.064 0.700

γc (CACE) 0.600 0.608 0.132 0.064 0.662

αn 1.000 1.010 0.101 0.058 0.744

αc 2.000 1.994 0.111 0.058 0.684

λnX1 -0.100 -0.099 0.028 0.027 0.940

λcX1 -0.200 -0.202 0.028 0.027 0.934

λnX2 0.100 0.100 0.051 0.028 0.712

λcX2 0.200 0.204 0.067 0.027 0.594

σ2
n 1.000 0.996 0.047 0.040 0.918

σ2
c 1.000 0.989 0.055 0.040 0.838

β0 0.000 0.004 0.164 0.048 0.452

β1X1 0.700 0.515 0.055 0.048 0.066

β1X2 0.700 0.513 0.166 0.050 0.246



CRT with Noncompliance 36

Table 2. Simulation: estimation of CACE considering CRT

(100 clusters, 40 per cluster)

True Average Empirical Average 95% CI
Parameter Value Estimate SD SE Coverage

Within Level

λnw X1 -0.100 -0.099 0.026 0.026 0.952

λcw X1 -0.200 -0.200 0.025 0.025 0.952

σ2
nw 0.900 0.900 0.035 0.036 0.952

σ2
cw 0.800 0.799 0.032 0.032 0.934

β0 0.000 0.008 0.212 0.210 0.942

β1w X1 0.700 0.702 0.058 0.058 0.944

Between Level

γn (NACE) -0.200 -0.204 0.105 0.102 0.946

γc (CACE) 0.600 0.603 0.119 0.123 0.952

αn 1.000 1.002 0.087 0.087 0.942

αc 2.000 1.999 0.099 0.101 0.942

λnb X2 0.100 0.099 0.048 0.047 0.936

λcb X2 0.200 0.202 0.059 0.058 0.924

σ2
nb 0.100 0.095 0.025 0.025 0.898

σ2
cb 0.200 0.190 0.045 0.041 0.876

β1bX2 0.700 0.692 0.208 0.196 0.932

ζ2
b 2.191 2.162 0.488 0.482 0.930
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Figure 1: Impact of ICCc on variance misestimation when ICCy = 0 (i.e.,

ICCyn = ICCyc = 0) when complier and noncomplier means are 0.0, 0.5, and

1.0 standard deviation apart given treatment assignment.
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Figure 2: Impact of varying combinations of ICCyn, ICCyc, and ICCc on variance misesti-

mation when each cluster consists of 20 individuals. Complier and noncomplier means are

(a) 0.0, (b) 0.5, and (c) 1.0 standard deviation apart given treatment assignment.
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Figure 3: Impact of varying combinations of ICCyn, ICCyc, and ICCc on variance misesti-

mation when each cluster consists of 40 individuals. Complier and noncomplier means are

(a) 0.0, (b) 0.5, and (c) 1.0 standard deviation apart given treatment assignment.


