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CHAPTER 14 

SPECIAL MODELING ISSUES 
 

 

In this chapter, the following special modeling issues are discussed:   

 

 Model estimation 

 Multiple group analysis 

 Missing data 

 Categorical mediating variables 

 Calculating probabilities from probit regression coefficients 

 Calculating probabilities from logistic regression coefficients 

 Parameterization of models with more than one categorical latent 

variable 

 

In the model estimation section, technical details of parameter 

specification and model estimation are discussed.  In the multiple group 

analysis section, differences in model specification, differences in data 

between single-group analysis and multiple group analysis, and testing 

for measurement invariance are described.  In the missing data section, 

estimation of models when there is missing data and special features for 

data missing by design are described.  There is a section that describes 

how categorical mediating variables are treated in model estimation.  

There is a section on calculating probabilities for probit regression 

coefficients.  In the section on calculating probabilities for logistic 

regression coefficients, a brief background with examples of converting 

logistic regression coefficients to probabilities and odds is given.  In the 

section on parameterization with multiple categorical latent variables, 

conventions related to logistic and loglinear parameterizations of these 

models are described.   

 

MODEL ESTIMATION 
 

There are several important issues involved in model estimation beyond 

specifying the model.  The following general analysis considerations are 

discussed below:  

 

 Parameter default settings 

 Parameter default starting values 
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 User-specified starting values for mixture models 

 Multiple solutions for mixture models 

 Convergence problems 

 Model identification 

 Numerical integration 

 

PARAMETER DEFAULT SETTINGS 
 

Default settings are used to simplify the model specification.  In order to 

minimize the information provided by the user, certain parameters are 

free, constrained to be equal, or fixed at zero as the default.  These 

defaults are chosen to reflect common practice and to avoid 

computational problems.  These defaults can be overridden.  Because of 

the extensive default settings, it is important to examine the analysis 

results to verify that the model that is estimated is the intended model.  

The output contains parameter estimates for all free parameters in the 

model, including those that are free by default and those that are free 

because of the model specification.  Parameters that are fixed in the 

input file are also listed with these results.  Parameters fixed by default 

are not included.  In addition, the TECH1 option of the OUTPUT 

command shows which parameters in the model are free to be estimated 

and which are fixed.    

 

Following are the default settings for means/intercepts/thresholds in the 

model when they are included: 

 

 Means of observed independent variables are not part of the model.  

The model is estimated conditioned on the observed independent 

variables. 

 In single group analysis, intercepts and thresholds of observed 

dependent variables are free. 

 In multiple group analysis and multiple class analysis, intercepts and 

thresholds of observed dependent variables that are used as factor 

indicators for continuous latent variables are free and equal across 

groups or classes.  Otherwise, they are free and unequal in the other 

groups or classes except for the inflation part of censored and count 

variables in which case they are free and equal. 

 In single group analysis, means and intercepts of continuous latent 

variables are fixed at zero.  
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 In multiple group analysis and multiple class analysis, means and 

intercepts of continuous latent variables are fixed at zero in the first 

group and last class and are free and unequal in the other groups or 

classes except when a categorical latent variable is regressed on a 

continuous latent variable.  In this case, the means and intercepts of 

continuous latent variables are fixed at zero in all classes. 

 Logit means and intercepts of categorical latent variables are fixed at 

zero in the last class and free and unequal in the other classes.    

 

Following are the default settings for variances/residual variances/scale 

factors: 

 

 Variances of observed independent variables are not part of the 

model.  The model is estimated conditioned on the observed 

independent variables. 

 In single group analysis and multiple group analysis, variances and 

residual variances of continuous and censored observed dependent 

variables and continuous latent variables are free.  In multiple class 

analysis, variances/residual variances of continuous and censored 

observed dependent variables and continuous latent variables are 

free and equal across classes. 

 In single group analysis using the Delta parameterization, scale 

factors of latent response variables for categorical observed 

dependent variables are fixed at one.  In multiple group analysis 

using the Delta parameterization, scale factors of latent response 

variables for categorical observed dependent variables are fixed at 

one in the first group and are free and unequal in the other groups.   

 In single group analysis using the Theta parameterization, variances 

and residual variances of latent response variables for categorical 

observed dependent variables are fixed at one.  In multiple group 

analysis using the Theta parameterization, variances and residual 

variances of latent response variables for categorical observed 

dependent variables are fixed at one in the first group and are free 

and unequal in the other groups.   

 

Following are the default settings for covariances/residual covariances: 

 

 Covariances among observed independent variables are not part of 

the model.  The model is estimated conditioned on the observed 

independent variables. 
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 In single group analysis and multiple group analysis, covariances 

among continuous latent independent variables are free except when 

they are random effect variables defined by using ON or XWITH in 

conjunction with the | symbol.  In these cases, the covariances 

among continuous latent independent variables are fixed at zero.  In 

multiple class analysis, free covariances among continuous latent 

independent variables are equal across classes.   

 In single group analysis and multiple group analysis, covariances 

among continuous latent independent variables and observed 

independent variables are fixed at zero. 

 Covariances among observed variables not explicitly dependent or 

independent are fixed at zero. 

 Residual covariances among observed dependent variables and 

among continuous latent dependent variables are fixed at zero with 

the following exceptions: 

 In single group analysis and multiple group analysis, 

residual covariances among observed dependent variables 

are free when neither variable influences any other variable, 

when the variables are not factor indicators, and when the 

variables are either continuous, censored (using weighted 

least squares), or categorical (using weighted least squares).  

In multiple class analysis, free residual covariances among 

observed dependent variables are equal across classes.  

 In single group analysis and multiple group analysis, 

residual covariances among continuous latent dependent 

variables that are not indicators of a second-order factor are 

free when neither variable influences any other variable 

except its own indicators, except when they are random 

effect variables defined by using ON or XWITH in 

conjunction with the | symbol.  In these cases, the 

covariances among continuous latent independent variables 

are fixed at zero.  In multiple class analysis, free residual 

covariances among continuous latent dependent variables 

are equal across classes.  

 

Following are the default settings for regression coefficients: 

 

 Regression coefficients are fixed at zero unless they are explicitly 

mentioned in the MODEL command.  In multiple group analysis, 

free regression coefficients are unequal in all groups unless they 

involve the regression of an observed dependent variable that is used 
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as a factor indicator on a continuous latent variable.  In this case, 

they are free and equal across groups.  In multiple class analysis, 

free regression coefficients are equal across classes. 

 

PARAMETER DEFAULT STARTING VALUES 
 

If a parameter is not free by default, when the parameter is mentioned in 

the MODEL command, it is free at the default starting value unless 

another starting value is specified using the asterisk (*) followed by a 

number or the parameter is fixed using the @ symbol followed by a 

number.  The exception to this is that variances and residual variances 

for latent response variables corresponding to categorical observed 

dependent variables cannot be free in the Delta parameterization.  They 

can be free in the Theta parameterization.  In the Theta parameterization, 

scale factors for latent response variables corresponding to categorical 

observed dependent variables cannot be free.  They can be free in the 

Delta parameterization. 

 

GENERAL DEFAULTS 
   

Following are the default starting values: 

 

Means/intercepts of continuous and  0 or sample mean  

censored observed variables depending on the 

analysis 

Means/intercepts of count observed variables 0 

Thresholds of categorical observed variables 0 or determined by the 

          sample proportions 

 depending on the 

analysis 

Variances/residual variances of                      .05 or 1 depending on     

continuous latent variables  the analysis 

Variances/residual variances of                         .5 of the sample                                               

continuous and censored observed variables       variance 

Variances/residual variances of                         1                          

latent response variables for categorical 

observed variables  

Scale factors     1 

 

Loadings for indicators of continuous                 1 

latent variables      
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All other parameters    0 

 

For situations where starting values depend on the analysis, the starting 

values can be found using the TECH1 option of the OUTPUT command. 

  

DEFAULTS FOR GROWTH MODELS 
 

When growth models are specified using the | symbol of the MODEL 

command and the outcome is continuous or censored, automatic starting 

values for the growth factor means and variances are generated based on 

individual regressions of the outcome variable on time.  For other 

outcome types, the defaults above apply.   

 

RANDOM STARTING VALUES FOR MIXTURE MODELS  
 

When TYPE=MIXTURE is specified, the default starting values are 

automatically generated values that are used to create randomly 

perturbed sets of starting values for all parameters in the model except 

variances and covariances.  

 

USER-SPECIFIED STARTING VALUES FOR 

MIXTURE MODELS 
 

Following are suggestions for obtaining starting values when random 

starts are not used with TYPE=MIXTURE.  User-specified starting 

values can reduce computation time with STARTS=0.  They can be 

helpful when there is substantive knowledge of the relationship between 

latent classes and the latent class indicators.  For example, it may be 

well-known that there is a normative class in which individuals have a 

very low probability of engaging in any of the behaviors represented by 

the latent class indicators.  User-specified starting values may also be 

used for confirmatory latent class analysis or confirmatory growth 

mixture modeling.       

 

LATENT CLASS INDICATORS   
 

Starting values for the thresholds of the categorical latent class 

indicators are given in the logit scale.  For ordered categorical latent 

class indicators, the threshold starting values for each variable must be 

ordered from low to high.  The exception to this is when equality 
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constraints are placed on adjacent thresholds for a variable in which case 

the same starting value is used.  It is a good idea to start the classes apart 

from each other. 

 

Following is a translation of probabilities to logit threshold values that 

can be used to help in selecting starting values.  Note that logit threshold 

values have the opposite sign from logit intercept values. The probability 

is the probability of exceeding a threshold.  High thresholds are 

associated with low probabilities.  

 

Very low probability Logit threshold of +3 

Low probability  Logit threshold of +1 

High probability  Logit threshold of -1 

Very high probability Logit threshold of -3 

 

GROWTH MIXTURE MODELS 
 

In most analyses, it is sufficient to use the default starting values 

together with random starts.  If starting values are needed, the following 

two strategies are suggested.  The first strategy is to estimate the growth 

model as either a one-class model or a regular growth model to obtain 

means and standard deviations for the intercept and slope growth factors.  

These values can be used to compute starting values.  For example, 

starting values for a 2 class model could be the mean plus or minus half 

of a standard deviation.  

 

The second strategy is to estimate a multi-class model with the variances 

and covariances of the growth factors fixed at zero.  The estimates of the 

growth factor means from this analysis can be used as starting values in 

an analysis where the growth factor variances and covariances are not 

fixed at zero.   

 

MULTIPLE SOLUTIONS FOR MIXTURE 

MODELS 
 

With mixture models, multiple maxima of the likelihood often exist.  It 

is therefore important to use more than one set of starting values to find 

the global maximum.  If the best (highest) loglikelihood value is not 

replicated in at least two final stage solutions and preferably more, it is 

possible that a local solution has been reached, and the results should not 

be interpreted without further investigation.  Following is an example of 
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a set of ten final stage solutions that point to a good solution because all 

of the final stage solutions have the same loglikelihood value: 

 
 Loglikelihood     Seed    Initial Stage Starts 

 

  -836.899    902278           21 

  -836.899    366706           29 

  -836.899    903420           5 

  -836.899    unperturbed      0 

  -836.899    27071            15 

  -836.899    967237           48 

  -836.899    462953           7 

  -836.899    749453           33 

  -836.899    637345           19 

  -836.899    392418           28    

 

Following is an example of a set of final stage solutions that may point 

to a possible local solution because the best loglikelihood value is not 

replicated: 

 
 Loglikelihood     Seed    Initial Stage Starts 

 

  -835.247    902278           21 

  -837.132    366706           29 

  -840.786    903420           5 

  -840.786    unperturbed      0 

  -840.786    27071            15 

  -853.684    967237           48 

  -867.123    462953           7 

  -890.442    749453           33 

  -905.512    637345           19 

  -956.774    392418           28    

 

Although the loglikelihood value of -840.786 is replicated three times, it 

points to a local solution because it is not the best loglikelihood value.  

The best loglikelihood value must be replicated for a trustworthy 

solution.      

 

When several final stage optimizations result in similar loglikelihood 

values that are close to the highest loglikelihood value, the parameter 

estimates for these solutions should be studied using the OPTSEED 

option of the ANALYSIS command.  If the parameter estimates are 

different across the solutions, this indicates that the model is not well-

defined for the data.  This may be because too many classes are being 

extracted.  If the parameter values are very similar across the solutions, 

the solution with the highest loglikelihood should be chosen.   
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Following is a set of recommendations for an increasingly more 

thorough investigation of multiple solutions using the STARTS and 

STITERATIONS options of the ANALYSIS command.  The first 

recommendation is:  

 

STARTS = 100 20; 

 

which increases the number of initial stage random sets of starting 

values from the default of 20 to 100 and the number of final stage 

optimizations from the default of 4 to 20.  In this recommendation, the 

default of ten STITERATIONS is used. 

 

A second recommendation is: 

 

STARTS = 100 20; 

STITERATIONS = 20; 

 

where STITERATIONS is increased from the default of 10 iterations to 

20 iterations in addition to increasing the number of initial stage random 

sets of starting values and final stage optimizations.  

 

A third recommendation is to increase the initial stage random sets of 

starting values further to 500, increase the final stage optimizations to 

100, with or without increasing STITERATIONS.  Following is the 

specification without increasing STITERATIONS. 

 

STARTS = 500 100; 

 

CONVERGENCE PROBLEMS 
 

Some combinations of models and data may cause convergence 

problems.  A message to this effect is found in the output.  Convergence 

problems are often related to variables in the model being measured on 

very different scales, poor starting values, and/or a model being 

estimated that is not appropriate for the data.  In addition, certain models 

are more likely to have convergence problems. These include mixture 

models, two-level models, and models with random effects that have 

small variances.  
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GENERAL CONVERGENCE PROBLEMS 
 

It is useful to distinguish between two types of non-convergence.  The 

type of non-convergence can be determined by examining the 

optimization history of the analysis which is obtained by using the 

TECH5 and/or TECH8 options of the OUTPUT command.  In the first 

type of non-convergence, the program stops before convergence because 

the maximum number of iterations has been reached.  In the second type 

of non-convergence, the program stops before the maximum number of 

iterations has been reached because of difficulties in optimizing the 

fitting function.   

 

For both types of convergence problems, the first thing to check is that 

the continuous observed variables are measured on similar scales.  

Convergence problems can occur when the sample variance values for 

continuous observed variables fall substantially outside of the range of 1 

to 10.  This is particularly important with a combination of categorical 

and continuous observed variables.  When variances of continuous 

observed variables are large, the DEFINE command can be used to 

divide the variables by a constant.  When they are small, the DEFINE 

command can be used to multiply them by a constant. 

 

In the first type of problem, as long as no large negative 

variances/residual variances are found in the preliminary parameter 

estimates and each iteration has not had a large number of trys, 

convergence may be reached by increasing the number of iterations or 

using the preliminary parameter estimates as starting values.  If there are 

large negative variances/residual variances, new starting values should 

be tried.  In the second type of problem, the starting values are not 

appropriate for the model and the data.  New starting values should be 

tried.  Starting values for variance/residual variance parameters are the 

most important to change.  If new starting values do not help, the model 

should be modified. 

 

A useful way to avoid convergence problems due to poor starting values 

is to build up a model by estimating the model parts separately to obtain 

appropriate starting values for the full model.   
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CONVERGENCE PROBLEMS SPECIFIC TO MODELING 

WITH RANDOM EFFECTS 
 

Random effect models can have convergence problems when the random 

effect variables have small variances.   Problems can arise in models in 

which random effect variables are defined using the ON or AT options 

of the MODEL command in conjunction with the | symbol of the 

MODEL command and in growth models for censored, categorical, and 

count outcomes.  If convergence problems arise, information in the error 

messages identifies the problematic variable.  In addition, the output can 

be examined to see the size of the random effect variable variance.  If it 

is close to zero and the random effect variable is a random slope defined 

using an ON statement in conjunction with the | symbol, a fixed effect 

should be used instead by using a regular ON statement.  If it is close to 

zero and the random effect variable is a growth factor, the growth factor 

variance and corresponding covariances should be fixed at zero.   

 

CONVERGENCE PROBLEMS SPECIFIC TO MIXTURE 

MODELS 
 

In mixture models, convergence is determined not only by the 

derivatives of the loglikelihood but also by the absolute and relative 

changes in the loglikelihood and the changes in the class counts.  

Information about changes in the loglikelihood and the class counts can 

be found in TECH8. 

 

Even when a mixture model does converge, it is possible to obtain a 

local solution.  Therefore, it is important to run the model with multiple 

sets of starting values to guarantee that the best solution is obtained.  

The best solution is the solution with the largest loglikelihood.  As 

discussed above, the STARTS option of the ANALYSIS command can 

be used for automatically generating multiple sets of randomly drawn 

starting values that are used to find the best solution.   

 

MODEL IDENTIFICATION 
 

Not all models that can be specified in the program are identified.  A 

non-identified model is one that does not have meaningful estimates for 

all of its parameters.  Standard errors cannot be computed for non-

identified models because of a singular Fisher information matrix.  

When a model is not identified, an error message is printed in the output.  
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In most cases, the error message gives the number of the parameter that 

contributes to the non-identification.  The parameter to which the 

number applies is found using the TECH1 option of the OUTPUT 

command.  Additional restrictions on the parameters of the model are 

often needed to make the model identified.   

 

Model identification can be complex for mixture models.  Mixture 

models that are in theory identified can in certain samples and with 

certain starting values be empirically non-identified.  In this situation, 

changing the starting values or changing the model is recommended.   

 

For all models, model identification can be determined by examining 

modification indices and derivatives.  If a fixed parameter for an 

outcome has a modification index or a derivative of zero, it will not be 

identified if it is free.  For an estimated model that is known to be 

identified, the model remains identified if a parameter with a non-zero 

modification index or a non-zero derivative is freed.  Derivatives are 

obtained by using the TECH2 option of the OUTPUT command.  

Modification indices are obtained by using the MODINDICES option of 

the OUTPUT command.   

 

NUMERICAL INTEGRATION 
 

Numerical integration is required for maximum likelihood estimation 

when the posterior distribution of the latent variable does not have a 

closed form expression.  In the table below, the ON and BY statements 

that require numerical integration are designated by a single or double 

asterisk (*).  A single asterisk (*) indicates that numerical integration is 

always required.  A double asterisk (*) indicates that numerical 

integration is required when the mediating variable has missing data.  

Numerical integration is also required for models with interactions 

involving continuous latent variables and for certain models with 

random slopes such as multilevel mixture models. 
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Scale of 

Dependent 
Variable 

Scale of Observed Mediating 
Variable 

Scale of Latent 
Variable 

Continuous Censored, 
Categorical, 
and Count 

Continuous  

Continuous ON ON** ON 
BY 

Censored, 
Categorical,  
and Count 

  ON** ON**  ON* 
 BY* 

Nominal   ON** ON**  ON* 

Continuous 
Latent 

ON ON** ON 
BY 

Categorical 
Latent 

  ON** ON**  ON* 
BY* 

Inflation Part of 
Censored and 

Count 

  ON** ON**  ON* 
BY* 

 

When the posterior distribution does not have a closed form, it is 

necessary to integrate over the density of the latent variable multiplied 

by the conditional distribution of the outcomes given the latent variable.  

Numerical integration approximates this integration by using a weighted 

sum over a set of integration points (quadrature nodes) representing 

values of the latent variable.   

 

Three types of numerical integration are available in Mplus with or 

without adaptive numerical integration.  They are rectangular (trapezoid) 

numerical integration with a default of 15 integration points per 

dimension, Gauss-Hermite integration with a default of 15 integration 

points per dimension, and Monte Carlo integration with integration 

points generated randomly with a default of 500 integration points in 

total.  In many cases, all three integration types are available.  When 

mediating variables have missing data, only the Monte Carlo integration 

algorithm is available. 

 

For some analyses it is necessary to increase the number of integration 

points to obtain sufficient numerical precision.  In these cases, 20-50 

integration points per dimension are recommended for rectangular and 

Gauss-Hermite integration and 5000 total integration points for Monte 

Carlo integration.  Going beyond these recommendations is not 

advisable because the precision is unlikely to be improved any further, 

computations will become slower, and numerical instability can arise 

from increased round off error. 
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In most analyses, the default of adaptive numerical integration is 

expected to outperform non-adaptive numerical integration.  In most 

analyses, 15 integration points per dimension are sufficient with adaptive 

numerical integration, whereas non-adaptive numerical integration may 

require 30-50 integration points per dimension. There are analyses, 

however, where adaptive numerical integration leads to numerical 

instability.  These include analyses with outliers, non-normality in the 

latent variable distribution, and small cluster sizes.  In such analyses, it 

is recommended to turn off the adaptive numerical integration using the 

ADAPTIVE option of the ANALYSIS command. 

 

Numerical integration is computationally heavy and thereby time-

consuming because the integration must be done at each iteration, both 

when computing the function value and when computing the derivative 

values.  The computational burden increases as a function of the number 

of integration points, increases linearly as a function of the number of 

observations, and increases exponentially as a function of the number of 

dimensions of integration.  For rectangular and Gauss-Hermite 

integration, the computational burden also increases exponentially as a 

function of the dimensions of integration, that is, the number of latent 

variables, random slopes, or latent variable interactions for which 

numerical integration is needed.  Following is a list that shows the 

computational burden in terms of the number of dimensions of 

integration using the default number of integration points.  

 

One dimension of integration   Light 

Two dimensions of integration   Moderate 

Three to four dimensions of integration  Heavy 

Five or more dimensions of integration  Very heavy 

 

Note that with several dimensions of integration it may be advantageous 

to use Monte Carlo integration.  Monte Carlo integration may, however, 

result in loglikelihood values with low numerical precision making the 

testing of nested models using likelihood ratio chi-square tests based on 

loglikelihood differences imprecise.  To reduce the computational 

burden with several dimensions of integration, it is sometimes possible 

to get sufficiently precise results by reducing the number of integration 

points per dimension from the default of 15 to 10 or 7.  For exploratory 

factor analysis, as few as three integration points per dimension may be 

sufficient. 
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PRACTICAL ASPECTS OF NUMERICAL INTEGRATION  
 

Following is a list of suggestions for using numerical integration: 

 

 Start with a model that has a small number of latent variables, 

random slopes, or latent variable interactions for which numerical 

integration is required and add to this number in small increments  

 Start with an analysis using the TECH8 and TECH1 options of the 

OUTPUT command in conjunction with the MITERATIONS and 

STARTS options of the ANALYSIS command set to 1 and 0, 

respectively, to obtain information on the time required for one 

iteration and to check that the model specifications are correct 

 With more than 3 dimensions of integration, reduce the number of 

integration points per dimension to 10 or use Monte Carlo 

integration with 5000 total integration points 

 If the TECH8 output shows large negative values in the column 

labeled ABS CHANGE, increase the number of integration points to 

improve the precision of the numerical integration and resolve 

convergence problems 

 Because non-identification based on a singular information matrix 

may be difficult to determine when numerical integration is 

involved, it is important to check for a low condition number which 

may indicate non-identification, for example, a condition number 

less than 1.0E-6 

  

MULTIPLE GROUP ANALYSIS 
 

In this section, special issues related to multiple group or multiple 

population analysis are discussed.  Multiple group analysis is used when 

data from more than one population are being examined to investigate 

measurement invariance and population heterogeneity.  Measurement 

invariance is investigated by testing the invariance of measurement 

parameters across groups.  Measurement parameters include intercepts 

or thresholds of the factor indicators, factor loadings, and residual 

variances of the factor indicators.  Population heterogeneity is 

investigated by testing the invariance of structural parameters across 

groups.  Structural parameters include factor means, variances, and 

covariances and regression coefficients.  Multiple group analysis is not 

available for TYPE=MIXTURE and EFA.  Multiple group analysis for 

TYPE=MIXTURE can be carried out using the KNOWNCLASS option 
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of the VARIABLE command.  Following are the topics discussed in this 

section:   

 

 Requesting a multiple group analysis 

 First group in multiple group analysis 

 Defaults for multiple group analysis 

 MODEL command in multiple group analysis 

 Equalities in multiple group analysis 

 Means/intercepts/thresholds in multiple group analysis 

 Scale factors in multiple group analysis 

 Residual variances of latent response variables in multiple group 

analysis 

 Data in multiple group analysis 

 Testing for measurement invariance using multiple group analysis 

 

REQUESTING A MULTIPLE GROUP ANALYSIS 
 

The way to request a multiple group analysis depends on the type of data 

that are being analyzed.  When individual data stored in one data set are 

analyzed, a multiple group analysis is requested by using the 

GROUPING option of the VARIABLE command.  When individual data 

stored in different data sets are analyzed, multiple group analysis is 

requested by using multiple FILE statements in the DATA command.  

When summary data are analyzed, multiple group analysis is requested 

by using the NGROUPS option of the DATA command.  

 

FIRST GROUP IN MULTIPLE GROUP ANALYSIS 
 

In some situations it is necessary to know which group the program 

considers to be the first group.  How the first group is defined differs 

depending on the type of data being analyzed.  For individual data in a 

single data set, the first group is defined as the group with the lowest 

value on the grouping variable.  For example if the grouping variable is 

gender with males having the value of 1 and females having the value of 

0, then the first group is females.  For individual data in separate data 

sets, the first group is the group represented by the first FILE statement 

listed in the DATA command.  For example, if the following FILE 

statements are specified in an input setup, 
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FILE (male) IS male.dat; 

FILE (female) IS female.dat;  

   

the first group is males.  For summary data, the first group is the group 

with the label, g1.  This group is the group represented by the first set of 

summary data found in the summary data set. 

 

DEFAULTS FOR MULTIPLE GROUP ANALYSIS 
 

In multiple group analysis, some measurement parameters are held equal 

across the groups as the default.  This is done to reflect measurement 

invariance of these parameters.  Intercepts, thresholds, and factor 

loadings are held equal across groups.  The residual variances of the 

factor indicators are not held equal across groups.   

 

All structural parameters are free and not constrained to be equal across 

groups as the default.  Structural parameters include factor means, 

variances, and covariances and regressions coefficients.  Factor means 

are fixed at zero in the first group and are free to be estimated in the 

other groups as the default.  This is because factor means generally 

cannot be identified for all groups.  The customary approach is to set the 

factor means to zero in a reference group, here the first group.   

 

For observed categorical dependent variables using the default Delta 

parameterization, the scale factors of the latent response variables of the 

categorical factor indicators are fixed at one in the first group and are 

free to be estimated in the other groups as the default.  This is because 

the latent response variables are not restricted to have across-group 

equalities of variances.  For observed categorical dependent variables 

using the Theta parameterization, the residual variances of the latent 

response variables of the categorical factor indicators are fixed at one in 

the first group and are free to be estimated in the other groups as the 

default.   
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MODEL COMMAND IN MULTIPLE GROUP 

ANALYSIS 
 

In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL is 

used to describe the overall analysis model.  MODEL followed by a 

label is used to describe differences between the overall analysis model 

and the analysis model for each group.  These are referred to as group-

specific models.  The labels are defined using the GROUPING option of 

the VARIABLE command for individual data in a single file, by the 

FILE options of the DATA command for individual data in separate 

files, and by the program for summary data and Monte Carlo simulation 

studies.  It is not necessary to describe the full model for each group in 

the group-specific models.  Group-specific models should contain only 

differences from the model described in the overall MODEL command 

and the model for that group. 

 

Following is an example of an overall MODEL command for multiple 

group analysis: 

 

MODEL:   f1 BY y1 y2 y3; 

  f2 BY y4 y5 y6; 

 

In the above overall MODEL command, the two BY statements specify 

that f1 is measured by y1, y2, and y3, and f2 is measured by y4, y5, and 

y6.  The metric of the factors is set automatically by the program by 

fixing the first factor loading in each BY statement to 1.  The intercepts 

of the factor indicators and the other factor loadings are held equal 

across the groups as the default.  The residual variances are estimated for 

each group and the residual covariances are fixed at zero as the default.  

Factor variances and the factor covariance are estimated for each group.     

 

Following is a group-specific MODEL command that relaxes the 

equality constraints on the factor loadings in a two-group analysis: 

 

MODEL g2:   f1 BY y2 y3; 

  f2 BY y5 y6; 

 

In the above group-specific MODEL command, the equality constraints 

on the factor loadings of y2, y3, y5, and y6 are relaxed by including 

them in a group-specific MODEL command.  The first factor indicator 
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of each factor should not be included because including them frees their 

factor loadings which should be fixed at one to set the metric of the 

factors.   

 

Factor means are fixed at zero in the first group and are estimated in 

each of the other groups.  The following group-specific MODEL 

command relaxes the equality constraints on the intercepts and 

thresholds of the observed dependent variables: 

 

MODEL g2:   [y1 y2 y3]; 

  [u4$1 u5$2 u6$3]; 

 

Following is a set of MODEL commands for a multiple group analysis in 

which three groups are being analyzed: g1, g2, and g3: 

 

MODEL: f1 BY y1-y5; 

  f2 BY y6-y10; 

  f1 ON f2; 

MODEL g1: f1 BY y5;  

MODEL g2: f2 BY y9; 

 

In the overall MODEL command, the first BY statement specifies that f1 

is measured by y1, y2, y3, y4, and y5.  The second BY statement 

specifies that f2 is measured by y6, y7, y8, y9, and y10.  The metric of 

the factors is set automatically by the program by fixing the first factor 

loading in each BY statement to one.  The intercepts of the factor 

indicators and the other factor loadings are held equal across the groups 

as the default.  The residual variances for y1 through y10 are estimated 

for each group and the residual covariances are fixed at zero as the 

default.  The variance of the factor f2 and the residual variance of the 

factor f1 are estimated for each group.  A regression coefficient for the 

linear regression of f1 on f2 is estimated for each group. 

 

Differences between the overall model and the group-specific models are 

specified using the MODEL command followed by a label.  The two 

group-specific MODEL commands above specify differences between 

the overall model and the group-specific models.  In the above example, 

the factor loading for y5 in group g1 is not constrained to be equal to the 

factor loading for y5 in the other two groups and the factor loading for 

y9 in group g2 is not constrained to be equal to the factor loading for y9 
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in the other two groups.  The model for g3 is identical to that of the 

overall model because there is no group-specific model statement for g3. 

 

EQUALITIES IN MULTIPLE GROUP ANALYSIS 
 

A number or list of numbers in parentheses following a parameter or list 

of parameters is used to indicate equality constraints.  Constraining 

parameters to be equal in a single group analysis is discussed in Chapter 

17.  In a single group analysis, parameters are constrained to be equal by 

placing the same number or list of numbers in parentheses following the 

parameters that are to be held equal.  For example, 

 

y1 ON x1 (1) ; 

y2 ON x2 (1) ; 

y3 ON x3 (2) ; 

y4 ON x4 (2) ; 

y5 ON x5 (2) ; 

 

constrains the regression coefficients of the first two equations to be 

equal and the regression coefficients of the last three equations to be 

equal. 

 

In multiple group analysis, the interpretation of equality constraints 

depends on whether they are part of the overall MODEL command or a 

group-specific MODEL command.  Equality constraints specified in the 

overall MODEL command apply to all groups.  Equality constraints 

specified in a group-specific MODEL command apply to only that 

group.   

 

Following is an example of how to specify across group equality 

constraints in the overall MODEL command: 

 

MODEL:  f1 BY y1-y5; 

  y1 (1) 

  y2 (2) 

  y3 (3) 

  y4 (4) 

  y5 (5); 

 

By placing a different number in parentheses after each residual 

variance, each residual variance is held equal across all groups but not 
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equal to each other.  Note that only one equality constraint can be 

specified per line. 

 

Following is another example of how to specify across group equality 

constraints in the overall MODEL command: 

 

MODEL:  f1 BY y1-y5; 

  y1-y5 (1); 

 

By placing a one in parentheses after the list of residual variances, y1 

through y5, the values of those parameters are held equal to each other 

and across groups.  If the five residual variances are free to be estimated 

across the three groups, there are fifteen parameters.  With the equality 

constraint, one parameter is estimated.   

 

Following is an example of how to specify an equality constraint in a 

group-specific MODEL command: 

 

MODEL g2: y1-y5 (2); 

 

In the group-specific MODEL command for g2, the residual variances of 

y1 through y5 are held equal for g2 but are not held equal to the residual 

variances of any other group because (2) is not specified in the overall 

MODEL command or in any other group-specific MODEL command.  

One residual variance is estimated for g2.  

 

Following is an example of how to relax an equality constraint in a 

group-specific MODEL command: 

 

MODEL g3: y1-y5; 

 

In this example, by mentioning the residual variances in a group-specific 

MODEL command, they are no longer held equal to the residual 

variances in groups 1 and 3.  Five residual variances are estimated for 

g3. 

 

The overall and group-specific MODEL commands discussed above are 

shown and interpreted together below: 

 

MODEL: f1 BY y1-y5; 

  y1-y5  (1); 
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MODEL g2: y1-y5  (2); 

MODEL g3: y1-y5; 

 

The overall MODEL command specifies the overall model for the three 

groups as described above.  Because there is no group-specific MODEL 

command for g1, g1 uses the same model as that described in the overall 

MODEL command.  The group-specific MODEL commands describe 

the differences between the overall model and the group-specific 

models.  The group g2 uses the overall model with the exception that the 

one residual variance that is estimated is not constrained to be equal to 

the other two groups.  The group g3 uses the overall model with the 

exception that five residual variances not constrained to be equal to the 

other groups are estimated. 

 

MEANS/INTERCEPTS/THRESHOLDS IN 

MULTIPLE GROUP ANALYSIS 
 

In multiple group analysis, the intercepts and thresholds of observed 

dependent variables that are factor indicators are constrained to be equal 

across groups as the default.  The means and intercepts of continuous 

latent variables are fixed at zero in the first group and are free to be 

estimated in the other groups as the default.  Means, intercepts, and 

thresholds are referred to by the use of square brackets.   

 

Following is an example how to refer to means and intercepts in a 

multiple group model. 

 

MODEL: f1 BY y1-y5; 

  f2 BY y6-y10; 

  f1 ON f2; 

MODEL g1: [f1 f2]; 

MODEL g2: [f1@0 f2@0];  

 

In the above example, the intercepts and the factor loadings for the 

factor indicators y1-y5 are held equal across the three groups as the 

default.  In the group-specific MODEL command for g1, the mean of f2 

and the intercept of f1 are specified to be free.  In the group-specific 

MODEL command for g2, the mean of f2 and the intercept of f1 are 

fixed at zero. 
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The following group-specific MODEL command relaxes the equality 

constraints on the intercepts of the observed dependent variables: 

 

MODEL g2: [y1-y10];  

 

SCALE FACTORS IN MULTIPLE GROUP 

ANALYSIS 
 

Scale factors can be used in multiple group analysis.  They are 

recommended when observed dependent variables are categorical and a 

weighted least squares estimator is used.  They capture across group 

differences in the variances of the latent response variables for the 

observed categorical dependent variables.  Scale factors are part of the 

model as the default using a weighted least squares estimator when one 

or more observed dependent variables are categorical.  In this situation, 

the first group has scale factors fixed at one.  In the other groups, scale 

factors are free to be estimated with starting values of one.  Scale factors 

are referred to using curly brackets.  Following is an example of how to 

refer to scale factors in a model with multiple groups where u1, u2, u3, 

u4, and u5 are observed categorical dependent variables:   

 

MODEL: f BY u1-u5; 

MODEL g2: {u1-u5*.5}; 

  

In the above example, the scale factors of the latent response variables of 

the observed categorical dependent variables in g1 are fixed at one as the 

default.  Starting values are given for the free scale factors in g2.   

 

RESIDUAL VARIANCES OF LATENT RESPONSE 

VARIABLES IN MULTIPLE GROUP ANALYSIS 
 

With the Theta parameterization for observed categorical dependent 

variables using a weighted least squares estimator, residual variances of 

the latent response variables for the observed categorical dependent 

variables are part of the model as the default.  In this situation, the first 

group has residual variances fixed at one for all observed categorical 

dependent variables.  In the other groups, residual variances are free to 

be estimated with starting values of one.  Residual variances of the latent 

response variables are referred to using the name of the corresponding 

observed variable.  Following is an example of how to refer to residual 
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variances in a model with multiple groups where u1, u2, u3, u4, and u5 

are observed categorical dependent variables:   

 

MODEL: f BY u1-u5; 

MODEL g2: u1-u5*2; 

 

In the above example, the residual variances of the latent response 

variables of the observed categorical dependent variables in g1 are fixed 

at one as the default.  Starting values are given for the free residual 

variances in g2.   

 

DATA IN MULTIPLE GROUP ANALYSIS 
 

One difference between single group analysis and multiple group 

analysis is related to the data to be analyzed.  For individual data, the 

data for all groups can be stored in one data set or in different data sets.  

If the data are stored in one data set, the data set must include a variable 

that identifies the group to which each observation belongs.  For 

summary data, all data must be stored in the same data set.   

 

INDIVIDUAL DATA, ONE DATA SET 
 

If individual data for several groups are stored in one data set, the data 

set must include a variable that identifies the group to which each 

observation belongs.  The name of this variable is specified using the 

GROUPING option of the VARIABLE command.  Only one grouping 

variable can be specified.  If the groups to be analyzed are a combination 

of more than one variable, for example, gender and ethnicity, a single 

grouping variable can be created using the DEFINE command.  An 

example of how to specify the GROUPING option is: 

 

GROUPING IS gender (1 = male 2 = female);  

 

The information in parentheses after the grouping variable name assigns 

labels to the values of the grouping variable found in the data set.  In the 

example above, observations with the variable gender equal to 1 are 

assigned the label male, and observations with the variable gender equal 

to 2 are assigned the label female.  These labels are used in group-

specific MODEL commands to specify differences between the overall 

model and the group-specific models.  If an observation has a value for 
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the grouping variable that is not specified using the GROUPING option, 

it is not included in the analysis.   

 

INDIVIDUAL DATA, DIFFERENT DATA SETS 
 

For individual data stored in different data sets, the specification of the 

FILE option of the DATA command has two differences for multiple 

group analysis.  First, a FILE statement is required for each data set.  

Second, the FILE option allows a label to be specified that can be used 

in the group-specific MODEL commands.  In the situation where the 

data for males are stored in a file named male.dat, and the data for 

females are stored in a file named female.dat, the FILE option is 

specified as follows: 

 

FILE  (male)  =  male.dat; 

FILE  (female) =  female.dat; 

 

The labels male and female can be used in the group-specific MODEL 

commands to specify differences between the group-specific models for 

males and females and the overall model.  

 

When individual data are stored in different data sets, all of the data sets 

must contain the same number of variables.  These variables must be 

assigned the same names and be read using the same format. 

 

SUMMARY DATA, ONE DATA SET 
 

Summary data must be stored in one data set with the data for the first 

group followed by the data for the second group, etc..  For example, in 

an analysis of means and a covariance matrix for two groups with four 

observed variables, the data would appear as follows: 

 

0 0 0 0 

2 

1 2 

1 1 2 

1 1 1 2 

1 1 1 1 
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3 

2 3 

2 2 3 

2 2 2 3 

 

where the means for group 1 come first, followed by the covariances for 

group 1, followed by the means for group 2, followed by the covariances 

for group 2. 

  

The NOBSERVATIONS and NGROUPS options have special formats 

for multiple group analysis when summary data are analyzed.  The 

NOBSERVATIONS option requires an entry for each group in the order 

that the data appear in the data set.  For example, if the summary data for 

males appear first in a data set followed by the summary data for 

females, the NOBSERVATIONS statement, 

 

NOBSERVATIONS = 180 220; 

 

indicates that the summary data for males come from 180 observations 

and the summary data for females come from 220 observations. 

 

In addition, for summary data, it is necessary to specify the number of 

groups in the analysis using the NGROUPS option of the DATA 

command.  The format of this option follows: 

 

NGROUPS = 2; 

 

which indicates that there are two groups in the analysis.  For summary 

data, the program automatically assigns the label g1 to the first group, g2 

to the second group, etc.  In this example, males would have the label g1 

and females would have the label g2. 

 

TESTING FOR MEASUREMENT INVARIANCE 

USING MULTIPLE GROUP ANALYSIS 
 

Multiple group analysis can be used to test measurement invariance of 

factors using chi-square difference tests or loglikelihood difference tests 

for a set of nested models.  For continuous, censored, and count 

variables, the measurement parameters are the intercepts, factor 

loadings, and residual variances of the factor indicators.  In many 

disciplines, invariance of intercepts or thresholds and factor loadings are 
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considered sufficient for measurement invariance.  Some disciplines also 

require invariance of residual variances.   For categorical variables, the 

measurement parameters are thresholds and factor loadings.  For the 

Delta parameterization of weighted least squares estimation, scale 

factors can also be considered.  For the Theta parameterization of 

weighted least squares estimation, residual variances can also be 

considered. 

 

Following is a description of the models to be used to test for 

measurement invariance for various variable types and estimators.  

These models can also be used to test for longitudinal measurement 

invariance.  Necessary restrictions are placed across time rather than 

across groups. 

 

MODELS FOR CONTINUOUS, CENSORED, AND COUNT 

VARIABLES  
 

Following is a set of models that can be considered for measurement 

invariance of continuous, censored, and count variables.  They are listed 

from least restrictive to most restrictive. 

 

For continuous, censored, and count variables, the configural model has 

factor loadings, intercepts, and residual variances free across groups and 

factor means fixed at zero in all groups.  If the metric of a factor is set by 

fixing a factor loading to one, factor variances are free across groups.   If 

the metric of a factor is set by freeing all factor loadings and fixing the 

factor variance to one, the factor variance is fixed at one in all groups.   

 

The metric has factor loadings constrained to be equal across groups, 

intercepts and residual variances free across groups, and factor means 

fixed at zero in all groups.  If the metric of a factor is set by fixing a 

factor loading to one, factor variances are free across groups.   If the 

metric of a factor is set by freeing all factor loadings within a group and 

fixing the factor variance to one, the factor variance is fixed at one in 

one group and is free in the other groups.   

 

The scalar model has factor loadings and intercepts constrained to be 

equal across groups, residual variances free across groups, and factor 

means fixed at zero in one group and free in the other groups.   If the 

metric of a factor is set by fixing a factor loading to one, factor variances 

are free across groups.  If the metric of a factor is set by freeing all factor 
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loadings within a group and fixing the factor variance to one, the factor 

variance is fixed at one in one group and is free in the other groups. 

 

MODELS FOR BINARY VARIABLES 
 

Following is a set of models that can be considered for measurement 

invariance of binary variables.  They are listed from least restrictive to 

most restrictive.  For binary variables and weighted least squares 

estimation, only the configural and scalar models are considered.  The 

metric model is not identified because scale factors or residual variances 

are allowed to vary across groups.  For binary variables and maximum 

likelihood estimation, the configural, metric, and scalar models are 

considered.  The metric model is identified because residual variances 

are implicitly fixed at one in all groups. 

 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

DELTA PARAMETERIZATION 
 

For binary variables using weighted least squares estimation and the 

Delta parameterization, the configural model has factor loadings and 

thresholds free across groups, scale factors fixed at one in all groups, 

and factor means fixed at zero in all groups.  If the metric of a factor is 

set by fixing a factor loading to one, factor variances are free across 

groups.   If the metric of a factor is set by freeing all factor loadings and 

fixing the factor variance to one, the factor variance is fixed at one in all 

groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, scale factors fixed at one in one group and free in 

the other groups, and factor means fixed at zero in one group and free in 

the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

THETA PARAMETERIZATION  
 

For binary variables using weighted least squares estimation and the 

Theta parameterization, the configural model has factor loadings and 
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thresholds free across groups, residual variances fixed at one in all 

groups, and factor means fixed at zero in all groups.  If the metric of a 

factor is set by fixing a factor loading to one, factor variances are free 

across groups.   If the metric of a factor is set by freeing all factor 

loadings and fixing the factor variance to one, the factor variance is 

fixed at one in all groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, residual variances fixed at one in one group and 

free in the other groups, and factor means fixed at zero in one group and 

free in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

MAXIMUM LIKELIHOOD ESTIMATION 
 

For binary variables and maximum likelihood estimation, the configural 

model has factor loadings and thresholds free across groups and factor 

means fixed at zero in all groups.  If the metric of a factor is set by fixing 

a factor loading to one, factor variances are free across groups.   If the 

metric of a factor is set by freeing all factor loadings and fixing the 

factor variance to one, the factor variance is fixed at one in all groups.  

  

The metric model has factor loadings constrained to be equal across 

groups, thresholds free across groups, and factor means fixed at zero in 

all groups.  If the metric of a factor is set by fixing a factor loading to 

one, factor variances are free across groups.   If the metric of a factor is 

set by freeing all factor loadings within a group and fixing the factor 

variance to one, the factor variance is fixed at one in one group and is 

free in the other groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups and factor means fixed at zero in one group and free 

in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 
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MODELS FOR ORDERED CATEGORICAL (ORDINAL) 

VARIABLES 
 

Following is a set of models that can be considered for measurement 

invariance of ordered categorical (ordinal) variables.  They are listed 

from least restrictive to most restrictive.  The metric model is not 

allowed for ordered categorical (ordinal) variables when a factor 

indicator loads on more than one factor, when the metric of a factor is 

set by fixing a factor variance to one, and when Exploratory Structural 

Equation Modeling (ESEM) is used.   

 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

DELTA PARAMETERIZATION 
 

For ordered categorical (ordinal) variables using weighted least squares 

estimation and the Delta parameterization, the configural model has 

factor loadings and thresholds free across groups, scale factors fixed at 

one in all groups, and factor means fixed at zero in all groups.  If the 

metric of a factor is set by fixing a factor loading to one, factor variances 

are free across groups.   If the metric of a factor is set by freeing all 

factor loadings and fixing the factor variance to one, the factor variance 

is fixed at one in all groups.  

 

The metric model has factor loadings constrained to be equal across 

groups, scale factors fixed at one in one group and free in the other 

groups, and factor means fixed at zero in one group and free in the other 

groups.  The first threshold of each item is held equal across groups.  

The second threshold of the item that is used to set the metric of the 

factor is held equal across groups.  Factor variances are free across 

groups.  For a discussion of these specifications, see Millsap (2011). 

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, scale factors fixed at one in one group and free in 

the other groups, and factor means fixed at zero in one group and free in 

the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 



Special Modeling Issues 

 

                                                                                                               545 

WEIGHTED LEAST SQUARES ESTIMATION USING THE 

THETA PARAMETERIZATION  
 

For ordered categorical (ordinal) variables using weighted least squares 

estimation and the Theta parameterization, the configural model has 

factor loadings and thresholds free across groups, residual variances 

fixed at one in all groups, and factor means fixed at zero in all groups.  If 

the metric of a factor is set by fixing a factor loading to one, factor 

variances are free across groups.   If the metric of a factor is set by 

freeing all factor loadings and fixing the factor variance to one, the 

factor variance is fixed at one in all groups.   

 

The metric model has factor loadings constrained to be equal across 

groups, residual variances fixed at one in one group and free in the other 

groups, and factor means fixed at zero in one group and free in the other 

groups.  The first threshold of each item is held equal across groups.  

The second threshold of the item that is used to set the metric of the 

factor is held equal across groups. Factor variances are free across 

groups.  For a discussion of these specifications, see Millsap (2011). 

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups, residual variances fixed at one in one group and 

free in the other groups, and factor means fixed at zero in one group and 

free in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

MAXIMUM LIKELIHOOD ESTIMATION 
 

For ordered categorical variables and maximum likelihood estimation, 

the configural model has factor loadings and thresholds free across 

groups and factor means fixed at zero in all groups.  If the metric of a 

factor is set by fixing a factor loading to one, factor variances are free 

across groups.   If the metric of a factor is set by freeing all factor 

loadings and fixing the factor variance to one, the factor variance is 

fixed at one in all groups.   

 

The metric model has factor loadings constrained to be equal across 

groups, thresholds free across groups, and factor means fixed at zero in 
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all groups.  If the metric of a factor is set by fixing a factor loading to 

one, factor variances are free across groups.   If the metric of a factor is 

set by freeing all factor loadings within a group and fixing the factor 

variance to one, the factor variance is fixed at one in one group and is 

free in the other groups.   

 

The scalar model has factor loadings and thresholds constrained to be 

equal across groups and factor means fixed at zero in one group and free 

in the other groups.   If the metric of a factor is set by fixing a factor 

loading to one, factor variances are free across groups.  If the metric of a 

factor is set by freeing all factor loadings within a group and fixing the 

factor variance to one, the factor variance is fixed at one in one group 

and is free in the other groups. 

 

PARTIAL MEASUREMENT INVARIANCE 
 

When full measurement invariance does not hold, partial measurement 

invariance can be considered.  This involves relaxing some equality 

constraints on the measurement parameters.  For continuous variables, 

equality constraints can be relaxed for the intercepts, factor loadings, 

and residual variances.  This is shown in Example 5.15.  For categorical 

variables, equality constraints for thresholds and factor loadings for a 

variable should be relaxed in tandem.  In addition, for the Delta 

parameterization, the scale factor must be fixed at one for that variable.  

This is shown in Example 5.16.  For the Theta parameterization, the 

residual variance must be fixed at one for that variable.  This is shown in 

Example 5.17.  

 

MODEL DIFFERENCE TESTING 
 

In chi-square difference testing of measurement invariance, the chi-

square value and degrees of freedom of the less restrictive model are 

subtracted from the chi-square value and degrees of freedom of the 

nested, more restrictive model.  The chi-square difference value is 

compared to the chi-square value in a chi-square table using the 

difference in degrees of freedom between the more restrictive and less 

restrictive models.  If the chi-square difference value is significant, it 

indicates that constraining the parameters of the nested model 

significantly worsens the fit of the model.  This indicates measurement 

non-invariance.  If the chi-square difference value is not significant, this 

indicates that constraining the parameters of the nested model did not 
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significantly worsen the fit of the model.  This indicates measurement 

invariance of the parameters constrained to be equal in the nested model. 

 

For models where chi-square is not available, difference testing can be 

done using -2 times the difference of the loglikelihoods.  For the MLR, 

MLM, and WLSM estimators, difference testing must be done using the 

scaling correction factor printed in the output.  A description of how to 

do this is posted on the website.  For WLSMV and MLMV, difference 

testing must be done using the DIFFTEST option of the SAVEDATA 

and ANALYSIS commands. 

 

MISSING DATA ANALYSIS 
 

Mplus has several options for the estimation of models with missing 

data.  Mplus provides maximum likelihood estimation under MCAR 

(missing completely at random) and MAR (missing at random; Little & 

Rubin, 2002) for continuous, censored, binary, ordered categorical 

(ordinal), unordered categorical (nominal), counts, or combinations of 

these variable types.  MAR means that missingness can be a function of 

observed covariates and observed outcomes.  For censored and 

categorical outcomes using weighted least squares estimation, 

missingness is allowed to be a function of the observed covariates but 

not the observed outcomes.  When there are no covariates in the model, 

this is analogous to pairwise present analysis.  Non-ignorable missing 

data modeling is possible using maximum likelihood estimation where 

categorical outcomes are indicators of missingness and where 

missingness can be predicted by continuous and categorical latent 

variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2011).  Robust 

standard errors and chi-square are available for all outcomes using the 

MLR estimator.  For non-normal continuous outcomes, this gives the T2
*
 

chi-square test statistic of Yuan and Bentler (2000).     

 

Mplus provides multiple imputation of missing data using Bayesian 

analysis (Rubin, 1987; Schafer, 1997).  Both unrestricted H1 and 

restricted H0 models can be used for imputation. 

 

Multiple data sets generated using multiple imputation (Rubin, 1987; 

Schafer, 1997) can be analyzed using a special feature of Mplus.  

Parameter estimates are averaged over the set of analyses, and standard 

errors are computed using the average of the standard errors over the set 

of analyses and the between analysis parameter estimate variation.  
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In all models, missingness is not allowed for the observed covariates 

because they are not part of the model. The model is estimated 

conditional on the covariates and no distributional assumptions are made 

about the covariates.  Covariate missingness can be modeled if the 

covariates are brought into the model and distributional assumptions 

such as normality are made about them.   With missing data, the standard 

errors for the parameter estimates are computed using the observed 

information matrix (Kenward & Molenberghs, 1998).  Bootstrap 

standard errors and confidence intervals are also available with missing 

data.   

 

With missing data, it is useful to do a descriptive analysis to study the 

percentage of missing data as a first step.  This can be accomplished by 

specifying TYPE=BASIC in the ANALYSIS command.  The output for 

this analysis produces the number of missing data patterns and the 

proportion of non-missing data, or coverage, for variables and pairs of 

variables.  A default of .10 is used as the minimum coverage proportion 

for a model to be estimated.  This minimum value can be changed by 

using the COVERAGE option of the ANALYSIS command.  

 

DATA MISSING BY DESIGN 
 

Data missing by design occurs when the study determines which subjects 

will be observed on which measures.  One example is when different 

forms of a measurement instrument are administered to randomly 

selected subgroups of individuals.  A second example is when it is 

expensive to collect data on all variables for all individuals and only a 

subset of variables is measured for a random subgroup of individuals.  A 

third example is multiple cohort analysis where individuals who are 

measured repeatedly over time represent different birth cohorts.  These 

types of studies can use the missing data method where all individuals 

are used in the analysis, including those who have missing values on 

some of the analysis variables by design.  This type of analysis is 

obtained by identifying the values in the data set that are considered to 

be missing value flags using the MISSING option of the VARIABLE 

command and identifying the variables for which individuals should 

have a value using the PATTERN option of the VARIABLE command.   
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MULTIPLE COHORT DESIGN 
 

Longitudinal research studies often collect data on several different 

groups of individuals defined by their birth year or cohort.  This allows 

the study of development over a wider age range than the length of the 

study and is referred to as an accelerated or sequential cohort design.  

The interest in these studies is the development of an outcome over age 

not measurement occasion.  When dependent variables are measured 

using a continuous scale, options are available for rearranging such a 

data set so that age rather than time of measurement is the time variable.  

This is available only for TYPE=GENERAL without 

ALGORITHM=INTEGRATION.   

 

The DATA COHORT command is used to rearrange longitudinal data 

from a format where time points represent measurement occasions to a 

format where time points represent age or another time-related variable.    

It is necessary to know the cohort (birth year) of each individual and the 

year in which each measurement was taken.  The difference between 

measurement year and cohort year is the age of the individual at the time 

of measurement.  Age is the variable that is used to determine the pattern 

of missing values for each cohort.  If an individual does not have 

information for a particular age, that value is missing for that individual.  

The transformed data set is analyzed using maximum likelihood 

estimation for missing data. 

 

REARRANGEMENT OF THE MULTIPLE COHORT DATA 
 

What is of interest in multiple cohort analysis is not how a variable 

changes from survey year to survey year, but how it changes with age.  

What is needed to answer this question is a data set where age is the time 

variable.  Following is an example of how a data set is transformed using 

the DATA COHORT command.  In the following data set, the variable 

heavy drinking (HD) is measured in 1982, 1983, 1987, and 1989.  

Missing data are indicated with an asterisk (*).  The respondents include 

individuals born in 1963, 1964, and 1965.  Although the respondents 

from any one cohort are measured on only four occasions, the cohorts 

taken together cover the ages 17 through 26.   
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Observation Cohort HD82 HD83 HD87 HD89 
1 63 3 4 5 6 
2 63 * 6 7 8 
3 63 9 8 * 3 
4 63 5 7 6 3 
5 63 5 8 7 9 
6 64 3 6 5 9 
7 64 3 8 * 5 
8 64 4 9 8 6 
9 64 4 * 6 7 

10 64 3 9 8 5 
11 65 * 4 5 6 
12 65 6 5 5 5 
13 65 5 5 5 5 
14 65 4 5 6 7 
15 65 4 5 5 4 

 

The information in the table above represents how the data look before 

they are transformed.  As a first step, each observation that does not 

have complete data for 1982, 1983, 1987, and 1989 is deleted from the 

data set.  Following is the data after this step.  

 
Observation Cohort HD82 HD83 HD87 HD89 

1 63 3 4 5 6 
4 63 5 7 6 3 
5 63 5 8 7 9 
6 64 3 6 5 9 
8 64 4 9 8 6 

10 64 3 9 8 5 
12 65 6 5 5 5 
13 65 5 5 5 5 
14 65 4 5 6 7 
15 65 4 5 5 4 

 

The second step is to rearrange the data so that age is the time 

dimension.  This results in the following data set where asterisks (*) 

represent values that are missing by design. 
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Obs Coh HD17 HD18 HD19 HD20 HD22 HD23 HD24 HD25 HD26 

1 63 * * 3 4 * * 5 * 6 
4 63 * * 5 7 * * 6 * 3 
5 63 * * 5 8 * * 7 * 9 
6 64 * 3 6 * * 5 * 9 * 
8 64 * 4 9 * * 8 * 6 * 

10 64 * 3 9 * * 8 * 5 * 
12 65 6 5 * * 5 * 5 * * 
13 65 5 5 * * 5 * 5 * * 
14 65 4 5 * * 6 * 7 * * 
15 65 4 5 * * 5 * 4 * * 

 

The model is specified in the MODEL command using the new variables 

hd17 through hd26 instead of the original variables hd82, hd83, hd87, 

and hd89.  Note that there is no hd21 because no combination of survey 

year and birth cohort represents this age.  The data are analyzed using 

the missing by design feature. 

 

CATEGORICAL MEDIATING VARIABLES 
 

The treatment of categorical mediating variables in model estimation 

differs depending on the estimator being used.  Consider the following 

model: 

 

x  ->  u  ->  y 

 

where u is a categorical variable.  The issue is how is u treated when it is 

a dependent variable predicted by x and how is it treated when it is an 

independent variable predicting y.  With weighted least squares 

estimation, a probit regression coefficient is estimated in the regression 

of u on x.  In the regression of y on u, the continuous latent response 

variable u* is used as the covariate.  With maximum likelihood 

estimation, either a logistic or probit regression coefficient is estimated 

in the regression of u on x.  In the regression of y on u, the observed 

variable u is used as the covariate.  With Bayesian estimation, a probit 

regression coefficient is estimated in the regression of u on x.  In the 

regression of y on u, either the observed variable u or the latent response 

variable u* can be used as the covariate using the MEDIATOR option of 

the ANALYSIS command.   
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CALCULATING PROBABILITIES FROM PROBIT 

REGRESSION COEFFICIENTS 
 

Following is a description of how to translate probit regression 

coefficients to probability values.  For a treatment of probit regression 

for binary and ordered categorical (ordinal) variables, see Agresti (1996, 

2002). 

 

For a binary dependent variable, the probit regression model expresses 

the probability of u given x as, 

 

P (u = 1 | x) = F (a + b*x) 

                    = F (-t + b*x), 

                   

where F is the standard normal distribution function, a is the probit 

regression intercept, b is the probit regression slope, t is the probit 

threshold where t = -a, and P (u = 0 | x) = 1 – P (u = 1 | x).   

 

Following is an output excerpt that shows the results from the probit 

regression of a binary variable u on the covariate age: 

 
                    Estimates     S.E.     Est./S.E.  

 

u        ON 

    age               0.055        0.001     43.075 

 

Thresholds                                                                     

    u$1               3.581        0.062     57.866 

 

Using the formula shown above, the probability of u = 1 for age = 62 is 

computed as follows: 

 

P (u = 1 | x = 62) =  F (-3.581 + 0.055*62) 

                            =  F (-0.171). 

 

Using the z table, the value -0.171 corresponds to a probability of 

approximately 0.43.  This means that the probability of u = 1 at age 62 is 

0.43. 

 

For an ordered categorical (ordinal) dependent variable with three 

categories, the probit regression model expresses the probability of u 
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given x using the two thresholds t1 and t2 and the single probit regression 

coefficient b, 

 

P (u = 0 | x) = F (t1 - b*x), 

P (u = 1 | x) = F (t2 - b*x) - F (t1 - b*x), 

P (u = 2 | x) = F (- t2 + b*x). 

 

CALCULATING PROBABILITIES FROM LOGISTIC 

REGRESSION COEFFICIENTS 
 

Following is a description of how to translate logistic regression 

coefficients to probability values.  Also described is how to interpret the 

coefficient estimates in terms of log odds, odds, and odds ratios.  For a 

treatment of logistic regression for binary, ordered categorical (ordinal), 

and unordered categorical (nominal) variables, see Agresti (1996, 2002) 

and Hosmer and Lemeshow (2000). 

 

An odds is a ratio of two probabilities.  A log odds is therefore the log of 

a ratio of two probabilities.  The exponentiation of a log odds is an odds. 

A logistic regression coefficient is a log odds which is also referred to as 

a logit. 

 

For a binary dependent variable u, the logistic regression model 

expresses the probability of u given x as, 

 

(1) P (u = 1 | x) = exp (a + b*x) / (1 + exp (a + b*x) )  

              = 1 / (1 + exp (-a – b*x)), 

 

where P (u = 0 | x) = 1 – P (u = 1 | x).  The probability expression in (1) 

results in the linear logistic regression expression also referred to as a 

log odds or logit,  

 

log [P (u = 1 | x) / P (u = 0 | x)] = log [exp (a + b*x)] = a + b*x, 

 

where b is the logistic regression coefficient which is interpreted as the 

increase in the log odds of u = 1 versus u = 0 for a unit increase in x.  

For example, consider the x values of x0 and x0 + 1.  The corresponding 

log odds are, 

 

log odds (x0) = a + b*x0, 
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log odds (x0 +1) = a + b*(x0 + 1) = a + b*x0 + b, 

 

such that the increase from x0 to x0 + 1 in the log odds is b.  The 

corresponding odds increase is exp (b).  For example, consider the 

continuous covariate age with a logistic regression coefficient of .75 for 

a dependent variable of being depressed (u = 1) or not being depressed 

(u = 0).  This means that for an increase of one year of age the log odds 

of being depressed versus not being depressed increases by .75.  The 

corresponding odds increase is 2.12.   

 

For a binary covariate x scored as 0 and 1, the log odds for u = 1 versus 

u = 0 are, 

 

log odds (x = 0) = a + b*0, 

log odds (x = 1) = a + b*1,  

 

such that the increase in the log odds is b as above.  Given the 

mathematical rule that log y – log z is equal to log (y / z), the difference 

in the two log odds,  

 

b = log odds (x = 1) – log odds (x = 0)   

   = log [odds (x = 1) / odds (x = 0)], 

 

is the log odds ratio for u = 1 versus u = 0 when comparing x = 1 to x = 

0.  For example, consider the binary covariate gender (1 = female, 0 = 

male) with a logistic regression coefficient of 1.0 for a dependent 

variable of being depressed (u = 1) or not being depressed (u = 0).  This 

means that the log odds for females is 1.0 higher than the log odds for 

males for being depressed versus not being depressed.  The 

corresponding odds ratio is 2.72, that is the odds for being depressed 

versus not being depressed is 2.72 times larger for females than for 

males.   

 

In the case of a binary dependent variable, it is customary to let the first 

category u = 0 be the reference category as is done in (1).  When a 

dependent variable has more than two categories, it is customary to let 

the last category be the reference category as is done below.  For an 

unordered categorical (nominal) variable with more than two categories 

R, the probability expression in (1) generalizes to the following 

multinomial logistic regression,  
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(2)  P (u = r | x) = exp (ar + br*x) / (exp (a1 + b1*x) + …  

                          + exp (aR + bR*x)), 

 

where exp (aR + bR*x) = exp (0 + 0*x) = 1 and the log odds for 

comparing category r to category R is  

 

(3)  log [P (u = r | x)/P (u = R | x)] = ar + br*x. 

 

With an ordered categorical (ordinal) variable, the logistic regression 

slopes br are the same across the categories of u.   

 

Following is an example of an unordered categorical (nominal) 

dependent variable that is the categorical latent variable in the model.  

The categorical latent variable has four classes and there are three 

covariates.  The output excerpt shows the results from the multinomial 

logistic regression of the categorical latent variable c on the covariates 

age94, male, and black: 

 
                    Estimates    S.E.   Est./S.E.  

 

 C#1      ON 

    AGE94              -.285     .028    -10.045 

    MALE               2.578     .151     17.086 

    BLACK               .158     .139      1.141 

 C#2      ON 

    AGE94               .069     .022      3.182 

    MALE                .187     .110      1.702 

    BLACK              -.606     .139     -4.357 

 C#3      ON 

    AGE94              -.317     .028    -11.311 

    MALE               1.459     .101     14.431 

    BLACK               .999     .117      8.513 

Intercepts                                                                      

    C#1               -1.822     .174    -10.485 

    C#2                -.748     .103     -7.258 

    C#3                -.324     .125     -2.600 

 

Using (3), the log odds expression for a particular class compared to the 

last class is, 

 

log odds = a + b1*age94 + b2*male + b3*black. 

 

In the first example, the values of the three covariates are all zero so that 

only the intercepts contribute to the log odds.  Probabilities are 

computed using (2).  In the first step, the estimated intercept log odds 
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values are exponentiated and summed.  In the second step, each 

exponentiated value is divided by the sum to compute the probability for 

each class of c.     

                           exp       probability  =  exp/sum 

 

log odds (c = 1) = -1.822 0.162   0.069 

log odds (c = 2) = -0.748          0.473  0.201 

log odds (c = 3) = -0.324          0.723  0.307 

log odds (c = 4) =  0                 1.0  0.424 

                                                _______          ________ 

sum                                      2.358  1.001 

 

In the second example, the values of the three covariates are all one so 

that both the intercepts and the slopes contribute to the logs odds.  In the 

first step, the log odds values for each class are computed.  In the second 

step, the log odds values are exponentiated and summed.  In the last step, 

the exponentiated value is divided by the sum to compute the probability 

for each class of c.  

     

log odds (c = 1)  =  -1.822 + (-0.285*1) + (2.578*1) + (0.158*1) 

                           =  0.629 

log odds (c = 2)  = -0.748 + 0.069*1 + 0.187*1 + (-0.606*1) 

                           = -1.098 

log odds (c = 3)  = -0.324 + (-0.317*1) + 1.459*1 + 0.999*1 

                           = 1.817 

 

     exp        probability =  exp/sum 

 

log odds (c = 1)  =   0.629 1.876  0.200                     

log odds (c = 2)  =  -1.098 0.334  0.036 

log odds (c = 3)  =   1.817 6.153  0.657 

log odds (c = 4)  =   0  1.0   0.107   

                                                   _______       ________ 

sum                               9.363  1.000 

 

The interpretation of these probabilities is that individuals who have a 

value of 1 on each of the covariates have a probability of .200 of being 

in class 1, .036 of being in class 2, .657 of being in class 3, and .107 of 

being in class 4.  
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In the output shown above, the variable male has the value of 1 for males 

and 0 for females and the variable black has the value of 1 for blacks and 

0 for non-blacks.  The variable age94 has the value of 0 for age 16, 1 for 

age 17, up to 7 for age 23.  An interpretation of the logistic regression 

coefficient for class 1 is that comparing class 1 to class 4, the log odds 

decreases by -.285 for a unit increase in age, is 2.578 higher for males 

than for females, and is .158 higher for blacks than for non-blacks.  This 

implies that the odds ratio for being in class 1 versus class 4 when 

comparing males to females is 13.17 (exp 2.578), holding the other two 

covariates constant.  

 

Following is a plot of the estimated probabilities in each of the four 

classes where age is plotted on the x-axis and the other covariates take 

on the value of one.  This plot was created and exported as an EMF file 

using the PLOT command in conjunction with the Mplus post-

processing graphics module.  
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PARAMETERIZATION OF MODELS WITH MORE THAN 

ONE CATEGORICAL LATENT VARIABLE 
 

The parameterization of models with more than one categorical latent 

variables is described in this section.  There are three parameterizations 
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available for these models.  The first parameterization is based on a 

series of logistic regressions for non-recursive models.  The second 

parameterization is that of loglinear modeling of frequency tables.  The 

third parameterization uses probabilities rather than logits.  

 

LOGIT PARAMETERIZATION 
 

Following is a description of the logistic regression parameterization, 

specified using PARAMETERIZATION=LOGIT, for the following 

MODEL command for two categorical latent variables with three classes 

each:   

 

MODEL: 

%OVERALL% 

c2#1 ON c1#1; 

c2#1 ON c1#2; 

c2#2 ON c1#1; 

c2#2 ON c1#2; 

 

The set of ON statements describes the logistic regression coefficients in 

the conditional distribution of c2 given c1.  With three classes for both 

c2 and c1, there are a total of six parameters in this conditional 

distribution.  Two of the parameters are intercepts for c2 and four are the 

logistic regression coefficients specified in the MODEL command.   

 

For the c2 classes r = 1, 2, 3, the transition probabilities going from the 

classes of c1 to the classes of c2 are given by the following unordered 

multinomial logistic regression expressions: 

 

P (c2 = r | c1 = 1) = exp (ar + br1) / sum1, 

P (c2 = r | c1 = 2) = exp (ar + br2) / sum2, 

P (c2 = r | c1 = 3) = exp (ar + br3) / sum3, 

 

where a3 = 0, b31 = 0, b32 = 0, and b33 = 0 because the last class is the 

reference class, and sumj represents the sum of the exponentiations 

across the classes of c2 for c1 = j (j = 1, 2, 3).  The corresponding log 

odds when comparing a c2 class to the last c2 class are summarized in 

the table below. 
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c2 

 
c1 

 1 2 3 

1 a1 + b11 a2 + b21 0 

2 a1 + b12 a2 + b22 0 

3 a1 a2 0 

 

The parameters in the table are referred to in the MODEL command 

using the following statements: 

 

a1 [c2#1]; 

a2 [c2#2]; 

b11 c2#1 ON c1#1; 

b12 c2#1 ON c1#2; 

b21 c2#2 ON c1#1; 

b22 c2#2 ON c1#2; 

 

The TECH15 option is used in conjunction with TYPE=MIXTURE and 

PARAMETERIZATION=LOGIT to request marginal and conditional 

probabilities, including latent transition probabilities, for the categorical 

latent variables in a model.  Conditional probabilities, including latent 

transition probabilities, for different values of a set of covariates can be 

computed using the LTA Calculator.  It is accessed by choosing LTA 

calculator from the Mplus menu of the Mplus Editor.  The logit 

parameterization with covariates is described in Muthén and Asparouhov 

(2011).   

 

LOGLINEAR PARAMETERIZATION 
 

Following is a description of the loglinear parameterization for the 

following MODEL command for two categorical latent variables with 

three classes each:   

 

MODEL: 

%OVERALL% 

c2#1 WITH c1#1; 

c2#1 WITH c1#2; 

c2#2 WITH c1#1; 

c2#2 WITH c1#2; 
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The set of WITH statements describes the relationship between c1 and 

c2.  The parameters in the table below are referred to in the MODEL 

command using the following statements: 

 

a11 [c1#1]; 

a12 [c1#2]; 

a21 [c2#1]; 

a22 [c2#2]; 

w11 c2#1 WITH c1#1; 

w12 c2#1 WITH c1#2; 

w21 c2#2 WITH c1#1; 

w22 c2#2 WITH c1#2; 

 

The joint probabilities for the classes of c1 and c2 are computed using 

the multinomial logistic regression formula (2) in the previous section, 

summing over the nine cells shown in the table below. 

 
c2 

 
c1 

 1 2 3 

1 a11 + a21 + 
w11 

a11 + a22 + 
w21 

a11  

2 a12 + a21 + 
w12 

a12 + a22 + 
w22 

a12 

3 a21  a22  0 

 

PROBABILITY PARAMETERIZATION 
 

Following is a description of the probability parameterization for the 

following MODEL command for two categorical latent variables with 

three classes each:   

 

MODEL: 

%OVERALL% 

c2#1 ON c1#1; 

c2#1 ON c1#2; 

c2#1 ON c1#3; 

c2#2 ON c1#1; 

c2#2 ON c1#2; 

c2#2 ON c1#3; 

 

The set of ON statements describes the probability parameters in the 

conditional distribution of c2 given c1.  With three classes for both c2 
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and c1, there are a total of six probabilities in this conditional 

distribution.  The last class of c2 is not referred to because the 

probabilities sum to one for each row, for example, the probability of 

being in class three of c2 for those in class 1 of c1 is 1 – (p11 + p12). 

 
c2 

 
c1 

 1 2 3 

1 p11 p12 - 

2 p21 p22 - 

3 p31 p32 - 

 

The marginal probabilities for c1 are referred to as: 

 

[c1#1]; 

[c1#2];   
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