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Abstract 

Including auxiliary variables such as antecedent and consequent variables in mixture models 

provides valuable insight in understanding the population heterogeneity embodied by a latent 

class variable. The model building process regarding how to include predictors/correlates and 

outcomes of the latent class variables into mixture models is an area of active research. As such, 

new methods of including these variables continue to emerge and best practices for the 

application of these methods in real data settings (including simple guidelines for choosing 

amongst them) are still not well established. This paper focuses on one type of auxiliary 

variable—distal outcomes—providing an overview of the methods currently available for 

estimating the effects of latent class membership on subsequent distal outcomes. We illustrate 

the recommended methods in the software packages Mplus and Latent Gold using a latent class 

model to capture population heterogeneity in students’ mathematics attitudes, linking latent class 

membership to two distal outcomes. 
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Introduction 

Mixture models are becoming a widely used statistical technique in the social sciences as 

a person-centered approach to understanding and modeling (unobserved) population 

heterogeneity. Among the wide range of mixture models are the commonly-used cross-sectional 

models such as latent class analysis (LCA) and latent profile analysis (LPA), and longitudinal 

models including growth mixture models (GMM) and latent transition analysis (LTA). All of 

these models, whether cross-sectional or longitudinal, have one thing in common: they estimate 

at least one multinomial latent variable that divides the population into a finite number of 

mutually exclusive and exhaustive latent categories (classes).    

While establishing the measurement model for the latent class variable and describing the 

marginal distribution of individuals across the latent classes are often primary goals of a mixture 

analysis, researchers are typically interested in understanding more about the consequences of 

membership in the emergent latent classes by investigating the structural and predictive 

associations between the latent class variable and subsequent distal outcomes. These distal 

outcomes are usually conceptualized as consequences of latent class membership rather than 

indicators or manifestations of latent class membership; that is, the distal outcomes are not 

considered part of the measurement model within the set of variables believed to reflect and 

define the latent classes. For example, in a study of the heterogeneity in children’s readiness for 

Kindergarten, Quirk, Nylund-Gibson, and Furlong (2013) linked latent classes of school 

readiness to later academic outcomes, e.g., standardized reading scores. The distal academic 

outcomes of this example are substantively and theoretically distinct from the set of indicator 

variables characterizing the latent classes of readiness.    
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Although the motivation to study the consequences of latent class membership is quite 

intuitive from a substantive standpoint, the inclusion of distal outcomes in mixture models from 

a methodological standpoint is not straightforward. Part of the challenge the various technical 

approaches have been designed to address is that there is no way analytically to distinguish 

between latent class indicators and distal outcomes in the likelihood function of a mixture model 

that simultaneously includes both the measurement model for a latent class variable and a 

structural predictive relationship connecting latent class membership to a distal outcome. To 

date, there are six different distal outcome methods, described in detail below, from which a 

researcher can choose, each with their own advantages and disadvantages given the modeling 

context.  

Antecedent and consequent variables in mixture models  

 The discussion of how best to include distal outcomes in mixture models is part of a 

larger and ongoing discussion in the methodological literature about when and how structural 

variables, hypothesized to be directly related to latent class membership but ancillary to the 

latent class variable measurement model, should be included in the modeling process when using 

mixture models. The inclusion of structural variables in mixture models introduces some 

complexity because the structural variables may unintentionally change the nature of the 

heterogeneity being modeled (Nylund-Gibson, Grimm, Quirk, & Furlong, 2014; Vermunt, 2010). 

That is, the measurement model for the latent class variable (encompassing the characterization 

of each latent class and who in the population resides in each of those classes) can substantially 

shift when moving from the unconditional latent class measurement model to a structural 

equation mixture model including antecedent causes and subsequent effects of latent class 
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membership if the relationships between the latent class indicators and the antecedents and 

consequents are misspecified in any way.  

A recent simulation study by Nylund-Gibson and Masyn (2016), using latent class 

analysis, focused on understanding the impact of covariate effect misspecification on the class 

enumeration process. The results indicate that, regardless of the true covariate relationship with 

the latent class variable and the latent class indicators, the class enumeration process would 

consistently result in the correct number of classes when conducted without covariates (e.g., the 

unconditional latent class measurement model), at a rate comparable to the correctly specified 

model with covariates. In contrast, a misspecified latent class regression model used for the class 

enumeration performed poorly. While that study focused on latent class antecedents, they 

speculated that the recommendation to conduct the latent class enumeration without latent class 

predictors should extend to the exclusion of distal outcomes during enumeration as well. 

 For an applied researcher, the shift that may occur in the meaning and composition of the 

latent classes from the final unconditional latent class measurement model to the conditional 

structural model can be quite unsettling. It signals a contamination of the measurement model 

such that variables intended to explain (or be explained by) heterogeneity captured by the latent 

class variable are instead influencing the character and essence of that latent variable. Many of 

the newer methods for including distal outcomes attempt to preserve the latent class formation 

based on the unconditional measurement model while enabling prediction from the latent class 

variable to the outcome.   

The Current Paper 

Building from current papers which have provided insight into the methods available for 

distal outcome estimation (e.g., Clark & Muthen, 2009; Petras & Masyn, 2010), this paper will 
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provide a detailed overview of the most current methodological landscape related to the 

incorporation of distal outcomes in mixture models. We have identified six different approaches 

for including distal outcomes that are available, some of which will be discussed but are not 

advised for use. All of these methods are available in the software package Mplus (Muthén & 

Muthén, 1998-2015). We will briefly introduce each method and discuss the logic behind the 

method and how they are different and then demonstrate the method using real data examples.  

As an empirical demonstration, we will use a latent class analysis (LCA; Goodman, 

1974; McCutcheon, 1987), a commonly used mixture model that often includes distal outcomes. 

We consider both a continuous and a categorical distal outcome. Furthermore, we consider the 

effect of latent class membership on the distal outcome(s) adjusting for observed potential 

confounders (i.e., directly predictive of latent class membership and the distal outcome). It would 

be extremely rare in an applied setting not to have any control variables requiring inclusion in the 

model examining the association between the latent class variable and distal outcome. While we 

focus on how these distal outcome methods are implemented in Mplus and Latent Gold, some of 

the methods we will discuss are available in other software (c.f., SAS, Stata, and various R 

packages) though are not included in this paper.  

Approaches for Including Distal Outcomes in Mixture models 

With one exception, all of the approaches for including distal outcomes of latent class 

membership in a mixture model can be characterized as “stepwise” approaches in which either 

an unconditional latent class measurement model or latent class regression model is first 

estimated and then information related to latent class membership is extracted for use in a 

subsequent model to estimate the relationship between latent class membership and the distal 

outcome.  In the following sections, we begin with the exception, i.e., the only non-stepwise (i.e., 
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one step) approach to including distal outcomes.  We then introduce each stepwise approach and 

provide references for further reading about the statistical model behind each approach. For each, 

we will provide advantages and disadvantages and, when applicable, we provide the syntax for 

specifying each in Mplus 8.0 which can be found in the Appendices. We also provide syntax for 

Latent Gold 5.1 for two of the approaches in the Appendices. We start with stepwise approaches 

that we classify as “Outmoded Approaches”, meaning these are methods that are not currently 

supported for use based on findings found in the methodological literature (for reasons we 

explicate later). We include them, nonetheless, in this paper as a way to contextualize the 

development and history of the range of distal outcome methods and to provide a rationale for 

why outdated methods are no longer supported.   

One-step Approach: Distal-as-indicator  

In the distal-as-indicator approach, the distal outcome is part of the measurement model 

of the latent variable; that is, the distal outcome is treated as an indicator of the latent class 

variable (Muthén & Shedden, 1999). This method is sometimes referred to as the one-step  

approach (Bandeen-Roche, Miglioretti, Zeger & Rathouz, 1997) because the relationships 

between the latent class variable and the observed latent class indicator variables as well as the 

the class-specific distal outcome distributions are estimated simultaneously in a single analytic 

model (Vermunt, 2010); thus, one modeling step. As a result, the heterogeneity encompassed by 

the latent class variable is assumed to manifest in the observed joint distribution of the initial set 

of latent class indicators and the distal outcome. In other words, in the likelihood function for the 

observed data, including the latent class indicators and distal outcome(s), there is nothing to 

distinguish the indicators from the distal outcomes. As such, the class-specific distribution of the 

distal outcome cannot be interpreted as representing the direct effect of a latent class variable, as 
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measured by the other indicators. Because of this, the distal-as-indicator approach to including 

distal outcomes is unique and not comparable to the other methods discussed below because the 

latent class measurement model, with the distal-as-indicator, is inherently different than a 

measurement model that excludes the distal outcome. In fact, if the distal-as-indicator approach 

is used, then the entire measurement model building process, including the class enumeration, 

should be done with the distal outcome included with the other latent class indicators (Petras & 

Masyn, 2010).  To be clear, the one-step approach should not be artificially divided into a 

stepwise approach, e.g., running one-step models with and without the distal outcome(s).  One 

should expect that the number, composition, and meaning of the latent classes will shift when 

comparing a latent class model including only the indicators to a one-step model including the 

distal outcomes.       

To summarize, the use of this approach must be substantively motivated by a 

conceptualization of a latent class variable intended to capture underlying heterogeneity in the 

joint distribution of all the indicators, including the distal outcome(s). The class-specific 

distributional parameters for the distal outcome (e.g., class-specific means and variances) are in 

the measurement model parameter set and should be evaluated in terms of measurement 

properties of the distal-as-indicator, i.e., class homogeneity and class separation with regards to 

the distal outcome indicator. The resultant latent classes should be labeled and interpreted with 

consideration of the distal-as-indicator. Direct effects from a covariate to the distal outcome 

should be interpreted as evidence of measurement noninvariance of the distal-as-indicator. 

Because this approach uses a different set of measured variables as class indicators (manifest 

variables and the distal outcome), the latent class variable is qualitatively different in this 

approach and thus not comparable to the other methods. Because of this, we do not demonstrate 
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this method in this paper but do provide syntax for the data illustration in Appendix A for 

reference.   

Outmoded Stepwise Approaches 

Given the development of auxiliary methods approaches, there are some methods that are 

no longer supported for use by the methodological literature. These methods, which we label as 

“outmoded,” have been shown to be biased or unstable in simulation studies. Though their use is 

no longer supported, in some cases they are being used by researchers, likely because they are 

not able to keep up with the rapid development of the methods or because the methods are still 

available in some statistical software packages. Our hope is that, by including them here with a 

discussion about why they should not be used, we can help to reduce their use by applied 

researchers.  

 The remaining approaches all use the same measurement model for the latent class 

variable, excluding the distal outcome, and the results can be directly compared in the data 

illustration. Each of these approaches begins with a class enumeration, establishment, and 

evaluation of the measurement model for the latent class variable. 

 Classify-analyze approach. The classify-analyze approach (Clogg, 1995) is a stepwise 

modeling process, sometimes called a two-step approach (Step1: classify; Step 2: analyze) or 

three-step (Step 1: estimate; Step 2: classify; Step 3: estimate relationships between latent class 

membership and other variables). In this approach, based on the final estimated unconditional 

measurement model, individuals are classified into latent subgroups (the “classify” step) and 

then latent class assignment is used as an observed grouping (i.e., multinomial) variable predictor 

of the distal outcome in a subsequent model (the “analyze” step). In the “classify” step of this 

approach, individuals are assigned to a latent class based on their modal posterior class 
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probability, or modal class assignment (Masyn, 2013). That is, each individual in the sample is 

fully assigned to the latent class for which they have the highest estimated probability of 

membership based on their observed data and the estimated Step 1 model. These modal class 

assignments can be saved into a new data file and merged with other variables. Then, in the 

“analyze” step, class assignment is used as an observed multinomial grouping variable in an 

ANOVA, or other analysis appropriate for the scale of the distal outcome. This allows for the 

investigation of the effect of assigned latent class membership on the distal outcome(s), e.g., 

testing for differences in means for the distal outcomes across the assigned latent class 

subgroups. Covariates can be easily controlled for in the “analyze” step.  

A major weakness of the classify-analyze approach is that the “analyze” step treats the 

modal class assignment as an observed, perfectly measured grouping variable, ignoring the non-

zero classification error (i.e., measurement error and estimation error in latent class membership) 

inherent in the modal assignment made during the classify step. Assuming no classification error 

in the latent class assignment, when the true error is non-zero, can lead to biased point estimates 

and standard errors for the effect of latent class membership on the distal outcome (Bakk, Tekle, 

& Vermunt, 2013; Gudicha & Vermunt, 2013). Some argue when entropy is high, such as .80 or 

higher (Clark & Muthén, 2009; Ram & Grimm, 2009), the classification error could be 

considered negligible and this approach estimates mean differences without much bias (Bolck, 

Croon, & Hagenaars, 2004). However, depending on the latent class proportions and degree of 

class separation, an overall high entropy value can obscure a high rate of classification error in a 

smaller class.  

Bray, Lanza, and Tan (2015) proposed a modification to the classify-analyze approach 

which they called “inclusive LCA,” to reduce the error associated with modal class assignment.  
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With this modification, once the unconditional model is chosen, all auxiliary variables are added 

as covariates and new posterior probabilities are obtained. The “analyze” step is then conducted 

using the new posterior probabilities. Bray et al. (2015) argued this would reduce classification 

error as the new posterior probabilities would be conditioned on individuals’ responses to the 

auxiliary variables as well as the latent class indicators. However, Asparouhov and Muthén 

(2014a) noted this approach may fail when the variances of the distal outcomes are not equal 

across latent classes.  

The five remaining approaches are all stepwise approaches in that, like the classify-

analyze approach, they aim to de-couple the estimation of the latent class measurement model 

from the estimation of the structural relationships between latent class membership and distal 

outcomes, but also aim to explicitly account for, in some way, the classification error in latent 

class membership, rather than ignoring it. Because of the existence of these improved 

approaches, the classify-analyze approach is now considered contraindicated for the 

investigation of distal outcomes of latent class membership, regardless of the entropy level. As a 

result, we do not demonstrate this method in our paper.   

 Pseudo-class draw approach.  The pseudo-class draw approach (Asparouhouv & 

Muthén, 2007; Petras & Masyn, 2010; Wang, Brown, Bandeen-Roche, 2005) is another distal 

outcome method that assigns individuals to latent classes and then analyzes the structural 

associations between latent class membership and the distal outcomes, but instead of assigning 

individuals using the modal class assignment, the assignment is done taking advantage of the 

posterior probability distribution. Latent class membership is essentially multiply imputed for 

each individual by taking random draws (Mplus uses a default of five) from the multinomial 

distribution defined by the set of posterior class probability values obtained for each individual 
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based on the estimated unconditional mixture model and the individual’s observed data on the 

latent class indicators. For each pseudo-class draw for the entire sample, the association between 

latent class membership and the distal outcome is estimated and then those estimates are 

combined (similar to a multiple imputation procedure) across the draws. In Mplus, the pseudo-

class draw approach is implemented by specifying the command “(e)” after each of the distal 

outcome variables in the auxiliary syntax (e.g., auxiliary = distal (e)). As the pseudo-class draw 

procedure has been shown to yield biased and imprecise effect estimates compared to the more 

recent stepwise approaches for latent class regression models (Petersen, Bandeen-Roche, Budtz-

Jorgensen, & Larsen, 2012), it should also be considered contraindicated for use with predictors 

or distal outcomes of latent classes and we do not demonstrate it in our paper.  

The remaining four stepwise approaches are the current alternatives to the distal-as-

indicator approach which, when corresponding assumptions are met, can produce consistent 

estimates of the effects of latent class membership on distal outcomes. Thus, it is only these three 

approaches that we demonstrate using the real data example.  

Current Stepwise Approaches  

ML three-step approach. This approach was developed using an error-in-variable 

schema (Vermunt, 2010). We have already documented that the classify-analyze approach can 

fail when there is non-negligible error in latent class assignment. However, the error in 

classification can be estimated and incorporated in the distal outcome model, rather than forcing 

the no-error assumption.   

As the name suggests, this method involves three steps. The first step involves 

identifying the best-fitting unconditional model and saving the posterior probabilities and modal 

class assignment for that model . In the second step, the estimated conditional probabilities for 
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modal class assignment given true latent class membership are computed.  These quantities, 

representing the estimated average classification errors for the modal class assignment, are then 

translated into fixed parameter values describing the direct relationship the latent class variable 

and the multinomial modal class assignment variable for use in the third step.    

For the third step, a new analytic model is specified.  The modal class assignment from 

the first step is used as a single nominal indicator of the latent class variable with class-specific 

parameters representing the classification error fixed at the values computed in the second step. 

This process is analogous to fixing the residual variance of a single indicator of a latent factor to 

correspond to a known or estimated item reliability. Distal outcomes are then included as 

additional indicators of the latent class variable. One drawback to this approach is that latent 

class membership may still shift from the first and third step for two reasons: (1) the 

classification error computed in the second step is the estimated average classification error in 

the sample but the third step assumes that average classification error applied uniformly for all 

individuals; (2) the distal outcome is specified as an additional indicator of the latent class 

variable. See Nylund-Gibson, Grimm, Quirk, and Furlong (2014) for a more detailed 

presentation of this approach.  

For the ML three-step, as well as the other current stepwise approaches, a researcher is 

often faced with a choice in their preferred software about whether to proceed through the steps 

“manually” or to utilize convenience features in the software than may automate some or all of 

the steps.  In our experience, the manual approach offers far greater flexibility in model 

specification.  The convenience of the automation camouflages the serious restrictions and 

assumptions imposed within software-generated (i.e., not user-generated) models.  For example, 

the automated ML three-step in Mplus (auxiliary = distal (DU3STEP) or auxiliary = distal 
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(DE3STEP)) cannot control for covariates when estimating the relationship between the latent 

class variable and a distal outcome—a specification likely needed in real data settings and easily 

done with the manual ML three-step.  Furthermore, the automated process is quite restricted in 

terms of the types of distal outcomes that may be considered, with regards to measurement 

scales, distributional assumptions, latent outcomes, etc.  Similarly, Latent Gold can 

accommodate either covariates or distal outcomes using the graphical user interface (GUI; Step3 

menu), but syntax is required when analyzing both simultaneously. Given these limitations, we 

recommend that the automated stepwise procedures be reserved for exploratory or simulation 

purposes only.      

The details of the execution of a manual ML three-step approach are necessarily 

software-specific.  For example, in Mplus, including all distal outcomes and covariates in the 

“auxiliary” variable option and using the “savedata: save = cprob” feature when running the Step 

1 model will generate a new data file the can be used for estimating the Step 3 model.  

Additionally, in Mplus v7.1 and later, Mplus computes the values corresponding to the 

classification error of the modal class assignment as part of the default output in the Step 1 

model to be used as fixed class-specific multinomial intercepts for the modal class assignment 

indicator in Step 3, found under the section titled “Logits for the Classification Probabilities for 

the Most Likely Latent Class Membership (Row) by Latent Class (Column),” saving the user 

from having to do much of the work of Step 2.  We provide Mplus syntax for the manual ML 

three-step using the data illustration in Appendix B (for Step 1) and Appendix C (for Step 3) and 

Latent Gold syntax in Appendix F.           
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 BCH Method.  First introduced by Bolck, Croon, and Hagenaars (2004) for categorical 

covariates, this method was referred to as the BCH method after the last names of the authors of 

the paper. This method was later modified to accommodate continuous covariates (Vermunt, 

2010) and eventually extended to include covariates and distal outcomes (Bakk, Tekle, & 

Vermunt, 2013) and is also conducted in three steps. The BCH method is very similar to the ML 

three-step approach except that instead of calculating the average classification error in the 

second step, classification errors for each individual are computed, and the inverse logits of those 

individual-level error rates are used as weights in the third step rather than using the modal class 

assignment as imperfect latent class indicator. Advantages with this approach are that it appears 

to be more resistant to shifts in the latent class membership from Step 1 to Step 3, compared to 

the ML three-step and can often be used irrespective of distal outcomes variances being equal or 

unequal across latent classes (which can be a problem with the LTB approach – see below). 

However, if entropy is low or if sample size is small, the weights may take on negative values, 

which can be problematic. In such cases, it is possible for the variances of the distal outcome to 

take on negative values when variances are class-specific. However, if variances are constrained 

to equality, this problem will not occur. Thus, if class-specific variances are not of interest, the 

latter approach is preferred. This situation is more problematic when a more complex model is 

specified to differ across classes compared to situations in which only distal outcomes are 

analyzed.      

 As with the ML three-step approach, researchers will have a choice between the 

automated (auxiliary = distal (BCH)) or manual BCH three-step process in Mplus and using the 

GUI (Step3 menu) or syntax specification in Latent Gold.  The automated version of the BCH 

three-step approach are similarly restrictive (see Asparouhov and Muthén,2014a, for details.  The 
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way in which the BCH method is currently implemented in Mplus precludes us from estimating 

models that have correlated residuals of categorical distal outcomes, however it is possible to 

correlate the residuals of continuous distal outcomes.  Additionally, the current implementation 

will only work with a single latent class variable.   

As before, the details of the execution of a manual BCH three-step approach are 

necessarily software-specific.  For example, in Mplus, including all distal outcomes and 

covariates in the “auxiliary” variable option and using the “savedata: save = bchweights” feature 

when running the Step 1 model will generate a new data file the can be used for estimating the 

Step 3 model.  The “training” option with “(BCH)” is used in the Step 3 model to identify the 

BCH weight variables carried over from the Step 1 saved data file.  Mplus syntax for the manual 

BCH three-step using the data illustration in Appendix D (for Step 1) and Appendix E (for Step 

3) and Latent Gold syntax in Appendix G. 

 LTB Approach.  The approach presented in Lanza, Tan, and Bray (2013), and referred 

to as the LTB approach in Bakk and Vermunt (2016), is also conducted in a stepwise fashion. 

However, after identifying the optimal unconditional model, it estimates the relationship of the 

distal outcomes and the latent class variable by performing a latent class regression, thus treating 

the distal outcome as a covariate. By applying Bayes’ Theorem to the latent class regression, a 

kernel density estimate for the marginal distribution of the distal outcome, and the estimated 

marginal distribution of the latent class variable, this approach computes the conditional 

distribution of the distal outcome given latent class membership, usually in the form of class-

specific means of the distal outcomes (Lanza, Tan, & Bray, 2013). This approach is automated in 

Mplus through the “auxiliary = distal (DCON)” or “auxiliary = distal (DCAT)” options.  The 

manual version of the LTB approach is not nearly as straightforward as for the ML and BCH 
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three-step approaches as it requires estimation of the marginal distribution of the distal outcome. 

This approach relies on a key assumption, specifically it assumes the variances of continuous 

distal outcomes are equal across latent classes. If this is not the case, mean estimates of the distal 

outcomes may be biased (Bakk & Vermunt, 2016). Further, this approach may not work well if 

there is low separation between the latent classes (Bakk & Vermunt, 2016). As implemented, it 

also assumes that the distal outcome(s) are independent of any latent class predictors, conditional 

on latent class membership.  Because of these limitations in the currently available and user-

accessible implementations, this approach is not demonstrated in the current paper.   

 Two-step method.  The most recently developed stepwise approach is the two-step 

method (Bakk & Kuha, 2017). Similar to the three-step approaches, the two-step method 

attempts to correct biased estimates associated with one-step approaches and outmoded stepwise 

approaches. However, unlike the three-step approaches described above, the two-step method 

does not attempt to correct the misclassification bias. Rather, once the preferred measurement 

model is identified, the two-step method fixes the measurement parameters for the latent class 

variable, while estimating the remaining structural parameters of the model. It is worth noting 

that while including both covariates and distal outcomes has not been discussed in the literature 

or included in software packages yet, this two-step approach is capable of accommodating both.   

When a distal outcome is the target of analysis, then the measurement parameters from 

the latent class indicators as well as the distribution of the latent class variable can be estimated 

in the first step (if there are not covariates). These are all treated as fixed when subsequently 

estimating the distal outcome in the second step. When analyzing covariate effects, the 

distribution of the latent class variable from the first step is discarded and re-estimated in the 
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second step and only the measurement parameters from the latent class indicators are treated as 

fixed.   

 A major advantage of this approach is that since measurement parameters are treated as 

fixed, multiple latent class variables can be included in a single model. Bakk and Kuha (2017) 

recommend estimating each latent class variable separately. All of these measurement 

parameters would then be fixed in Step 2, while estimating the structural parameters. Another 

advantage is that each step can be estimated using different samples. This is especially helpful in 

terms of missing data. It is not uncommon for distal outcomes to have a lower response rate 

compared to the data used to estimate a measurement model based on data gathered at an earlier 

timepoint. Conversely, it is possible that additional distal outcome data may be collected after 

collecting data on the latent class indicators. The two-step method allows all data from both 

scenarios to be included. It is important to note there are important statistical details omitted here 

with respect to implementation, the primary of which is the necessary adjustment of the standard 

errors in the Step 2 model to account for parameters being fixed to estimated values from the 

Step 1 model.  This adjustment is not trivial and is not currently automated in any software 

package that we know of.  Interested readers should consult Bakk and Kuha (2017) for a more 

technical explication of this approach. 

Recommended Approaches to the Inclusion of Distal Outcomes 

 In summary, despite the overwhelming and continuously growing list of available 

approaches to the inclusion of distal outcomes in mixture models, the list of recommended 

current approaches for real data analysis, based on practical and statistical considerations is 

relative short (Table 1).  The classify-analyze and pseudo-class draw approaches are not 

recommended under any circumstances.  The LTB approach as well as the automated ML three-
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step and automated BCH three-step are not recommended as the restrictions and assumptions are 

unlikely to correspond to any defensible population model.  The newest two-step cannot be 

currently recommended because it is not yet readily accessible to applied researchers.  That 

leaves only two recommended stepwise approaches: (1) the manual ML three-step and (2) the 

manual BCH three-step.  The statistical and practical distinctions between the two have been 

previously elaborated.  It is important to note that neither of these two recommended approaches 

guarantee that the latent classes from the Step 1 model with be comparable to the latent classes in 

the Step 3 model; in other words, the inclusion of the distal outcome(s) in Step 3 could still 

influence the class formation.  Using the manual approach, the onus is on the researcher to 

compare the classification of individuals across the Step 1 and Step 3 models before interpreting 

the Step 3 latent classes as if they were the same as the Step 1 latent classes and interpreting the 

difference in the class-specific distributions of the distal outcome(s) in Step 3 as “effects” of 

latent class membership (as defined in Step 1).  Additionally, one must attend to differential 

patterns of missing data on the latent class indicators and distal outcomes as the analytic sample 

can unintentionally change from the Step 1 to Step 3 models, depending on the software’s 

handling for the missingness.    

The one-step (distal-as-indicator) approach is conceptually different, as it conceives of 

the indicators and distal outcome(s) as joint manifestations of an underlying latent class 

variable—the use of this approach should be based on substantive theory and research aims.        

Demonstration of Recommended Approaches   

 As a way of understanding how the recommended methods may (or may not) differ in a 

real data setting, we demonstrate the use of selected current stepwise approaches to including 

distal outcomes; specifically, the ML and BCH three-step approaches. We also demonstrate the 
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one-step approach.  However, because the heterogeneity modeled by the distal-as-indicator 

approach is qualitatively different from the heterogeneity without the distal outcomes, we 

consider the results of this method separate from the others, though some general comparisons 

are made. The example we use in this paper is based on the analysis results presented in Masyn 

(2017). That paper focused on differential item functioning (DIF) of the LCA solution with 

respect to gender, thus the current paper builds off those results and adds distal outcomes. While 

simply demonstrating these approaches with a single empirical example does not prove which 

method is “best,” it is instructive to see the difference in the processes and software 

specification.  One’s own particular research questions and data conditions must inform the 

selection of one approach over another in a specific analytic context.  

  Appendices A-E provide the Mplus syntax for: (A) one-step; (B) manual ML three-step 

Step 1; (C) manual ML three-step Step 3; (D) manual BCH three-step Step 1; and (E) manual 

BCH three-step Step 3. Though Latent Gold 5.1 (Vermunt & Magidson, 2016) does have a GUI, 

the analyses conducted in this paper required the use of syntax. Appendix F provides relevant 

syntax for the ML three-step approach and Appendix G provides the relevant syntax for the BCH 

three-step approach. Appendices F and G include syntax only for the “variables” and “equations” 

sections of a syntax file as these are the only sections that must be written manually, while the 

“options” section can be completed using the GUI. This paper used modal class assignment for 

the ML and BCH approaches, but proportional assignment can be utilized in Latent Gold by 

either clicking this option in the GUI, or replacing “modal” with “proportional” in the syntax.  

Method 

Data 
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 For the data demonstration in this paper we are using a subset of mathematics attitudinal 

variables from the Longitudinal Survey of American Youth (LSAY; Miller, 1987-1994, 2007). 

The LSAY sample was drawn from schools across the United States and was stratified by 

geographic region and urbanicity and consisted of two cohorts. Initial data collection began in 

1987, though we use Cohort 2 which began in the fall of 1998. The sample in Cohort 2 was 

predominantly white (69.5%), followed by African-American (11.2%), Latino/a (9.1%), Asian 

(3.6%), Native American (1.5%) and 5.1% missing. The numbers of females and males were 

nearly equal with 48% and 52%, respectively.  

Measures. Five math attitudinal variables were used as the response indicators for the 

LCA model. These items were selected from the Grade 8 wave of data collection. These items 

measured students’ attitudes toward math, such as “I enjoy math” and “Doing math often makes 

me nervous or upset.” The five self-report items were originally measured on a five-point, 

Likert-type scale (1 =strongly agree; 2 = agree; 3 = not sure; 4 = disagree; 5 =strongly disagree), 

but for this analysis we created dichotomous items after reverse coding certain items so that all 

item endorsements (indicated by value of 1) represented pro-mathematics responses. Table 2 

presents the item wording for all five math attitudes, frequencies, and the overall rate of 

endorsement.  

 Covariates and Distal Outcomes. We used students’ self-reported gender as the single 

covariate in this example. The gender variable, labeled female, was coded female =1 for 

individuals who reported that they were female and female = 0 for those who reported they were 

male (gender was measured as binary by LSAY). In addition, two distal outcomes were used, 

one binary and one continuous. Students’ feelings about the utility of math in a later job, which 

we labeled math-job, and was coded math-job = 1 if the student reported that they felt math was 



22 

 

useful for a later job and 0 = if they did not. Students’ math IRT score in grade 9 was used as a 

continuous distal outcome where higher math scores represent higher math achievement.  

Analysis Plan 

Class enumeration for these five items is detailed in the Masyn (2017) paper. Once the 

unconditional model was identified, DIF was explored with respect to gender. For the distal 

comparisons discussed in this paper, we begin with a 4-class LCA with DIF based on the Masyn 

(2017) paper. We included the distal outcomes into this LCA model using the distal outcome 

models described above. All models were fit in Mplus 8.0 (Muthén & Muthén, 1998-2018). 

 Enumeration for Distal-as-Indicator.  Since we based our unconditional model on the 

Masyn (2017) paper, the only class enumeration conducted was for the one-step distal outcome 

method of distal-as-indicator. For this model, the five math attitude variables, the gender 

covariate, and the two distal outcomes are included as class indicators. For enumeration, we 

followed the recommendations of Masyn (2013) and fit sets of models with different numbers of 

classes. Fit statistics for all models were recorded and compared but were examined in tandem 

with substantive considerations. We considered information criteria including the Akaike 

Information Criterion (AIC; Akaike, 1987), Bayesian Information Criterion (BIC; Schwartz, 

1978), adjusted BIC (ABIC; Sclove, 1987), Consistent Akaike’s Information Criterion (CAIC; 

Bozdogan, 1987), and Approximate Weight of Evidence Criterion (AWE; Banfield & Raftery, 

1993). We also considered two fit statistics derived from information criteria. The Bayes Factor 

(BF) provides a pairwise comparison between two competing models and the correct model 

probability (cmP) compares each of J models to a set of J models. Finally, we considered two 

likelihood ratio based tests. The adjusted Lo-Mendell-Rubin likelihood ratio test (LMR; Lo, 

Mendell, & Rubin, 2001) and the bootstrapped likelihood ratio test (BLRT; McLachlan & Peel, 
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2000), which provide a p-value comparing a k – 1 class model to a k class model with a 

significant p-value providing evidence for the k – 1 class model.   

 Stepwise Inclusion of Distal Outcomes. Subsequent to examining DIF, we implemented 

the recommended stepwise distal outcome procedures outlined above; specifically, the manual 

ML three-step and the manual BCH three-step. The Step 1 models for each approach accounted 

for the covariate as a predictor of latent class membership and a source of DIF.    

Results 

 The results section is divided into subsections. We first present the descriptive statistics 

for all variables used to enumerate the classes in the LCA model and the distal outcome 

variables. Next, we present the final 4-class model based on the Masyn (2017) results, followed 

by the class enumeration results for the distal-as-indicator model because the enumeration 

process for that model was different than the standard LCA that utilized stepwise approaches for 

including distal outcomes (discussed more in the relevant section). Finally, we compare the 

results of the distal outcome mean comparisons using the distal-as-indicator approach, which is 

different than the stepwise approaches.  

Descriptive Statistics 

 Table 2 presents the sample size, frequency, and relative frequency for the five math 

attitude variables, the covariate of gender, and the two distal outcomes that were both measured 

in 9th grade (math IRT achievement scores, importance of math for later job).  

Latent Class Analysis (LCA) of Math Attitudes 

 The example we use here is based on the data example from Masyn (2017), which 

explored heterogeneity in students’ math attitudes in eighth grade by fitting a series of LCA 

models with varying number of classes. For the sake of brevity, we do not present the entire class 
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enumeration process but readers are encouraged to consult Masyn (2017) for details. The LCA 

on these five binary items of math attitudes resulted in a four-class unconditional model. The 

item probability plot is presented in Figure 1, which depicts four latent classes labeled class 1 - 4 

and were differentiated by their probability of endorsing the different math attitudinal items. 

After settling on the best unconditional model, DIF was explored. 

 Differential Item Functioning (DIF). After choosing the unconditional model for these 

five items, Masyn (2017) explored if there was evidence of DIF with respect to gender. There 

was evidence of DIF, specific to the indicators “enjoym” and “undrstndm.” However, Masyn 

specified two types of DIF, uniform and non-uniform. Uniform DIF refers to a covariate effect 

on a given indicator that is consistent across latent classes. Non-uniform DIF refers to a covariate 

effect on a given indicator that varies across latent classes. Masyn found evidence of a DIF effect 

of gender on “enjoym” to be uniform and the DIF effect of gender on “understndm” to be non-

uniform. When exploring distal outcome differences, the DIF that emerged with respect to 

gender was incorporated into the modeling of the distal outcomes. Specifically, the Step 1 model 

used to create the modal class assignment, estimate the classification error rates for the ML 

three-step, and estimate the BCH weights for the BCH three-step, included gender as a predictor 

of latent class membership and a source of DIF on “enjoym” and “understand”. 

Comparison of Distal Outcome Approaches 

 After choosing the best-fitting unconditional LCA model and specifying the correct DIF 

with respect to the gender covariate, we proceeded to fit three conditional models, each using 

one of the aforementioned approaches for including distal outcomes. Both distal outcomes were 

included in each conditional model.  
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 Distal-as-indicator approach. We present the distal estimation results for the distal-as-

indicator approach separate from the other results since the presence of the distal outcomes as a 

source of information slightly changed the nature of the heterogeneity being modeled. Overall, 

the results from the distal-as-indicator approach suggested a 4-class model as well (see Table 3 

for fit information) even when the distal outcomes and gender covariate were included in the 

model. Though there were some differences in the emergent latent classes compared to the 

classes from the unconditional LCA model without distals, the substantive interpretation would 

largely remain the same with respect to the math attitudinal variables.  

 The class-specific means and significance tests of all pairwise comparisons for math-job 

and 9th grade math IRT score are presented in the distal-as-indicator rows of Table 4. We briefly 

describe this table because, to our knowledge, this is a novel method of presenting distal 

outcome results. For both the top and bottom panels of the table, each distal outcome is presented 

in the leftmost column, the distal outcome approaches are presented in the second column, the 

latent classes and their class-specific means are presented in the third column, and the pairwise 

comparisons are presented in the remainder of the body of the table. Differences for each 

pairwise comparison are presented in each table’s cells as the mean for a latent class in the top 

row minus the mean for a latent class in the third column.  

 In the distal-as-indicator approach, class 4 had the greatest probability of endorsing the 

math-job variable, and this was significantly greater than the class-specific means of the other 

three latent classes. The mean for class 3 was also significantly greater than the means of classes 

1 and 2. There was not a significant difference between the class 1 and class 2 means. The 

findings were similar concerning 9th grade math IRT score, with two exceptions. The mean math 
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IRT scores for classes 1 and 3 were not significantly different, and the mean math IRT scores for 

classes 1 and 2 were significantly different.  

 We do not make direct comparisons between the distal-as-indicator approach and the 

remaining two approaches because the distal-as-indicator approach includes the covariate and 

distal outcomes in the measurement model, essentially rendering it incomparable to the other 

models, which only include the math attitude indicators in the measurement model. 

Comparison of manual ML and BCH three-step methods.  Class-specific means for 

the binary math-job variable were largely similar across the two approaches. For instance, the 

BCH approach yielded a mean (proportion) of .57 for class 1, and the manual 3-step yielded a 

mean of .58. The largest mean discrepancy across the two approaches occurred with class 2 (.54 

in BCH and .50 in the manual 3-step). Most of the results concerning pairwise mean 

comparisons were similar across both approaches. For instance, class 4 had the greatest 

probability of endorsing math-job and this was significantly greater than the other three classes; 

the mean of class 3 was significantly greater than the mean of class 2 and there was no 

significant difference between the means of classes 1 and 2. However, there was one notable 

incongruity. Specifically, in the BCH approach, the means for class 3 and class 1 were 

significantly different, but this was not the case in the manual ML three-step.  

 The results for the 9th grade math IRT distal outcome were very similar for the manual 

BCH and ML three-step approaches. When comparing corresponding classes across approaches, 

there was little difference in the estimated means. For example, the greatest difference occurred 

with class 3 (57.49 in BCH and 57.32 in manual 3-step) and the remaining differences among 

corresponding classes across approaches were .11 or less. The patterns of statistically significant 

pairwise comparisons were also similar across approaches. Class 4 achieved a significantly 
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greater 9th grade math IRT score compared to the other three classes; class 3 scored significantly 

higher than class 1, but not class 2; the scores for classes 1 and 2 were not significantly different. 

 It should be noted that since we did estimate both covariate and distal outcomes, 

including the regression of the distal outcome on the covariates (as depicted in Figure 2), the 

latent class differences in the distal outcome means are adjusted for gender. 

Discussion 

The use of distal outcomes in mixture models provides a context to understand 

consequences of membership in the emergent latent classes. While the interest in knowing if 

there are differences in distal outcome means across classes is quite intuitive, the specification of 

these mean differences is not that straightforward and is an area of active research. Among the 

different methods currently available for estimating distal outcome effects, each has advantages 

and disadvantages. We summarize the current methodological status of each of these methods, 

provide recommendations based on statistical and practical considerations, and demonstrate the 

use of the recommended approaches. While the results of our application of these methods with a 

given dataset do not constitute a methodological evaluation of the performance of these 

approaches under various population conditions (as would a simulation study), our hope is that 

including an example provides an opportunity for applied researchers to see software syntax for 

each approach as well as an example of  how to interpret the results. While we have summarized 

what we believe to be the state-of-the-art for including distal outcomes in mixture models in the 

moment, this remains an area of active research and future readers should anticipate new 

methodological evaluations, developments, and changing best practices following the publication 

of this paper.    

Current Recommendations Based the Methodological Literature 
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The current methodological literature recommends against the use of the classify-analyze 

and the pseudo-class draws approaches, countermanding any previous recommendations to the 

contrary.  The automated ML and BCH three-step approaches as well as the LTB approach, as 

currently implemented, are prohibitively restrictive with regards to the nature of the distal 

outcomes which can be considered and the assumptions regarding the relationships between the 

predictors and outcomes of latent class membership.  As implemented currently in software, the 

manual ML three-step approach is the most flexible in that it allows for covariate effects on the 

latent class variable and distal outcome(s) to be estimated simultaneously as well as the inclusion 

of multiple latent class variables (e.g., latent transition analysis) and it accounts for classification 

error associated with non-perfect assignment of individuals to latent classes. While we do 

acknowledge that the manual ML three-step is the most complex to implement for the applied 

research, involving multiple input files and detailed copying-pasting of fixed parameter values, 

we hope the challenges in execution are not a barrier to use.  We advise researchers to simply 

proceed with care to avoid syntactical mistakes that may produce erroneous results.  

In our experience, the manual BCH three-step approach also performs well with 

continuous distal outcomes. In Mplus, the manual BCH version also allows for the simultaneous 

inclusion of covariates and distal outcomes, but is limited to one latent class variable, and a distal 

outcome must be present (i.e., it cannot be used with a covariate alone). In addition, with the 

manual BCH it is possible to specify a secondary model, such as class-specific regressions. The 

ML and BCH three-step approaches are robust when class-specific variances of the distal 

outcome are not equal, but specifying equal variances is preferred when using the BCH method.  

In Latent Gold, using the syntax, both the ML and BCH three-step approaches are able to 

estimate complex models that include residual correlations among the indicators. 
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While the BCH seems to hold a lot of promise, there are a few limiting factors that 

emerge in real data contexts. Specifically, the BCH weights may become unstable—that is, it 

negative BCH weights—thus class-specific distal outcome means are not able to be computed. 

This issue may be related to the measurement model of the latent class variable and may be more 

common in more complex latent class measurement models such as growth mixture models 

(GMM). Further, the BCH method is limited to modeling contexts that include only one latent 

class variable, which is true in both Mplus and Latent Gold, thus it is not possible to use BCH 

weights with latent transition analysis models (though you can use the manual MLthree-step in 

those contexts; see Nylund-Gibson, et al., 2014 for an example).  

 The inclusion of auxiliary variables, both covariates and distal outcomes, is currently an 

active area of methodological research. There is still much to be learned, including more about 

the performance of, and possible limitations of, the methods discussed in this paper. In addition, 

with the more recent focus on these methods, there likely will be further development of new 

methods for including auxiliary variables into mixture models. As our understanding advances, 

we may establish more precise recommendations for use with particular mixture models applied 

to particular types of data. For example, in a GMM it may be that the growth factors themselves, 

instead of, or in addition to, the latent class variable, are directly related to the distal outcome. In 

this situation, the current three-step methods would not be appropriate and perhaps 

respecification of the GMM to a latent class growth model or use of the two-step method may 

offer an advantage.     

Future directions 

The field is at an exciting time of development, with new and innovative methods rapidly 

being developed, which allow us to include auxiliary variables into mixture models that preserve 
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the measurement qualities of the latent class variable while also estimating relations amongst 

study variables. However, these methods are being developed faster than they can be 

implemented into commonly used software packages. While rapid development inspires rapid 

adoption, there are many gaps in our understanding regarding the boundaries and limitations of 

the use of these approaches in practice. It is often the case that any limitations we may encounter 

as researchers are not of the method itself but of the way the method is implemented in a 

software package. Additionally, as methods for the inclusion of auxiliary variables into mixture 

models continue to be developed, we need to ensure they work for the range of mixture models 

and a variety of auxiliary variables. For example, the newly proposed two-step method looks 

very promising in terms of its flexibility and generalizability to multiple types of mixture 

models. Once this approach is integrated into more software packages, it will be imperative to 

test its performance under a variety of conditions and model specifications.  We hope our paper 

provides a clear portrait of this one methodological moment in time, guiding researchers actively 

applying mixture model in the near-future and, in the more distant future, becomes a part of the 

historical backdrop for the new approaches as they emerge.    
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Table 1. 

Summary of Existing Distal Outcome Approaches with Recommendations for Use 

Recommendation Approach Comments 

Recommended for informed 

selection and use. 

Manual ML three-step 
See text for elaborated 

statistical comparison as well 

as comparison of available 

implementations in existing 

software. 
Manual BCH three-step 

One-step 

(distal-as-indicator) 

Conceptually-distinct from 

stepwise approaches; Treats 

distal outcome as additional 

indicator of latent class 

variable. 

Recommended, though with 

some reservations. 

Automated ML three-step 

Severe restrictions and 

untenable/untestable 

assumptions related to distal 

outcome distribution and 

relationships between distal 

outcomes and predictors; Will 

work well, statistically-

speaking, if your data-

generation process matches 

the restrictions and 

assumptions but that match is, 

practically-speaking, 

unlikely. 

Automated BCH three-step 

LTB 

Two-step 

Promising but (currently) no 

straightforward way to 

implement in existing 

software. 

Not recommended under any 

circumstances. 

Classify-analyze Statistically contraindicated; 

Historical predecessors to 

other approaches; Were 

formally part of mixture 

modeling best-practices but 

are now ill-advised. 
Pseudo-class draws 

 



37 

 

Table 2. 

Descriptive Statistics of Math IRT Scores, Distal Outcomes, and Covariate 

  Variable Item label n f rf 

Math Attitude Indicator     

 I enjoy math. enjoyma 2,668 1784 0.67 

 I am good at math. goodma 2,670 1850 0.69 

 I usually understand what we are doing in math. understandma 2,648 2020 0.76 

 Doing math often makes me nervous or upset. nervousmb 2,622 1546 0.59 

 I often get scared when I open my math book and see a page of problems. scaredmb 2,651 1821 0.69 

Covariates and Distal outcomes     

 Gender (binary: 1-female; 0-male) female 3,116 1496 0.48 

 Math is important for a good job (binary: 1-Agree; 0-Disagree) math-joba 2,321 1601 0.69 

  9th grade Math IRT score math IRT 2,241 58.81c 12.60d 

Note. aDichotomized: 1 = strongly agree, agree; 0 = not sure, disagree, strongly disagree. bDichotomized: 1 = strongly disagree, 

disagree; 0 = not sure, agree, strongly agree. c9th grade Math IRT mean. d9th grade Math IRT standard deviation. N= sample; f = 

frequency; rf = relative frequency 
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Table 3. 

Fit Statistics for the Distal-as-Indicator LCA model (5 Math Attitudes and 2 Distal Outcomes as Class Indicators)  

# 

classes 
# param LL AIC BIC ABIC 

LMR p-

value 

BLRT 

p-value 
CAIC AWE BF cmP 

1 9 -20669 41356.7 41411.1 41382.5 — — 38738.6 38788.1 0.0 0 

2 18 -19656 39347.2 39456.0 39398.9 — — 39392.1 39491.0 < 1 <.001 

3 27 -19421 38895.5 39058.7 38972.9 <.001 <.001 38962.8 39111.1 <1 <.001 

4 36 -19349 38770.2 38987.8 38873.4 <.001 <.001 38860.0 39057.7 149828220.6 1 

5 45 -19332 38753.5 39025.5 38882.5 0.299 <.001 38865.7 39112.9 60008693.4 <.001 

6 54 -19313 38734.9 39061.3 38889.7 — — 38869.5 39166.2 — <.001 

Note. LL = Log-likelihood; npar = number of parameters; AIC = Akaike Information Criterion; BIC = Bayesian Information 

Criterion; aBIC = Adjusted Bayesian Information Criterion; CAIC = Consistent Akaike Information Criterion; AWE = 

Approximate Weight of Evidence Criterion; BLRT = Bootstrapped Likelihood Ratio Test; LMR = Vuong-Lo-Mendell-Rubin 

Likelihood Ratio Test; BF = Bayes Factor. Cells with “—“indicates that the value was not estimated.
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Table 4. 

Significant Differences Between Class-Specific Means of Both Distal Outcomes of Math-Job and 

Math Achievement by the Different Distal Outcome Methods  

 Distal Approach Class  

(distal mean) 

c1  c2  c3  

Math-job 

One-step  

(distal-as-indicator) 

c1 (.57)      0   

c2 (.56) 0.01   

c3 (.64) -0.07* -.008*  

c4 (.79) -0.22*** -0.23*** -.015*** 

Manual BCH  

three-step 

c1 (.57) 0   

c2 (.54) 0.03   

c3 (.69) -0.12** -0.15**  

c4 (.77) -0.20*** -0.23*** -0.08* 

Manual ML  

three-step 

c1 (.58) 0   

c2 (.50) 0.08   

c3 (.66) -0.08 -0.16**  

c4 (.79) -0.21*** -0.29*** -0.13* 

Math 

Achievement 

One-step  

(distal-as-indicator) 

c1 (53.00) 0   

c2 (56.29) -3.29*   

c3 (52.48) 0.52 3.81*  

c4 (63.44) -10.44*** -7.15*** -10.96*** 

Manual BCH 

three-step 

c1 (52.77) 0   

c2 (55.35) -2.59   

c3 (57.49) -4.72*** -2.14  

c4 (62.71) -9.94*** -7.36*** -5.22*** 

Manual ML  

three-step 

c1 (52.72) 0   

c2 (55.46) -2.74   

c3 (57.32) -4.59*** -1.85  

c4 (62.76) -10.04*** -7.30*** -5.45*** 

* p <.05, ** p< .01 *** p<.001 
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Figure 1. Item probability plots for the 4-class unconditional LCA plot  
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Figure 2. Model diagram of the 4-class LCA model with a covariate (female) and two distal 

outcomes (math-job and 9th grade math IRT), including DIF effects from the covariate to enjoym 

and understandm. 
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Appendix A: Distal-As- Indicator Model (Mplus Syntax) 

 

Variable: 

 usevariables = EA29KR emthirtn enjm goodm undstdm nervm scarem          

 female; 

 categorical =  EA29KR enjm goodm undstdm nervm scarem female; 

 missing=all(9999); 

 idvariable = lsayid; 

 classes = c(4); 

 

Define: 

  !Renaming variables to make output easier to read 

  enjm = ca28ar; 

  goodm = ca28br; 

  undstdm = ca28cr; 

  nervm = ca28er; 

  scarem = ca28gr; 

  female = gender EQ 1; 

 

Analysis: 

  Type = mixture; 

  starts = 100 50; 

  processors = 4; 

 

Model: 

 %overall% 

 

 %c#1% 

  [EA29KR$1]  (dj1); 

  [emthirtn] (dm1); 

  [female$1]  (df1); 

 

 %c#2% 

  [EA29KR$1]   (dj2); 

  [emthirtn] (dm2); 

  [female$1]   (df2); 

 

 %c#3% 

  [EA29KR$1] (dj3); 

  [emthirtn] (dm3); 

  [female$1] (df3); 

 

 %c#4% 

  [EA29KR$1] (dj4); 

  [emthirtn] (dm4); 

  [female$1] (df4); 
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  Output: 

   Tech11 Tech14; 

   

!Following syntax is used to test the distal means 

  Model constraint:  

  New (dj1v2 dj1v3 dj1v4 dj2v3 dj2v4 dj3v4 

       dm1v2 dm1v3 dm1v4 dm2v3 dm2v4 dm3v4 

       df1v2 df1v3 df1v4 df2v3 df2v4 df3v4); 

 

  dj1v2 = dj1-dj2;  ! Creates a difference score comparing the  

          distal mean for class 1 v class 2 

  dj1v3 = dj1-dj3; 

  dj1v4 = dj1-dj4; 

  dj2v3 = dj2-dj3; 

  dj2v4 = dj2-dj4; 

  dj3v4 = dj3-dj4; 

 

  dm1v2 = dm1-dm2; 

  dm1v3 = dm1-dm3; 

  dm1v4 = dm1-dm4; 

  dm2v3 = dm2-dm3; 

  dm2v4 = dm2-dm4; 

  dm3v4 = dm3-dm4; 

 

  df1v2 = df1-df2; 

  df1v3 = df1-df3; 

  df1v4 = df1-df4; 

  df2v3 = df2-df3; 

  df2v4 = df2-df4; 

  df3v4 = df3-df4; 
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Appendix B: Manual 3-Step --- Step 1 (Mplus Syntax) 

 

Variable: 

usevariables = enjm goodm undstdm nervm scarem; 

categorical = enjm goodm undstdm nervm scarem; 

auxiliary = gender raceth emthirtn ea29kr; 

 

missing=all(9999); 

idvariable = lsayid; 

classes = c(4); 

 

Define: 

  !Renaming variables to make output easier to read 

  enjm = ca28ar; 

  goodm = ca28br; 

  undstdm = ca28cr; 

  nervm = ca28er; 

  scarem = ca28gr; 

 Analysis: 

  Type = mixture; 

  starts = 0; 

  processors = 4; 

 

 Model: 

  %OVERALL% 

      %C#1%  !using start values to speed up estimation 

       [ enjm$1*1.59328]; 

       [ goodm$1*1.25417]; 

       [ undstdm$1*-0.34487]; 

       [ nervm$1*-0.50261]; 

       [ scarem$1*-15]; 

 

      %C#2% 

       [ enjm$1*-1.87899]; 

       [ goodm$1*-1.75626]; 

       [ undstdm$1*-1.77309]; 

       [ nervm$1*0.99921]; 

       [ scarem$1*0.54120]; 

 

      %C#3% 

       [ enjm$1*-2.03944]; 

       [ goodm$1*-2.80241]; 

       [ undstdm$1*-3.06331]; 

       [ nervm$1*-2.77095]; 

       [ scarem$1*-3.94408]; 

 

      %C#4% 
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       [ enjm$1*1.86433]; 

       [ goodm$1*2.07785]; 

       [ undstdm$1*1.23713]; 

       [ nervm$1*1.69216]; 

       [ scarem$1*1.46335]; 

 

  Output: Tech1 svalues; 

 

  Plot: Type = plot3; 

   series = enjm goodm undstdm nervm scarem (*); 

 

  SaveData: 

    file is Step1_LSAY_4class_savedata_jobdistal.txt; 

    save = cprob; 

    format = free; 

    missflag = 9999; 
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Appendix C: Manual 3-step --- Step 3 (Mplus Syntax) 

Variable: 

  Names are 

      ENJM 

      GOODM 

      UNDSTDM 

      NERVM 

      SCAREM 

      GENDER 

      RACETH 

      EMTHIRTN 

      EA29KR 

      CPROB1 

      CPROB2 

      CPROB3 

      CPROB4 

      CMOD 

      LSAYID; 

 

  Missing are all(9999); 

  idvariable = lsayid; 

  usevariables = cmod emthirtn EA29KR female;! urm; 

  nominal = cmod; 

  classes = c(4); 

 

Define: 

  female = gender EQ 1; 

  center female (grandmean); 

 

Analysis: 

  type = mixture; 

  starts = 100 50; 

  processors = 4; 

 

Model: 

  %overall% 

  c on female;          !latent class variable on cov 

  emthirtn on female;   !distal on cov 

  EA29KR on female;     !distal on cov 

 

%c#1% 

  !syntax below is for the manual 3-step 

  [cmod#1@1.852   cmod#2@-0.095    cmod#3@0.310];  

 

  [emthirtn] (dm1);  !estimating class-specific mean for math                     

     !labeling it for testing later  

mailto:cmod#3@0.310
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   emthirtn;   !estimating class-specific var for math 

   [EA29KR] (dj1);   !estimating class-specific math-job                      

   EA29KR;           !estimating class-specific var for math-job 

 

%c#2% 

  [cmod#1@-0.707    cmod#2@3.124    cmod#3@0.984]; 

   

  [emthirtn] (dm2); 

   emthirtn; 

 

  [EA29KR] (dj2); 

   EA29KR; 

 

%c#3% 

 

  [cmod#1@3.617    cmod#2@5.406    cmod#3@7.903]; 

 

  [emthirtn] (dm3); 

 emthirtn; 

 

  [EA29KR] (dj3); 

   EA29KR; 

 

%c#4% 

 

  [cmod#1@-2.348   cmod#2@-2.563   cmod#3@-5.954]; 

 

  [emthirtn] (dm4); 

   emthirtn; 

 

  [EA29KR] (dj4); 

   EA29KR; 

 

Model Test: 

  0 = dm1 - dm2; 

  0 = dm1 - dm3; 

  0 = dm1 - dm4; 

 

!These model constraint commands are used to create and test 

!pairwise differences of each distal mean across the four 

!classes.  

! dm1v2 = distal “math” difference comparing class 1 and 2 

! dm1v3 = distal “math” difference comparing class 1 and 3 

! dj1v2 = distal “math-job” difference comparing class 1 and 2 

 

 Model Constraint: 

  New(dm1v2 dm1v3 dm1v4 dm2v3 dm2v4 dm3v4 
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  dj1v2 dj1v3 dj1v4 dj2v3 dj2v4 dj3v4); 

 

  dm1v2 = dm1 - dm2; 

  dm1v3 = dm1 - dm3; 

  dm1v4 = dm1 - dm4; 

  dm2v3 = dm2 - dm3; 

  dm2v4 = dm2 - dm4; 

  dm3v4 = dm3 - dm4; 

 

  dj1v2 = dj1 - dj2; 

  dj1v3 = dj1 - dj3; 

  dj1v4 = dj1 - dj4; 

  dj2v3 = dj2 - dj3; 

  dj2v4 = dj2 - dj4; 

  dj3v4 = dj3 - dj4; 
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Appendix D: BCH-- Step 1 (Mplus Syntax) 
 

Variable: 

  usevariables = enjm goodm undstdm nervm scarem; 

  categorical = enjm goodm undstdm nervm scarem; 

  auxiliary = gender raceth emthirtn ea29kr; 

  missing=all(9999); 

  idvariable = lsayid; 

  classes = c(4); 

 

Define: 

  ! renaming variables to make output easier to read 

  enjm = ca28ar; 

  goodm = ca28br; 

  undstdm = ca28cr; 

  nervm = ca28er; 

  scarem = ca28gr; 

 

Analysis: 

  Type = mixture; 

  starts = 0; 

  processors = 4; 

 

Model: 

  %OVERALL% 

  

   %C#1% 

       [ enjm$1*1.59328]; 

       [ goodm$1*1.25417]; 

       [ undstdm$1*-0.34487]; 

       [ nervm$1*-0.50261]; 

       [ scarem$1*-15]; 

 

   %C#2% 

       [ enjm$1*-1.87899]; 

       [ goodm$1*-1.75626]; 

       [ undstdm$1*-1.77309]; 

       [ nervm$1*0.99921]; 

       [ scarem$1*0.54120]; 

 

   %C#3% 

       [ enjm$1*-2.03944]; 

       [ goodm$1*-2.80241]; 

       [ undstdm$1*-3.06331]; 

       [ nervm$1*-2.77095]; 

       [ scarem$1*-3.94408]; 
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    %C#4% 

       [ enjm$1*1.86433]; 

       [ goodm$1*2.07785]; 

       [ undstdm$1*1.23713]; 

       [ nervm$1*1.69216]; 

       [ scarem$1*1.46335]; 

 

Output: Tech1 svalues; 

 

Plot: Type = plot3; 

  series = enjm goodm undstdm nervm scarem (*); 

 

SaveData: 

  file is Step1BCH_LSAY_4class_savedata_jobdistal.txt; 

  save = bchweights; 

  format = free; 

  missflag = 9999; 
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Appendix E: BCH--Step 3 (Mplus Syntax) 
 

Variable: 

 

  Names are 

      ENJM 

      GOODM 

      UNDSTDM 

      NERVM 

      SCAREM 

      GENDER 

      RACETH 

      EMTHIRTN 

      EA29KR 

      BCHW1 

      BCHW2 

      BCHW3 

      BCHW4 

      CPROB1 

      CPROB2 

      CPROB3 

      CPROB4 

      CMOD 

      LSAYID; 

 

  Missing are all(9999); 

  idvariable = lsayid; 

  usevariables = bchw1-bchw4 EA29KR emthirtn female;! urm; 

  classes = c(4); 

  training = bchw1-bchw4 (bch); 

  auxiliary = cmod; 

 

Define: 

  female = gender EQ 1; 

  center female (grandmean); 

   

Analysis: 

  type = mixture; 

  starts = 100 50; 

  processors = 4; 

 

Model: 

  %overall% 

  c on female; 

  emthirtn on female; 

  EA29KR on female; 
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 %c#1% 

  [emthirtn] (dm1); 

   emthirtn; 

 

  [EA29KR] (dj1); 

   EA29KR; 

 

  emthirtn on female (rm1); 

  EA29KR on female (rj1); 

 

 

 %c#2% 

  [emthirtn] (dm2); 

  emthirtn; 

 

  [EA29KR] (dj2); 

  EA29KR; 

 

  emthirtn on female (rm2); 

  EA29KR on female (rj2); 

 

 %c#3% 

  [emthirtn] (dm3); 

  emthirtn; 

 

  [EA29KR] (dj3); 

  EA29KR; 

 

  emthirtn on female (rm3); 

  EA29KR on female (rj3); 

 

 %c#4% 

  [emthirtn] (dm4); 

   emthirtn; 

 

  [EA29KR] (dj4); 

   EA29KR; 

 

   emthirtn on female (rm4); 

   EA29KR on female (rj4); 

 

Model Test: 

  0 = dm1 - dm2; 

  0 = dm1 - dm3; 

  0 = dm1 - dm4; 

 

Model Constraint: 
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  New(dm1v2 dm1v3 dm1v4 dm2v3 dm2v4 dm3v4 

  dj1v2 dj1v3 dj1v4 dj2v3 dj2v4 dj3v4); 

 

  dm1v2 = dm1 - dm2; 

  dm1v3 = dm1 - dm3; 

  dm1v4 = dm1 - dm4; 

  dm2v3 = dm2 - dm3; 

  dm2v4 = dm2 - dm4; 

  dm3v4 = dm3 - dm4; 

 

  dj1v2 = dj1 - dj2; 

  dj1v3 = dj1 - dj3; 

  dj1v4 = dj1 - dj4; 

  dj2v3 = dj2 - dj3; 

  dj2v4 = dj2 - dj4; 

  dj3v4 = dj3 - dj4; 

 

Output: Tech1 svalues sampstat; 

 

SaveData: 

  file is Step3BCH_LSAY_4class_interact_savedata_jobdistal.txt; 

  save = cprob; 

  format = free; 

  missflag = 9999; 
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Appendix F: Relevant Syntax Specifying Covariate and Distal Outcome Effects Using the ML 

Approach After Accounting for DIF Effects (Latent Gold Syntax) 

 
options 

   !GUI options left out for brevity 

   step3 modal ml; 

 

variables 

   independent GENDER; 

   dependent math-job nominal, math-IRT continuous; 

   latent Cluster nominal posterior = (clu#1 clu#2 clu#3 clu#4);     

 

equations 

   Cluster <- 1 + GENDER; 

   math-job <- 1 + Cluster; 

   math-IRT <- 1 + Cluster; 

   math-IRT; 
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Appendix G: Relevant Syntax Specifying Covariate and Distal Outcome Effects Using the BCH 

Approach After Accounting for DIF Effects (Latnet Gold syntax) 

 

options 

   !GUI options left out for brevity 

   step3 modal bch; 

 

variables 

   independent GENDER; 

   dependent math-job nominal, math-IRT continuous; 

   latent Cluster nominal posterior = (clu#1 clu#2 clu#3 clu#4);     

 

equations 

   Cluster <- 1 + GENDER; 

   math-job <- 1 + Cluster; 

   math-IRT <- 1 + Cluster; 

   math-IRT; 

 


