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SUMMARY

This paper proposes growth mixture modeling to assess intervention effects in longitudinal randomized
trials. Growth mixture modeling represents unobserved heterogeneity among the subjects using a finite-
mixture random effects model. The methodology allows one to examine the impact of an intervention
on subgroups characterized by different types of growth trajectories. Such modeling is informative
when examining effects on populations that contain individuals who have normative growth as well as
non-normative growth. The analysis identifies subgroup membership and allows theory-based modeling
of intervention effects in the different subgroups. An example is presented concerning a randomized
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intervention in Baltimore public schools aimed at reducing aggressive classroom behavior, where only
students who were initially more aggressive showed benefits from the intervention.

Keywords: Growth modeling; Latent variables; Maximum likelihood; Randomized trials; Trajectory classes;
Treatment-baseline interaction.

1. INTRODUCTION

This paper presents a novel application of growth mixture modeling (Muthén and Shedden, 1999;
Muthén, 2001a,b; Muth́en and Muth́en, 2000, 2001) to preventive intervention trials in which individuals
are randomized into intervention and control groups and measured repeatedly before and after the
start of the intervention. The strength of randomized repeated measures studies is that they allow the
assessment of intervention effects on trajectories rather than merely focussing on overall intervention
effects at a specific time point. The analysis better utilizes this strength by allowing for many forms of
unobserved heterogeneity among subjects typically encountered in prevention studies, both with respect
to development in the control group and with respect to the intervention effects. The analysis can also help
point out advantageous refinements in the design of future intervention studies.

Development in the control group often needs to be described in terms of unobserved trajectory classes
of development, within which there may be further individual trajectory variation. For example, some
children in early school grades may be on a developmental path of reading disability, others may show
mild forms of reading problems, while still others progress more normally (Muthénet al., 2000). Another
example involves different trajectories of aggressive/disruptive behavior. Evidence for the existence of
three patterns of aggression trajectories—an early onset, a late onset, and a stable low aggressive pattern—
has been reported by Moffitt (1993). A third example involves three major trajectory classes of alcohol
drinking behavior among young adults with a normative low use class, an early onset class, and an
escalating class (Muthén and Muth́en, 2000). Multiple trajectories are often useful in medicine; Pearson
et al. (1994) considered different groups of males with linear or exponential growth in prostate specific
antigen (PSA). The average trajectories for the classes in these examples are different from one another
with individual variation around each. It is important to be able to distinguish between individuals in the
different classes because membership in different classes may have different antecedents, e.g. poverty for
reading development, as well as consequences, e.g. alcohol dependence for more severe drinking behavior
(Muthén and Shedden, 1999) and prostate cancer for those with exponential growth in PSA (Pearsonet al.,
1994). This paper will study an example from randomized preventive field trials conducted in Baltimore
by Johns Hopkins University, the Baltimore City Public Schools, and Morgan State University (Dolanet
al., 1993; Ialongoet al., 1999). These studies intervene during first and second grade to improve reading
and reduce aggression with outcomes assessed through middle school and beyond.

Section 2 gives a description of the Baltimore intervention study. Section 3 proposes two kinds of
growth mixture models that allow for differential intervention impact among unobserved subgroups of
subjects. Section 4 puts the models in a general framework and presents maximum-likelihood estimation
using the EM algorithm. Section 5 shows the analysis results. Section 6 concludes.

2. THE BALTIMORE INTERVENTION STUDY

The motivation for the analyses is a school-based preventive intervention study carried out by the
Baltimore Prevention Research Center under a partnership between the Johns Hopkins University, the
Baltimore City Public Schools, and Morgan State University. In this intervention trial, children were
followed from first to seventh grade with respect to the course of aggressive behavior, and a follow-up to
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age 18 also allowed for the assessment of intervention impact on the probability of juvenile delinquency
as indicated by juvenile court records.

One of the interventions applied during the first and second grade was the Good Behavior Game
(GBG), a universal intervention aimed at reducing aggressive behavior. GBG is a classroom-based
behavior management strategy for teachers that showed positive effects on short-term aggressive (Dolan
et al., 1993) and off-task behavior (Brown, 1993), as well as aggressive behavior in the long-term, i.e.
through grade 7 (Kellamet al., 1994). Key scientific questions address whether the GBG reduces the
slope of the aggression trajectory across time, whether the intervention varies in impact for children who
initially display higher levels of aggression, and whether the intervention impacts distal outcomes. It has
been suggested that GBG may have its largest effect for those who are in the middle trajectory class,
showing milder forms of problems, while not being strong enough to affect the most seriously aggressive
children and not needed for members of the stable non-aggressive group. Analyses of these hypotheses are
presented in this paper. Allowing for multiple trajectory classes in the growth model gives a flexible way
to assess differential effects of the intervention. Intervention effects may differ across trajectory classes
with respect to the rate of change over time and may also produce changes in trajectory class membership.

The overall design of the study involved random assignment of both schools and classrooms after
making sure all first-grade classes within a school were balanced on kindergarten performance. Schools
were first matched into six triplets and then randomly assigned within blocks to receive only the standard
setting in all first-grade classrooms, to receive the GBG in one or more of its classes, or to receive a
separate learning intervention in one or more of its classes. Within those schools where the GBG was made
available, first-grade classrooms were randomly assigned to recieve either this new intervention or the
standard control setting condition. Further details on the design can be found in Brown and Liao (1999).
For the purposes of this study, the analyses have been limited to the children receiving the GBG and their
corresponding controls within the same schools. The primary outcome variable of interest was teacher
ratings of each child’s aggressive behavior in the classroom for grades 1–7. After an initial assessment in
fall of first grade, the intervention was administered during the first two grades, with nearly all children
remaining in the same intervention condition in the second year as they were in the first. Teacher ratings
of a child’s aggressive behavior were made from fall and spring for the first two grades and every spring
in grades 3–7. The ratings were made using the Teacher’s Observation of Classroom Adaptation Revised
(TOCA-R) instrument (Werthamer-Larssonet al., 1991), consisting of an average of 10 items, each rated
on a six-point scale from ‘almost never’ to ‘almost always’. Information was also collected on other
concurrent and distal outcomes, including school removal and juvenile court records. The current analyses
focus on boys and intervention status as defined by classroom assignment in fall of first grade, resulting
in a sample of 119 boys in the intervention group and 80 boys in the control group.

3. GROWTH MIXTURE MODELING

To investigate whether or not subgroups of children benefit differently from the intervention, a finite-
mixture random effects model will be formulated, where the unobserved subgroups of the mixture are
conceptualized as different trajectory classes captured by a latent class variable withK classes. Two
general growth mixture models will be studied.

3.1 Growth mixture model 1

Model 1 assumes that intervention effects are captured in the average slopes for each class. The notion
is that an individual has a certain trajectory class membership that does not change over time. The
intervention produces a change in within-class trajectory from that expected for controls.
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Assume for individuali in classk (k = 1, 2, . . . , K ),

yit = η0i + η1i at + η2i a2
t + εi t , (1)

whereyit (i = 1, 2, . . . , n; t = 1, 2, . . . , T ) are aggression outcomes influenced by the random effects
η0i , η1i , andη2i described below. The residualsεi t have aT × T covariance matrixΘk , possibly varying
across the trajectory classes (k = 1, 2, . . . , K ). The intervention begins after the first measurement
occasion. Settinga1 = 0 in (1) definesη0i as pre-intervention initial status att = 1, i.e. fall of first
grade. The remainingat values are set according to the distance in timing of measurements. It is assumed
for simplicity in (1) that theat values do not vary across class or across intervention groups so that the
growth function is the same.

Let the dummy variableIi denote the intervention status for individuali (I = 0 for the control group
and I = 1 for the intervention group). The random effects are allowed to have different distributions for
individuals belonging to different trajectory classes and for different intervention status. For classk,

η0i = α0k + ζ0i , (2)

η1i = α1k + γ1k Ii + ζ1i , (3)

η2i = α2k + γ2k Ii + ζ2i . (4)

The residualsζi have a 3× 3 covariance matrixΨk , possibly varying across classesk (k = 1, 2, . . . , K ).
For simplicity, Ψk andΘk are assumed to not vary across intervention groups. As seen in (2)–(4), the
control group (Ii = 0) consists of children from different trajectory classes that vary in the means
of the growth factors,α0k , α1k , andα2k . This represents the normative development in the absence of
intervention. Because of randomization, the control and intervention group are assumed to be statistically
equivalent att1. This implies thatI is assumed to have no effect onη0i in (2) so thatα0 represents the
mean of the initial-status random effect, common to both the control and intervention group. Intervention
effects are described byγ1k , γ2k as a change in average growth rate that can be different for different
classesk.

It may be noted that this model assumes that intervention status does not influence class membership.
Alternative models were also pursued, however. Regressing class membership on intervention status, it
wasfound that class sizes did not vary significantly across intervention groups. A technical report available
from the first author includes a model that also allows transitions between classes as a function of the
intervention.

3.2 Growth mixture model 2

Model 2 is the same as model 1, but adds a distal outcome that is influenced by the growth process fory.
Consider, for example, a categorical outcomeu. Model 2 assumes that theu probabilities are affected by
the trajectory classes and that the intervention has a different effect onu for different trajectory classes.

With a binary distal outcome the class influence is described as the logit regression

logit P(ui = 1 | classk, Ii ) = −τk + κk Ii . (5)

Noting that−τk +κk Ii is the log odds forui = 1 versusui = 0 for individuali in classk, the intervention
effect is expressed by the corresponding log odds ratio forIi = 1 versusIi = 0 in classk, obtained as the
difference

−τk + κk − (−τk) = κk . (6)
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An odds ratio estimate and corresponding confidence interval are obtained by exponentiating theκk

estimate and confidence limits.
The effect of class membership on the distal outcome can be expressed by the log odds forui = 1

versusui = 0 for individual i in classk, or by the corresponding log odds ratio for classk compared to a
normative classK ,

−τk + κk Ii − (−τK + κK Ii ). (7)

It follows from (7) that when the intervention effect on the distal outcome is constant across classes,
i.e. κ1 = κ2, . . . = κK , the log odds ratio for the distal outcome when comparing classk to classK is
−τk + τK .

4. GROWTH MIXTURE MODELING FRAMEWORK, ESTIMATION, AND MODEL ASSESSMENT

The two growth mixture models proposed for the Baltimore intervention study may be seen as special
cases of a more general modeling framework presented by Muthén and Shedden (1999) and extended by
Muthén and Muth́en (2001, see Appendix 8). Following is a brief review of this work as it pertains to the
current models.

4.1 Modeling framework

The observed variables arex, y, andu, wherex denotes aq × 1 vector of covariates,y denotes ap × 1
vector of continuous outcome variables, andu denotes anr ×1 vector of binary outcome variables. In this
applicationr = 1. The latent variableη denotes anm × 1 vector of continuous variables andc denotes a
latent categorical variable withK classes,ci = (ci1, ci2, . . . , ci K )′, wherecik = 1 if individual i belongs
to classk and zero otherwise.

The latent classes ofc influence bothy andu. Consider first they part of the model. Conditional on
classk,

yi = Λk ηi + εi , (8)

ηi = αk + Γk xi + ζi , (9)

where the residual vectorεi is N (0,Θk) and the residual vectorζi is N (0,Ψk), both assumed to be
uncorrelated with other variables. Conditional on classk, (8) and (9) form a conventional latent variable
model (see, for example, Bollen (1989)), where the density[yi |ci , xi ] is N (µi ,Σi ), where for classk,

µi = Λk (αk + Γk xi ), (10)

Σi = Λk Ψk Λ′
k + Θk . (11)

A logistic regression is specified for the binaryu. For classk,

P(ui = 1|xi ) = 1

1 + eτk−κ′
k xi

. (12)

Translating model 1 and model 2 into matrix terms corresponding to the general model form,xi = Ii ,
yi = (yi1, yi2, . . . , yiT )′, ηi = (η0i , η1i , η2i )

′, and
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Λk =




1 0 0
1 1 1
1 a3 a2

3
...

...
...

1 aT a2
T




, αk =

α0k

α1k

α2k


 ,Γk =


 0

γ1k

γ2k


 . (13)

With the modeling framework presented above, it is possible to examine a wide variety of hypotheses
involving both the parameters and the dimensionality ofc andη. This framework is an extension of the
mixture mixed-effects model of Verbeke and Lesaffre (1996). It is also more general than the model
of Nagin (1999); Roederet al. (1999), and Joneset al. (2001): in their workΨk = 0, Θk = θI.
Identification of latent variable mixture models of the type presented here is demonstrated in Lubkeet
al. (2001). The modeling framework given above draws on that of Muthén and Shedden (1999) and
Muthén and Muth́en (2001, Appendix 8), which offers more generality than is needed here, including
amultinomial regression of latent class membership on covariates, regressions among the random effects,
time-varying covariates, multiple ordinalu variables following a latent class model, and partially known
class membership. Applications to non-intervention settings are given in Muthén (2001a,b); Muth́en
and Muth́en (2000), and Muth́en et al. (2000). Applications to latent class membership representing
nonparticipation (noncompliance) in intervention studies (Angristet al., 1996) are given in Jo (2000),
Jo and Muth́en (2000).

4.2 Estimation

With a sample ofn independent observations ony, u, x, the latent variable dataη1, η2, . . . ,ηn and
c1, c2, . . . , cn may be viewed as missing data with the complete-data log likelihood conditional onx
expressed as

n∑
i=1

(log[ui |ci , xi ] + log[ηi |ci , xi ] + log[yi |ci , ηi , xi ]), (14)

where the first term is defined by (12), and the last two terms are normal densities. In this way, the bracket
notation is used to refer to either probabilities or densities for simplicity in the presentation. Alternatively,
with only c1, c2, . . . , cn viewed as missing data, the complete-data log likelihood is

n∑
i=1

(log[ui |ci , xi ] + log[yi |ci , xi ]), (15)

The model can be estimated by maximum-likelihood using EM algorithms. Muthén and Shedden
(1999) proposed an EM algorithm drawing on (14), while Muthén and Muth́en (2001) use an EM
algorithm drawing on (15). A brief summary of the latter approach follows.

Consider the conditional probability of individuali belonging to classk, given the observed data,

pik = P(cik = 1|yi , ui , xi ) = P(cik = 1) [yi |ci , xi ] [ui |cik = 1, xi ]/[yi , ui |xi ]. (16)

It follows that in (15),

n∑
i=1

log[yi |ci , xi ] =
n∑

i=1

K∑
k=1

cik log[yi |xi ]k . (17)
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The EM algorithm used in Muth́en and Muth́en (2001) computes the expected value ofci using (16).
Given this, the M step maximizes the expected complete-data log likelihood function, conditional on the
observed data, separately for they, x part of the model and theu, x part of the model. For they, x part this
is

E

( n∑
i=1

log[yi |ci , xi ] |ui , yi , xi

)
=

n∑
i=1

K∑
k=1

pik log[yi |xi ]k, (18)

which corresponds to simultaneous estimation of theK groups with posterior-probability weighted sample
mean vectors and covariance matrices. The maximization for theu, x part of the model is broken down
into a multinomial regression optimization forc related tox (when this part of the model is present),

n∑
n=1

K∑
k=1

pik log P(cik = 1|xi ) (19)

and a logistic regression optimization foru related toc andx,

n∑
i=1

r∑
j=1

K∑
k=1

pik log P(ui j = 1|ci , xi ). (20)

This EM algorithm is implemented in the Mplus program (Muthén and Muth́en, 2001), which is the
program used for the analyses.† Mplus allowsy andu to be missing at random (Little and Rubin, 1987). It
should be noted that mixture models in general are prone to have multiple local maxima of the likelihood
and the use of several different sets of starting values in the iterative procedure is strongly recommended.

4.3 Model assessment

For comparison of fit of models that have the same number of classes and are nested, the usual likelihood-
ratio chi-square difference test can be used. Comparison of models with different numbers of classes,
however, is accomplished by a Bayesian information criterion (BIC) (Schwartz, 1978; Kass and Raftery,
1993),

B I C = −2 log L + r ln n, (21)

wherer is the number of free parameters in the model. The lower the BIC value, the better the model.
The degree to which the latent classes are clearly distinguishable by the data and the model can be

assessed by using the estimated conditional class probabilities for each individual. By classifying each
individual into his/her most likely class, aK × K table can be constructed with rows corresponding to
individuals classified into a given class. For individuals in each row, the column entries give the average
conditional probabilities. This will be referred to as a classification table (Nagin, 1999). High diagonal
and low off-diagonal values indicate good classification quality. A summary measure of the classification
is given by the entropy measure (see, for example, Ramaswamyet al. (1993),

EK = 1 −
∑

i
∑

k(− p̂ik ln p̂ik)

n ln K
, (22)

where p̂ik denotes the estimated conditional probability for individuali in classk. Entropy values range
from zero to one, where entropy values close to one indicate clear classifications in that the entropy
decreases for probability values that are not close to zero or one.

†Input specifications for the Mplus analyses can be found at www.statmodel.com
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The fit of the model to the data can be studied by comparing for each class estimated moments with
moments created by weighting the individual data by the estimated conditional probabilities (Roeder
et al., 1999). To check how closely the estimated average curve within each class matches the data, it
is also useful to randomly assign individuals to classes based on individual estimated conditional class
probabilities. Plots of the observed individual trajectories together with the model-estimated average
trajectory can be used to check assumptions (Bandeen-Rocheet al., 1997).

5. GROWTH MIXTURE ANALYSES

In this section the Baltimore intervention data are analyzed in four steps: using a conventional
single-class model; using an initial growth mixture exploration of the control and intervention groups;
using model 1; and using model 2. Because children are clustered within classrooms, standard errors of
parameter estimates were also estimated using a sandwich estimator assuming independent observations
only across classrooms. The resulting standard errors were very similar to the unadjusted standard errors
which are reported here.

5.1 Conventional single-class analyses

As a first step in the repeated measures analysis it is useful to study the normative development of
aggressive behavior shown in the control group. This establishes the trajectory shape in the absence of
intervention so that effects of the intervention can be more clearly understood. Initial explorations pointed
to a quadratic growth curve model. The random effects did not need to be correlated. The time-specific
residuals needed to be correlated for fall and spring for each of the two first grades. Likelihood-ratio
chi-square testing was used to aid these decisions.

A joint analysis of the 80 control group children and the 119 intervention group children using a single-
class (K = 1) version of the model of (1)–(4), i.e. a conventional Laird and Ware (1982) model, resulted
in an insignificant intervention effect with the estimates (s.e.)γ̂1 = −0.01 (0.08), γ̂2 = 0.00 (0.01).
This produces a spring grade 7 estimated mean difference between the control and intervention group
of only −0.04, or approximately 0.03 of the aggression score standard deviation at that time point, an
inconsequential effect size.

5.2 Initial growth mixture analyses

An initial exploration by growth mixture analysis is important because model 1 includes many possible
alternatives. The control group is first analyzed separately to establish normative growth in the absence
of an intervention, followed by a separate analysis of the intervention group. Alternative variance
assumptions were investigated, holding all variances equal across classes versus letting the intercept and
residual variances differ across certain classes. Based on likelihood-ratio chi-square testing in the control
group as well as the intervention group, it was found that the intercept and residual variances needed to
be different for a class of children with stable low level of aggression. As a guide in choosing between
models with different number of classes, the BIC was used. It is useful to determine the number of classes
in separate analyses of the two groups for two reasons. First, the control group analysis suggests the
number of classes in the absence of an intervention and given that it is assumed that the intervention does
not influence class membership, this number of classes should also hold in the intervention group. Second,
the joint analysis of the two groups adds its own model specifications and it is valuable to establish the
number of classes without adding these specifications.

The BIC values were obtained for 1–5 classes for full and partial variance homogeneity in the control
group and indicated a superior fit when allowing non-invariant variances. The BIC values suggested a
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considerably better fit when allowing more than one class. With heterogeneous variances, the lowest value
was at 4 classes although the 3-, 4-, and 5-class solutions had rather similar values.

The left column of Figure 1 shows the estimated mean growth curves for the 3-, 4-, and 5-class models
for the control group.

The 3-class solution has class probabilities 0.09, 0.52, 0.39, the 4-class solution has class probabilities
0.08, 0.38, 0.41, 0.13, and the 5-class solution has class probabilities 0.08, 0.32, 0.45, 0.09, 0.06. Going
from three to five classes provides an increasingly elaborate description of the trajectories, while the
previously obtained classes do not change much when adding a new class. The 3- and 4-class solutions will
be highlighted here. The two solutions share three of the classes and they will be named High, Medium,
and Low corresponding to their relative positions. The remaining class in the 4-class solution will be
named Late-starters.

Considering the 4-class solution, the 8% in the High class show a high aggression level in early grades
that decreases over time. In line with Moffitt (1993) this group corresponds to an ‘early starter’ group of
aggressive boys. The Late-starters class contains 13% of the children, showing a low initial aggression
level that increases over time. The Medium class and the Low class have the highest probabilities, 38 and
41% respectively, and show low aggression trajectories that do not increase or decrease over time. The
Low class has low intercept and residual variances indicating little fluctuation in the development. The
Low class contains the stable low aggressive children.

The right column of Figure 1 shows the estimated mean curves for the intervention group using the 3-,
4-, and 5-class models. Here, the High class shows a decline earlier than for the control group, indicating
a beneficial intervention effect on the highest-risk boys. A beneficial intervention effect is also indicated
for the Late-starters class of the 4- and 5-class solutions. These intervention effects will now be examined
in a joint analysis of control and intervention children.

5.3 Model 1 analyses

In Model 1, the joint analysis of the control and the intervention group based on the model in (1)–(4) uses
the specifications arrived at from the initial analyses discussed above. Both the 3- and 4-class versions are
studied for comparison.

In the joint analysis using four classes it was found that not only the Low class, but also the Late-
starters class, required a separate specification of variance parameters. The Late-starters class was found
to have insignificant intercept variance and significantly smaller residual variances than the High and
Medium classes. The resulting 4-class solution had a log likelihood value of−1554.34 with the BIC value
of 3394.53 (54 parameters). These can be compared to those of the 3-class model:−1604.40 and 3420.52
(40 parameters), respectively. The parameter estimates for the 4-class solution are shown in Table 1.

The estimated mean curves for the 3- and 4-class versions of Model 1 are shown in Figure 2. For the
3-class solution there appears to be a beneficial intervention effect for the High class through a lowered
aggression trajectory. Although the difference in the means of the linear terms for the High class is sizable,
γ̂1 = −0.45, this is not significantly different from zero (95% CI:−0.92, 0.02). The Medium class and the
Low class show no intervention effects. Thus this model suggests that the intervention affects the group
with the highest risk, but does not provide unequivocal evidence.

The intervention impact in the 4-class solution shows a pattern for the High class similar to that
of the 3-class solution, but the result is again insignificant. A beneficial effect is also suggested for the
Late-starters class, but is also non-significant. Overall, the likelihood-ratio test of any intervention effect
in terms of the linear and quadratic means (γ1, γ2 coefficients) over the four classes is very small (a
likelihood-ratio test givesχ2(8) = 1.40; p > 0.50 for the 4-class solution). The lack of significance
is perhaps in large part due to low power given small class sizes in combination with large within-class
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Fig. 1. Separately estimated mean growth curves for 3-, 4-, and 5-class models for control and intervention groups.
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Table 1.Parameter estimates for 4-class model 1

Model yit = η0i + η1i at + η2i a2
t + εi t at = 0, 0.5, 1.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5

η0i = α0k + ζ0i
η1i = α1k + γ1k Ii + ζ1i
η2i = α2k + γ2k Ii + ζ2i

V (ζ |classk) = �k
V (ε|classk) = �k

P(cik) = eαck∑
eαck

Aggression Growth Estimates
Parameter High class Medium class Low class LS class

estimate (S.E.) estimate (S.E.) estimate (S.E.) estimate (S.E.)
α0 3.846 (0.256) 2.571 (0.108) 1.531 (0.079) 1.382 (0.059)
α1 0.502 (0.204) 0.076 (0.109) −0.144 (0.049) 0.272 (0.071)
α2 −0.078 (0.034) −0.015 (0.018) 0.017 (0.049) −0.014 (0.014)
γ1 −0.329 (0.217) −0.045 (0.117) −0.079 (0.038) −0.074 (0.089)
γ2 0.025 (0.040) 0.015 (0.021) 0.015 (0.006) −0.004 (0.017)

V (ζ0) 0.077 (0.042) 0.077 (0.042) 0.000 (fixed) 0.000 (fixed)
V (ζ1) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001)
V (ζ2) 0.000 (fixed) 0.000 (fixed) 0.000 (fixed) 0.000 (fixed)

V (ε1F ) 1.163 (0.176) 1.163 (0.176) 0.221 (0.057) 0.141 (0.029)
V (ε1S) 0.700 (0.129) 0.700 (0.129) 0.175 (0.037) 0.189 (0.040)
V (ε2F ) 0.670 (0.111) 0.670 (0.111) 0.321 (0.078) 0.217 (0.044)
V (ε2S) 0.744 (0.119) 0.744 (0.119) 0.237 (0.053) 0.328 (0.073)
V (ε3S) 1.266 (0.243) 1.266 (0.243) 0.018 (0.007) 0.281 (0.089)
V (ε4S) 0.855 (0.146) 0.855 (0.146) 0.047 (0.018) 0.551 (0.149)
V (ε5S) 0.678 (0.129) 0.678 (0.129) 0.081 (0.029) 0.475 (0.139)
V (ε6S) 1.269 (0.213) 1.269 (0.213) 0.050 (0.021) 0.763 (0.214)
V (ε7S) 1.091 (0.200) 1.091 (0.200) 0.023 (0.014) 0.655 (0.191)

C(ε1F , ε1S) 0.141 (0.030) 0.141 (0.030) 0.141 (0.030) 0.141 (0.030)
C(ε2F , ε2S) 0.219 (0.048) 0.219 (0.048) 0.219 (0.048) 0.219 (0.048)

Latent class estimates
Parameter Estimate S.E.

αc1 −0.395 0.302
αc2 −0.190 0.287
αc3 0.672 0.228
αc4 0.000 (fixed)

variation; for example, the High class contains 15% of the sample, or only 12 boys from the control group
and 18 boys from the intervention group (the within-class variation is shown in Figure 4).

Although the intervention effect is not significant, the estimated mean curves of Figure 2 show that
for the High class, the estimated effect size is about one aggression score standard deviation for grades
2–6 in both the 3- and 4-class versions of the model. The High class contains about the same percentage
of children in both the 3- and 4-class solutions, 14–15%. This is roughly comparable to the percentages
of children found in the separate-group solutions of Figure 1.
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3-Class Model 1
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Fig. 2. Estimated mean growth curves for 3- and 4-class models.

In line with Section 4.3, the quality of the classification can be studied in terms of estimated
probabilities in the classification table shown in Table 2, each row corresponding to individuals who
are most likely to be in the particular class of that row. High classification quality is indicated by high
diagonal probability values. Table 2 shows the results for the 4-class solution. The entropy value is 0.83
for the 3-class version and 0.80 for the 4-class version.

Figure 3 shows that the estimated 4-class model appears to fit the data well when compared to the
probability-weighted means and variances. An exception is seen in the variances for the control group in
grade 1.

A visualization of how the model matches the individual data is given in Figure 4 for the 4-class
solution. As discussed in Section 4.3, this may be obtained by comparing the estimated mean curve in
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Table 2.Classification table for 4-class model 1

Most likely Average posterior probabilities
class High class Medium class Low class LS class
High 0.864 0.136 0.000 0.000
Medium 0.057 0.903 0.017 0.024
Low 0.000 0.028 0.913 0.059
LS 0.001 0.064 0.092 0.844
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Fig. 3. Probability-weight means and variances for 4-class model.

each class to raw data trajectories for individuals assigned to that class by a random draw according to the
estimated individual class probabilities. Figure 4 indicates that although individual trajectories fluctuate
greatly, the estimated mean trajectories in the classes cut through the middle of the collection of individual
trajectories rather well. Also, the smaller variances in the Low class and the Late-Starters class are evident
in the figure.
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High Class, Control Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

High Class, Intervention Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

Medium Class, Control Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

Medium Class, Intervention Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

Low Class, Control Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

Low Class, Intervention Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

LS Class, Control Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

LS Class, Intervention Group

Grades 1-7

T
O

C
A

-R

1
2

3
4

5
6

 

 

1
2

3
4

5
6

1F 1S 2F 2S 3S 4S 5S 6S 7S

Fig. 4. Estimated mean growth curves and observed trajectories for 4-class model.
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5.4 Model 2 analyses

Model 2 adds the distal binary outcome of juvenile delinquency prior to age 18. Only the 4-class version
of the model is reported here. The estimated mean curves are essentially the same as for model 1. Two
versions of model 2 were used, depending on whether the effect of intervention on the distal outome
of juvenile court record was allowed to vary across the classes (model 2a), or not (model 2b). The
classification table is similar to that of model 1 with an entropy value of 0.81 for model 2a.

The estimated odds ratios based on the results from model 2a indicate positive intervention effects
on juvenile delinquency in the High, Low, and Late-starter classes. However, none of the classes show
a significant relationship between intervention status and the distal outcome at the 5% level. Comparing
models 2a and 2b, the chi-squared difference is 1.96 with three degrees of freedom and a corresponding
p > 0.50. Thus, class invariance for the effects of the intervention on juvenile delinquency cannot
be rejected. Based on the model 2b results, the estimated common odds ratio for juvenile delinquency
comparing the GBG group to the control group is 0.61 with a corresponding 95% confidence interval of
(0.32, 1.14). While representing a positive intervention effect, the effect is not significant at the 5% level.

It is also possible to assess the effects of class membership on the distal outcome. Based on model
2b, boys in the High class are at a significantly higher risk for having a juvenile court record compared to
boys in the Low class: estimated odds ratio is 8.11 (2.35, 27.97). Boys in the Late-starter and Medium
class do not show a significantly increased risk.

6. CONCLUSIONS

This paper has discussed growth mixture modeling to assess intervention effects in randomized trials.
The two model types that were proposed indicate some of the flexibility of the new methodology and
serve as a stimulus for formulating other models. The methodology allows one to examine in detail the
impact of an intervention on unobserved subgroups characterized by different types of growth trajectories.
The analysis identifies subgroup membership and allows different intervention effects in the different
subgroups. In addition, the analysis can predict the influence of subgroup membership on distal outcomes.

The growth mixture models described in this paper provide representative examples of how to
determine worthwhile benefits from an intervention and when these effects are likely to appear. In this
way, the growth mixture modeling becomes a powerful analytic tool when applied to randomized trials
as well as to non-experimental research. The techniques illustrated here can be easily expanded to fit
particular substantive hypotheses. For example, model 1 alternatives can examine the number of classes,
the differential intervention effects on each class mean and variance, as well as basic assumptions such as
balance in intervention and control at baseline. Variations of model 2 allow us to test differential effects
across classes on distal outcomes as well as indirect effects of the intervention through mediators’ latent
classes. Further model variations are described in a technical report available from the first author.

As a caveat, it should be noted that these techniques should not be used as a substitute for reporting
significant overall or population level effects. In fact, routine reliance on growth mixture modeling in
the absence of main effects is likely to result in spurious findings because of the multiple comparisons
problem. It is recommended that growth mixture modeling be carried out by comparing the empirical
trajectories with those from existing empirical data or theory. In the current situation, the models produced
results that explained previously published finding that pointed to short-term impact on multiple measures
for those boys who began first grade with high levels of aggression (Dolanet al., 1993) and significant
benefit at sixth grade (Kellamet al., 1994).

The idea of detecting different intervention effects for individuals belonging to different trajectory
classes has important implications for designing future intervention studies. It is possible to select
different interventions for individuals belonging to different trajectory classes using longitudinal screening
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procedures. One may attempt to classify individuals into their most likely trajectory class based on a set of
initial repeated measurements before the intervention starts. Alternatively, one may administer a universal
intervention and follow up with a targeted intervention for individuals who show little or no intervention
effect (Brown and Liao, 1999).
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