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CHAPTER 6 

EXAMPLES: GROWTH 

MODELING, SURVIVAL 

ANALYSIS, AND N=1 TIME 

SERIES ANALYSIS 
 

 

Growth models examine the development of individuals on one or more 

outcome variables over time.  These outcome variables can be observed 

variables or continuous latent variables.  Observed outcome variables 

can be continuous, censored, binary, ordered categorical (ordinal), 

counts, or combinations of these variable types if more than one growth 

process is being modeled.  In growth modeling, random effects are used 

to capture individual differences in development.  In a latent variable 

modeling framework, the random effects are reconceptualized as 

continuous latent variables, that is, growth factors.   

 

Mplus takes a multivariate approach to growth modeling such that an 

outcome variable measured at four occasions gives rise to a four-variate 

outcome vector.  In contrast, multilevel modeling typically takes a 

univariate approach to growth modeling where an outcome variable 

measured at four occasions gives rise to a single outcome for which 

observations at the different occasions are nested within individuals, 

resulting in two-level data.  Due to the use of the multivariate approach, 

Mplus does not consider a growth model to be a two-level model as in 

multilevel modeling but a single-level model.  With longitudinal data, 

the number of levels in Mplus is one less than the number of levels in 

conventional multilevel modeling.  The multivariate approach allows 

flexible modeling of the outcomes such as differences in residual 

variances over time, correlated residuals over time, and regressions 

among the outcomes over time.   

 

In Mplus, there are two options for handling the relationship between the 

outcome and time.  One approach allows time scores to be parameters in 

the model so that the growth function can be estimated.  This is the 

approach used in structural equation modeling.  The second approach 

allows time to be a variable that reflects individually-varying times of 
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observations.  This variable has a random slope.  This is the approach 

used in multilevel modeling.  Random effects in the form of random 

slopes are also used to represent individual variation in the influence of 

time-varying covariates on outcomes.  

  

Growth modeling in Mplus allows the analysis of multiple processes, 

both parallel and sequential; regressions among growth factors and 

random effects; growth modeling of factors measured by multiple 

indicators; and growth modeling as part of a larger latent variable model.   

 

Survival modeling in Mplus includes both discrete-time and continuous-

time analyses.  Both types of analyses consider the time to an event.  

Discrete-time survival analysis is used when the outcome is recorded 

infrequently such as monthly or annually, typically leading to a limited 

number of measurements.  Continuous-time survival analysis is used 

when the outcome is recorded more frequently such as hourly or daily, 

typically leading to a large number of measurements.  Survival modeling 

is integrated into the general latent variable modeling framework so that 

it can be part of a larger model. 

 

N=1 time series analysis is used to analyze intensive longitudinal data 

such as those obtained with ecological momentary assessments, 

experience sampling methods, daily diary methods, and ambulatory 

assessments for a single person.  Such data typically have a large number 

of time points, for example, twenty to two hundred.  The measurements 

are typically closely spaced in time.  In Mplus, univariate autoregressive, 

regression, cross-lagged, confirmatory factor analysis, Item Response 

Theory, and structural equation models can be estimated for continuous, 

binary, ordered categorical (ordinal), or combinations of these variable 

types.  Multilevel extensions of these models can be found in Chapter 9. 

 

All growth and survival models can be estimated using the following 

special features: 

 

 Single or multiple group analysis 

 Missing data 

 Complex survey data 

 Latent variable interactions and non-linear factor analysis using 

maximum likelihood 

 Random slopes 

 Individually-varying times of observations 
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 Linear and non-linear parameter constraints 

 Indirect effects including specific paths 

 Maximum likelihood estimation for all outcome types 

 Bootstrap standard errors and confidence intervals 

 Wald chi-square test of parameter equalities 

 

For continuous, censored with weighted least squares estimation, binary, 

and ordered categorical (ordinal) outcomes, multiple group analysis is 

specified by using the GROUPING option of the VARIABLE command 

for individual data or the NGROUPS option of the DATA command for 

summary data.  For censored with maximum likelihood estimation, 

unordered categorical (nominal), and count outcomes, multiple group 

analysis is specified using the KNOWNCLASS option of the 

VARIABLE command in conjunction with the TYPE=MIXTURE 

option of the ANALYSIS command.  The default is to estimate the 

model under missing data theory using all available data.  The 

LISTWISE option of the DATA command can be used to delete all 

observations from the analysis that have missing values on one or more 

of the analysis variables.  Corrections to the standard errors and chi-

square test of model fit that take into account stratification, non-

independence of observations, and unequal probability of selection are 

obtained by using the TYPE=COMPLEX option of the ANALYSIS 

command in conjunction with the STRATIFICATION, CLUSTER, and 

WEIGHT options of the VARIABLE command. The 

SUBPOPULATION option is used to select observations for an analysis 

when a subpopulation (domain) is analyzed.  Latent variable interactions 

are specified by using the | symbol of the MODEL command in 

conjunction with the XWITH option of the MODEL command.  Random 

slopes are specified by using the | symbol of the MODEL command in 

conjunction with the ON option of the MODEL command.  Individually-

varying times of observations are specified by using the | symbol of the 

MODEL command in conjunction with the AT option of the MODEL 

command and the TSCORES option of the VARIABLE command.  

Linear and non-linear parameter constraints are specified by using the 

MODEL CONSTRAINT command.  Indirect effects are specified by 

using the MODEL INDIRECT command.  Maximum likelihood 

estimation is specified by using the ESTIMATOR option of the 

ANALYSIS command.  Bootstrap standard errors are obtained by using 

the BOOTSTRAP option of the ANALYSIS command.  Bootstrap 

confidence intervals are obtained by using the BOOTSTRAP option of 

the ANALYSIS command in conjunction with the CINTERVAL option 
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of the OUTPUT command.  The MODEL TEST command is used to test 

linear restrictions on the parameters in the MODEL and MODEL 

CONSTRAINT commands using the Wald chi-square test.      

 

Graphical displays of observed data and analysis results can be obtained 

using the PLOT command in conjunction with a post-processing 

graphics module.  The PLOT command provides histograms, 

scatterplots, plots of individual observed and estimated values, and plots 

of sample and estimated means and proportions/probabilities.  These are 

available for the total sample, by group, by class, and adjusted for 

covariates.  The PLOT command includes a display showing a set of 

descriptive statistics for each variable.  The graphical displays can be 

edited and exported as a DIB, EMF, or JPEG file.  In addition, the data 

for each graphical display can be saved in an external file for use by 

another graphics program.  

 

Following is the set of growth modeling examples included in this 

chapter:   

 

 6.1:  Linear growth model for a continuous outcome 

 6.2:  Linear growth model for a censored outcome using a censored 

model* 

 6.3:  Linear growth model for a censored outcome using a censored-

inflated model* 

 6.4:  Linear growth model for a categorical outcome 

 6.5:  Linear growth model for a categorical outcome using the Theta 

parameterization 

 6.6:  Linear growth model for a count outcome using a Poisson 

model* 

 6.7:  Linear growth model for a count outcome using a zero-inflated 

Poisson model* 

 6.8:  Growth model for a continuous outcome with estimated time 

scores 

 6.9:  Quadratic growth model for a continuous outcome 

 6.10:  Linear growth model for a continuous outcome with time-

invariant and time-varying covariates  

 6.11:  Piecewise growth model for a continuous outcome 

 6.12:  Growth model with individually-varying times of observation 

and a random slope for time-varying covariates for a continuous 

outcome 



Examples: Growth, Survival, And N=1 Time Series Analysis 

 

                                                                                                              117 

 6.13:  Growth model for two parallel processes for continuous 

outcomes with regressions among the random effects 

 6.14:  Multiple indicator linear growth model for continuous 

outcomes 

 6.15:  Multiple indicator linear growth model for categorical 

outcomes 

 6.16:  Two-part (semicontinuous) growth model for a continuous 

outcome* 

 6.17:  Linear growth model for a continuous outcome with first-

order auto correlated residuals using non-linear constraints 

 6.18:  Multiple group multiple cohort growth model 

 

Following is the set of survival analysis examples included in this 

chapter:   

 

 6.19: Discrete-time survival analysis 

 6.20: Continuous-time survival analysis using the Cox regression 

model  

 6.21: Continuous-time survival analysis using a parametric 

proportional hazards model 

 6.22: Continuous-time survival analysis using a parametric 

proportional hazards model with a factor influencing survival* 

 

Following is the set of N=1 time series analysis examples included in 

this chapter:   

 

 6.23: N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

 6.24: N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable 

with a covariate 

 6.25: N=1 time series analysis with a bivariate cross-lagged model 

for continuous dependent variables 

 6.26: N=1 time series analysis with a first-order autoregressive 

AR(1) confirmatory factor analysis (CFA) model with continuous 

factor indicators 

 6.27: N=1 time series analysis with a first-order autoregressive 

AR(1) IRT model with binary factor indicators 

 6.28: N=1 time series analysis with a bivariate cross-lagged model 

with two factors and continuous factor indicators 
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*  Example uses numerical integration in the estimation of the model.  

This can be computationally demanding depending on the size of the 

problem. 

 

EXAMPLE 6.1: LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME 
  

 
TITLE: this is an example of a linear growth 

model for a continuous outcome  

DATA: FILE IS ex6.1.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 

 

 
 

In this example, the linear growth model for a continuous outcome at 

four time points shown in the picture above is estimated. 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome 

 

The TITLE command is used to provide a title for the analysis.  The title 

is printed in the output just before the Summary of Analysis. 

 
DATA: FILE IS ex6.1.dat; 

 

The DATA command is used to provide information about the data set 

to be analyzed.  The FILE option is used to specify the name of the file 
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that contains the data to be analyzed, ex6.1.dat.  Because the data set is 

in free format, the default, a FORMAT statement is not required. 

 
VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

 

The VARIABLE command is used to provide information about the 

variables in the data set to be analyzed.  The NAMES option is used to 

assign names to the variables in the data set.  The data set in this 

example contains ten variables:  y11, y12, y13, y14, x1, x2, x31, x32, 

x33, and x34.  Note that the hyphen can be used as a convenience feature 

in order to generate a list of names.  If not all of the variables in the data 

set are used in the analysis, the USEVARIABLES option can be used to 

select a subset of variables for analysis.  Here the variables y11, y12, 

y13, and y14 have been selected for analysis.  They represent the 

outcome measured at four equidistant occasions.  

 
MODEL: i s | y11@0 y12@1 y13@2 y14@3;  

 

The MODEL command is used to describe the model to be estimated.  

The | symbol is used to name and define the intercept and slope factors 

in a growth model.  The names i and s on the left-hand side of the | 

symbol are the names of the intercept and slope growth factors, 

respectively.  The statement on the right-hand side of the | symbol 

specifies the outcome and the time scores for the growth model.  The 

time scores for the slope growth factor are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

growth factor as an initial status factor.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   
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EXAMPLE 6.2: LINEAR GROWTH MODEL FOR A 

CENSORED OUTCOME USING A CENSORED MODEL 
  

 
TITLE: this is an example of a linear growth 

model for a censored outcome using a 

censored model  

DATA: FILE IS ex6.2.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

 CENSORED ARE y11-y14 (b); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a censored variable instead of a continuous variable. 

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.  In the example above, y11, 

y12, y13, and y14 are censored variables.  They represent the outcome 

variable measured at four equidistant occasions.  The b in parentheses 

following y11-y14 indicates that y11, y12, y13, and y14 are censored 

from below, that is, have floor effects, and that the model is a censored 

regression model.  The censoring limit is determined from the data.  The 

residual variances of the outcome variables are estimated and allowed to 

be different across time and the residuals are not correlated as the 

default. 

  

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  By specifying ESTIMATOR=MLR, maximum 

likelihood estimation with robust standard errors using a numerical 

integration algorithm is used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, two dimensions of 

integration are used with a total of 225 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 
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default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

OUTPUT command is used to request additional output not included as 

the default.  The TECH1 option is used to request the arrays containing 

parameter specifications and starting values for all free parameters in the 

model.  The TECH8 option is used to request that the optimization 

history in estimating the model be printed in the output.  TECH8 is 

printed to the screen during the computations as the default.  TECH8 

screen printing is useful for determining how long the analysis takes.  An 

explanation of the other commands can be found in Example 6.1. 

 

EXAMPLE 6.3: LINEAR GROWTH MODEL FOR A 

CENSORED OUTCOME USING A CENSORED-INFLATED 

MODEL 
  

 
TITLE: this is an example of a linear growth 

model for a censored outcome using a 

censored-inflated model  

DATA: FILE IS ex6.3.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

 CENSORED ARE y11-y14 (bi); 

ANALYSIS: INTEGRATION = 7; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 ii si | y11#1@0 y12#1@1 y13#1@2 y14#1@3; 

 si@0;  

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a censored variable instead of a continuous variable. 

The CENSORED option is used to specify which dependent variables 

are treated as censored variables in the model and its estimation, whether 

they are censored from above or below, and whether a censored or 

censored-inflated model will be estimated.  In the example above, y11, 

y12, y13, and y14 are censored variables.  They represent the outcome 

variable measured at four equidistant occasions.  The bi in parentheses 

following y11-y14 indicates that y11, y12, y13, and y14 are censored 

from below, that is, have floor effects, and that a censored-inflated 

regression model will be estimated.  The censoring limit is determined 

from the data.  The residual variances of the outcome variables are 
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estimated and allowed to be different across time and the residuals are 

not correlated as the default.  

  

With a censored-inflated model, two growth models are estimated.  The 

first | statement describes the growth model for the continuous part of 

the outcome for individuals who are able to assume values of the 

censoring point and above.  The residual variances of the outcome 

variables are estimated and allowed to be different across time and the 

residuals are not correlated as the default.  The second | statement 

describes the growth model for the inflation part of the outcome, the 

probability of being unable to assume any value except the censoring 

point.  The binary latent inflation variable is referred to by adding to the 

name of the censored variable the number sign (#) followed by the 

number 1.   

 

In the parameterization of the growth model for the continuous part of 

the outcome, the intercepts of the outcome variables at the four time 

points are fixed at zero as the default.  The means and variances of the 

growth factors are estimated as the default, and the growth factor 

covariance is estimated as the default because the growth factors are 

independent (exogenous) variables.   

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the four time points 

are held equal as the default.  The mean of the intercept growth factor is 

fixed at zero.  The mean of the slope growth factor and the variances of 

the intercept and slope growth factors are estimated as the default, and 

the growth factor covariance is estimated as the default because the 

growth factors are independent (exogenous) variables. 

   

In this example, the variance of the slope growth factor si for the 

inflation part of the outcome is fixed at zero.  Because of this, the 

covariances among si and all of the other growth factors are fixed at zero 

as the default.  The covariances among the remaining three growth 

factors are estimated as the default.    

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, three dimensions of integration are used with 
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a total of 343 integration points.  The INTEGRATION option of the 

ANALYSIS command is used to change the number of integration points 

per dimension from the default of 15 to 7.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

6.1. 

 

EXAMPLE 6.4: LINEAR GROWTH MODEL FOR A 

CATEGORICAL OUTCOME 
  

 
TITLE: this is an example of a linear growth 

model for a categorical outcome  

DATA: FILE IS ex6.4.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 CATEGORICAL ARE u11-u14; 

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a binary or ordered categorical (ordinal) variable 

instead of a continuous variable.  The CATEGORICAL option is used to 

specify which dependent variables are treated as binary or ordered 

categorical (ordinal) variables in the model and its estimation.  In the 

example above, u11, u12, u13, and u14 are binary or ordered categorical 

variables.  They represent the outcome variable measured at four 

equidistant occasions.  

 

In the parameterization of the growth model shown here, the thresholds 

of the outcome variable at the four time points are held equal as the 

default.  The mean of the intercept growth factor is fixed at zero.  The 

mean of the slope growth factor and the variances of the intercept and 

slope growth factors are estimated as the default, and the growth factor 
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covariance is estimated as the default because the growth factors are 

independent (exogenous) variables.   

 

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  With the weighted 

least squares estimator, the probit model and the default Delta 

parameterization for categorical outcomes are used.  The scale factor for 

the latent response variable of the categorical outcome at the first time 

point is fixed at one as the default, while the scale factors for the latent 

response variables at the other time points are free to be estimated.  If a 

maximum likelihood estimator is used, the logistic model for categorical 

outcomes with a numerical integration algorithm is used (Hedeker & 

Gibbons, 1994).  Note that numerical integration becomes increasingly 

more computationally demanding as the number of factors and the 

sample size increase.  An explanation of the other commands can be 

found in Example 6.1. 

 

EXAMPLE 6.5: LINEAR GROWTH MODEL FOR A 

CATEGORICAL OUTCOME USING THE THETA 

PARAMETERIZATION 
 

 
TITLE: this is an example of a linear growth 

model for a categorical outcome using the 

Theta parameterization  

DATA: FILE IS ex6.5.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 CATEGORICAL ARE u11-u14; 

ANALYSIS: PARAMETERIZATION = THETA;                   

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

 

The difference between this example and Example 6.4 is that the Theta 

parameterization instead of the default Delta parameterization is used.  

In the Delta parameterization, scale factors for the latent response 

variables of the observed categorical outcomes are allowed to be 

parameters in the model, but residual variances for the latent response 

variables are not.  In the Theta parameterization, residual variances for 

latent response variables are allowed to be parameters in the model, but 

scale factors are not.  Because the Theta parameterization is used, the 
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residual variance for the latent response variable at the first time point is 

fixed at one as the default, while the residual variances for the latent 

response variables at the other time points are free to be estimated.  An 

explanation of the other commands can be found in Examples 6.1 and 

6.4. 

 

EXAMPLE 6.6: LINEAR GROWTH MODEL FOR A COUNT 

OUTCOME USING A POISSON MODEL 
 

 
TITLE: this is an example of a linear growth 

model for a count outcome using a Poisson 

model  

DATA: FILE IS ex6.6.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 COUNT ARE u11-u14; 

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u11, u12, u13, and u14 are count variables.  They 

represent the outcome variable measured at four equidistant occasions.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the growth factors are estimated as 

the default, and the growth factor covariance is estimated as the default 

because the growth factors are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood with 

robust standard errors using a numerical integration algorithm.  Note that 

numerical integration becomes increasingly more computationally 

demanding as the number of factors and the sample size increase.  In this 

example, two dimensions of integration are used with a total of 225 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.  The OUTPUT 

command is used to request additional output not included as the default.  

The TECH1 option is used to request the arrays containing parameter 
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specifications and starting values for all free parameters in the model.  

The TECH8 option is used to request that the optimization history in 

estimating the model be printed in the output.  TECH8 is printed to the 

screen during the computations as the default.  TECH8 screen printing is 

useful for determining how long the analysis takes.  An explanation of 

the other commands can be found in Example 6.1. 

 

EXAMPLE 6.7: LINEAR GROWTH MODEL FOR A COUNT 

OUTCOME USING A ZERO-INFLATED POISSON MODEL 
 

 
TITLE: this is an example of a linear growth 

model for a count outcome using a zero-

inflated Poisson model  

DATA: FILE IS ex6.7.dat; 

VARIABLE: NAMES ARE u11-u14 x1 x2 x31-x34; 

 USEVARIABLES ARE u11-u14; 

 COUNT ARE u11-u14 (i); 

ANALYSIS: INTEGRATION = 7; 

MODEL: i s | u11@0 u12@1 u13@2 u14@3; 

 ii si | u11#1@0 u12#1@1 u13#1@2 u14#1@3; 

 s@0 si@0; 

OUTPUT: TECH1 TECH8; 

 

The difference between this example and Example 6.1 is that the 

outcome variable is a count variable instead of a continuous variable. 

The COUNT option is used to specify which dependent variables are 

treated as count variables in the model and its estimation and whether a 

Poisson or zero-inflated Poisson model will be estimated.  In the 

example above, u11, u12, u13, and u14 are count variables.  They 

represent the outcome variable u1 measured at four equidistant 

occasions.  The i in parentheses following u11-u14 indicates that a zero-

inflated Poisson model will be estimated.   

 

With a zero-inflated Poisson model, two growth models are estimated.  

The first | statement describes the growth model for the count part of the 

outcome for individuals who are able to assume values of zero and 

above.  The second | statement describes the growth model for the 

inflation part of the outcome, the probability of being unable to assume 

any value except zero.  The binary latent inflation variable is referred to 

by adding to the name of the count variable the number sign (#) followed 

by the number 1.   
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In the parameterization of the growth model for the count part of the 

outcome, the intercepts of the outcome variables at the four time points 

are fixed at zero as the default.  The means and variances of the growth 

factors are estimated as the default, and the growth factor covariance is 

estimated as the default because the growth factors are independent 

(exogenous) variables.   

 

In the parameterization of the growth model for the inflation part of the 

outcome, the intercepts of the outcome variable at the four time points 

are held equal as the default.  The mean of the intercept growth factor is 

fixed at zero.  The mean of the slope growth factor and the variances of 

the intercept and slope growth factors are estimated as the default, and 

the growth factor covariance is estimated as the default because the 

growth factors are independent (exogenous) variables.   

 

In this example, the variance of the slope growth factor s for the count 

part and the slope growth factor si for the inflation part of the outcome 

are fixed at zero.  Because of this, the covariances among s, si, and the 

other growth factors are fixed at zero as the default.  The covariance 

between the i and ii intercept growth factors is estimated as the default.     

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors using a numerical integration algorithm.  

Note that numerical integration becomes increasingly more 

computationally demanding as the number of factors and the sample size 

increase.  In this example, two dimensions of integration are used with a 

total of 49 integration points.  The INTEGRATION option of the 

ANALYSIS command is used to change the number of integration points 

per dimension from the default of 15 to 7.  The ESTIMATOR option of 

the ANALYSIS command can be used to select a different estimator.  

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

6.1. 
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EXAMPLE 6.8: GROWTH MODEL FOR A CONTINUOUS 

OUTCOME WITH ESTIMATED TIME SCORES 
  

 
TITLE: this is an example of a growth model for a 

continuous outcome with estimated time 

scores 

DATA: FILE IS ex6.8.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s | y11@0 y12@1 y13*2 y14*3; 

 

The difference between this example and Example 6.1 is that two of the 

time scores are estimated.  The | statement highlighted above shows how 

to specify free time scores by using the asterisk (*) to designate a free 

parameter.  Starting values are specified as the value following the 

asterisk (*).  For purposes of model identification, two time scores must 

be fixed for a growth model with two growth factors.  In the example 

above, the first two time scores are fixed at zero and one, respectively.  

The third and fourth time scores are free to be estimated at starting 

values of 2 and 3, respectively.  The default estimator for this type of 

analysis is maximum likelihood.  The ESTIMATOR option of the 

ANALYSIS command can be used to select a different estimator.  An 

explanation of the other commands can be found in Example 6.1. 

 

EXAMPLE 6.9: QUADRATIC GROWTH MODEL FOR A 

CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a quadratic growth 

model for a continuous outcome 

DATA: FILE IS ex6.9.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 x31-x34; 

 USEVARIABLES ARE y11-y14; 

MODEL: i s q | y11@0 y12@1 y13@2 y14@3; 
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The difference between this example and Example 6.1 is that the 

quadratic growth model shown in the picture above is estimated.  A 

quadratic growth model requires three random effects: an intercept 

factor (i), a linear slope factor (s), and a quadratic slope factor (q).  The | 

symbol is used to name and define the intercept and slope factors in the 

growth model.  The names i, s, and q on the left-hand side of the | 

symbol are the names of the intercept, linear slope, and quadratic slope 

factors, respectively.  In the example above, the linear slope factor has 

equidistant time scores of 0, 1, 2, and 3.  The time scores for the 

quadratic slope factor are the squared values of the linear time scores.  

These time scores are automatically computed by the program. 

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variable at the four time points are fixed at zero as the 

default.  The means and variances of the three growth factors are 

estimated as the default, and the three growth factors are correlated as 

the default because they are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 6.1. 
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EXAMPLE 6.10: LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME WITH TIME-INVARIANT AND 

TIME-VARYING COVARIATES 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with time-

invariant and time-varying covariates 

DATA: FILE IS ex6.10.dat; 

VARIABLE: NAMES ARE y11-y14 x1 x2 a31-a34; 

MODEL: i s | y11@0 y12@1 y13@2 y14@3; 

 i s ON x1 x2; 

 y11 ON a31; 

 y12 ON a32; 

 y13 ON a33; 

 y14 ON a34; 

 

 

 
 

 

The difference between this example and Example 6.1 is that time-

invariant and time-varying covariates as shown in the picture above are 

included in the model.   
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The first ON statement describes the linear regressions of the two 

growth factors on the time-invariant covariates x1 and x2.  The next four 

ON statements describe the linear regressions of the outcome variable on 

the time-varying covariates a31, a32, a33, and a34 at each of the four 

time points.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 

 

EXAMPLE 6.11: PIECEWISE GROWTH MODEL FOR A 

CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a piecewise growth 

model for a continuous outcome 

DATA: FILE IS ex6.11.dat; 

VARIABLE: NAMES ARE y1-y5;  

MODEL: i s1 | y1@0 y2@1 y3@2 y4@2 y5@2; 

 i s2 | y1@0 y2@0 y3@0 y4@1 y5@2; 

 

 
 

 

In this example, the piecewise growth model shown in the picture above 

is estimated.  In a piecewise growth model, different phases of 

development are captured by more than one slope growth factor.  The 

first | statement specifies a linear growth model for the first phase of 

development which includes the first three time points.  The second | 

statement specifies a linear growth model for the second phase of 

development which includes the last three time points.  Note that there is 
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one intercept growth factor i.  It must be named in the specification of 

both growth models when using the | symbol.     

 

In the parameterization of the growth models shown here, the intercepts 

of the outcome variable at the five time points are fixed at zero as the 

default.  The means and variances of the three growth factors are 

estimated as the default, and the three growth factors are correlated as 

the default because they are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 6.1. 

 

EXAMPLE 6.12: GROWTH MODEL WITH INDIVIDUALLY-

VARYING TIMES OF OBSERVATION AND A RANDOM 

SLOPE FOR TIME-VARYING COVARIATES FOR A 

CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a growth model with 

individually-varying times of observation 

and a random slope for time-varying 

covariates for a continuous outcome 

DATA: FILE IS ex6.12.dat; 

VARIABLE: NAMES ARE y1-y4 x a11-a14 a21-a24; 

 TSCORES = a11-a14; 

ANALYSIS: TYPE = RANDOM; 

MODEL: i s | y1-y4 AT a11-a14; 

 st | y1 ON a21; 

 st | y2 ON a22; 

 st | y3 ON a23; 

 st | y4 ON a24; 

 i s st ON x; 
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In this example, the growth model with individually-varying times of 

observation, a time-invariant covariate, and time-varying covariates with 

random slopes shown in the picture above is estimated. The st shown in 

a circle represents the random slope.  The broken arrows from st to the 

arrows from a21 to y1, a22 to y2, a23 to y3, and a24 to y4 indicate that 

the slopes in these regressions are random. 

 

The TSCORES option is used to identify the variables in the data set that 

contain information about individually-varying times of observation for 

the outcomes.  The TYPE option is used to describe the type of analysis 

that is to be performed.  By selecting RANDOM, a growth model with 

random slopes will be estimated.  

 

The | symbol is used in conjunction with TYPE=RANDOM to name and 

define the random effect variables in the model.  The names on the left-

hand side of the | symbol name the random effect variables.  In the first | 

statement, the AT option is used on the right-hand side of the | symbol to 

define a growth model with individually-varying times of observation for 
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the outcome variable.  Two growth factors are used in the model, a 

random intercept, i, and a random slope, s.   

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables are fixed at zero as the default.  The residual 

variances of the outcome variables are free to be estimated as the 

default.  The residual covariances of the outcome variables are fixed at 

zero as the default.  The means, variances, and covariances of the 

intercept and slope growth factors are free as the default.   

 

The second, third, fourth, and fifth | statements use the ON option to 

name and define the random slope variables in the model.  The name on 

the left-hand side of the | symbol names the random slope variable.  The 

statement on the right-hand side of the | symbol defines the random slope 

variable.  In the second | statement, the random slope st is defined by the 

linear regression of the dependent variable y1 on the time-varying 

covariate a21.  In the third | statement, the random slope st is defined by 

the linear regression of the dependent variable y2 on the time-varying 

covariate a22.  In the fourth | statement, the random slope st is defined 

by the linear regression of the dependent variable y3 on the time-varying 

covariate a23.  In the fifth | statement, the random slope st is defined by 

the linear regression of the dependent variable y4 on the time-varying 

covariate a24.  Random slopes with the same name are treated as one 

variable during model estimation.  The ON statement describes the linear 

regressions of the intercept growth factor i, the slope growth factor s, 

and the random slope st on the covariate x.  The intercepts and residual 

variances of, i, s, and st, are free as the default.  The residual covariance 

between i and s is estimated as the default.  The residual covariances 

between st and i and s are fixed at zero as the default.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The estimator option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 
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EXAMPLE 6.13: GROWTH MODEL FOR TWO PARALLEL 

PROCESSES FOR CONTINUOUS OUTCOMES WITH 

REGRESSIONS AMONG THE RANDOM EFFECTS 
 

 
TITLE:  this is an example of a growth model for 

two parallel processes for continuous  

 outcomes with regressions among the random 

effects 

DATA: FILE IS ex6.13.dat; 

VARIABLE: NAMES ARE y11 y12 y13 y14 y21 y22 y23 y24; 

MODEL: i1 s1 | y11@0 y12@1 y13@2 y14@3; 

 i2 s2 | y21@0 y22@1 y23@2 y24@3; 

 s1 ON i2; 

 s2 ON i1; 
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In this example, the model for two parallel processes shown in the 

picture above is estimated.  Regressions among the growth factors are 

included in the model.   

 

The | statements are used to name and define the intercept and slope 

growth factors for the two linear growth models.  The names i1 and s1 

on the left-hand side of the first | statement are the names of the intercept 

and slope growth factors for the first linear growth model.  The names i2 

and s2 on the left-hand side of the second | statement are the names of 

the intercept and slope growth factors for the second linear growth 

model.   The values on the right-hand side of the two | statements are the 

time scores for the two slope growth factors.  For both growth models, 

the time scores of the slope growth factors are fixed at 0, 1, 2, and 3 to 

define a linear growth model with equidistant time points.  The zero time 

score for the slope growth factor at time point one defines the intercept 

factors as initial status factors.  The coefficients of the intercept growth 

factors are fixed at one as part of the growth model parameterization.  

The residual variances of the outcome variables are estimated and 

allowed to be different across time, and the residuals are not correlated 

as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the outcome variables at the four time points are fixed at zero as the 

default.  The means and variances of the intercept growth factors are 

estimated as the default, and the intercept growth factor covariance is 

estimated as the default because the intercept growth factors are 

independent (exogenous) variables. The intercepts and residual 

variances of the slope growth factors are estimated as the default, and 

the slope growth factors are correlated as the default because residuals 

are correlated for latent variables that do not influence any other variable 

in the model except their own indicators.   

 

The two ON statements describe the regressions of the slope growth 

factor for each process on the intercept growth factor of the other 

process.  The default estimator for this type of analysis is maximum 

likelihood.  The ESTIMATOR option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 
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EXAMPLE 6.14: MULTIPLE INDICATOR LINEAR GROWTH 

MODEL FOR CONTINUOUS OUTCOMES 
 

 
TITLE: this is an example of a multiple indicator 

linear growth model for continuous 

outcomes 

DATA: FILE IS ex6.14.dat; 

VARIABLE: NAMES ARE y11 y21 y31 y12 y22 y32 y13  

 y23 y33; 

MODEL: f1 BY y11  

                 y21-y31 (1-2); 

 f2 BY  y12  

   y22-y32 (1-2); 

 f3 BY  y13  

   y23-y33 (1-2); 

 [y11 y12 y13] (3); 

 [y21 y22 y23] (4); 

 [y31 y32 y33] (5); 

 i s | f1@0 f2@1 f3@2;          

 

 

 
 

In this example, the multiple indicator linear growth model for 

continuous outcomes shown in the picture above is estimated.  The first 

BY statement specifies that f1 is measured by y11, y21, and y31.  The 

second BY statement specifies that f2 is measured by y12, y22, and y32.  

The third BY statement specifies that f3 is measured by y13, y23, and 

y33.  The metric of the three factors is set automatically by the program 
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by fixing the first factor loading in each BY statement to one.  This 

option can be overridden.  The residual variances of the factor indicators 

are estimated and the residuals are not correlated as the default.  

 

A multiple indicator growth model requires measurement invariance of 

the three factors across time.  Measurement invariance is specified by 

holding the intercepts and factor loadings of the factor indicators equal 

over time.  The (1-2) following the factor loadings in the three BY 

statements uses the list function to assign equality labels to these 

parameters. The label 1 is assigned to the factor loadings of y21, y22, 

and y23 which holds these factor loadings equal across time.  The label 2 

is assigned to the factor loadings of y31, y32, and y33 which holds these 

factor loadings equal across time.  The factor loadings of y11, y21, and 

y31 are fixed at one as described above.   The bracket statements refer to 

the intercepts.  The (3) holds the intercepts of y11, y12, and y13 equal.  

The (4) holds the intercepts of y21, y22, and y23 equal.  The (5) holds 

the intercepts of y31, y32, and y33 equal.  

 

The | statement is used to name and define the intercept and slope factors 

in the growth model.  The names i and s on the left-hand side of the | are 

the names of the intercept and slope growth factors, respectively.  The 

values on the right-hand side of the | are the time scores for the slope 

growth factor.  The time scores of the slope growth factor are fixed at 0, 

1, and 2 to define a linear growth model with equidistant time points.  

The zero time score for the slope growth factor at time point one defines 

the intercept growth factor as an initial status factor.  The coefficients of 

the intercept growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the factors f1, f2, and f3 are 

estimated and allowed to be different across time, and the residuals are 

not correlated as the default.  

 

In the parameterization of the growth model shown here, the intercepts 

of the factors f1, f2, and f3 are fixed at zero as the default.  The mean of 

the intercept growth factor is fixed at zero and the mean of the slope 

growth factor is estimated as the default.  The variances of the growth 

factors are estimated as the default, and the growth factors are correlated 

as the default because they are independent (exogenous) variables.  The 

default estimator for this type of analysis is maximum likelihood.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.  An explanation of the other commands can be 

found in Example 6.1. 
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EXAMPLE 6.15: MULTIPLE INDICATOR LINEAR GROWTH 

MODEL FOR CATEGORICAL OUTCOMES 
 

 
TITLE: this is an example of a multiple indicator 

linear growth model for categorical 

outcomes 

DATA: FILE IS ex6.15.dat; 

VARIABLE: NAMES ARE u11 u21 u31 u12 u22 u32  

 u13 u23 u33; 

 CATEGORICAL ARE u11 u21 u31 u12 u22 u32 

u13 u23 u33; 

 

MODEL: f1 BY u11  

                 u21-u31 (1-2); 

 f2 BY  u12  

   u22-u32 (1-2); 

 f3 BY u13  

   u23-u33 (1-2); 

 [u11$1 u12$1 u13$1] (3); 

 [u21$1 u22$1 u23$1] (4); 

 [u31$1 u32$1 u33$1] (5); 

 {u11-u31@1 u12-u33}; 

 i s | f1@0 f2@1 f3@2;          

 

The difference between this example and Example 6.14 is that the factor 

indicators are binary or ordered categorical (ordinal) variables instead of 

continuous variables.  The CATEGORICAL option is used to specify 

which dependent variables are treated as binary or ordered categorical 

(ordinal) variables in the model and its estimation.  In the example 

above, all of the factor indicators are categorical variables.  The program 

determines the number of categories for each indicator. 

 

For binary and ordered categorical factor indicators, thresholds are 

modeled rather than intercepts or means.  The number of thresholds for a 

categorical variable is equal to the number of categories minus one.  In 

the example above, the categorical variables are binary so they have one 

threshold.  Thresholds are referred to by adding to the variable name a $ 

followed by a number.  The thresholds of the factor indicators are 

referred to as u11$1, u12$1, u13$1, u21$1, u22$1, u23$1, u31$1, u32$1, 

and u33$1.  Thresholds are referred to in square brackets.  

 

The growth model requires measurement invariance of the three factors 

across time.  Measurement invariance is specified by holding the 
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thresholds and factor loadings of the factor indicators equal over time. 

The (3) after the first bracket statement holds the thresholds of u11, u12, 

and u13 equal.  The (4) after the second bracket statement holds the 

thresholds of u21, u22, and u23 equal.  The (5) after the third bracket 

statement holds the thresholds of u31, u32, and u33 equal.  A list of 

observed variables in curly brackets refers to scale factors.  These are 

part of the model with weighted least squares estimation and the Delta 

parameterization.  The scale factors for the latent response variables of 

the categorical outcomes for the first factor are fixed at one, while the 

scale factors for the latent response variables for the other factors are 

free to be estimated.  An explanation of the other commands can be 

found in Examples 6.1 and 6.14. 

 

EXAMPLE 6.16: TWO-PART (SEMICONTINUOUS) GROWTH 

MODEL FOR A CONTINUOUS OUTCOME 
 

 
TITLE: this is an example of a two-part 

(semicontinuous) growth model for a 

continuous outcome 

DATA: FILE = ex6.16.dat; 

DATA TWOPART: 

 NAMES = y1-y4; 

 BINARY = bin1-bin4; 

 CONTINUOUS = cont1-cont4; 

VARIABLE: NAMES = x y1-y4; 

 USEVARIABLES = bin1-bin4 cont1-cont4; 

 CATEGORICAL = bin1-bin4; 

 MISSING = ALL(999); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: iu su | bin1@0 bin2@1 bin3@2 bin4@3; 

 iy sy | cont1@0 cont2@1 cont3@2 cont4@3; 

 su@0; iu WITH sy@0; 

OUTPUT: TECH1 TECH8; 
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In this example, the two-part (semicontinuous) growth model (Olsen & 

Schafer, 2001) for a continuous outcome shown in the picture above is 

estimated.  This is one type of model that can be considered when a 

variable has a floor effect, for example, a preponderance of zeroes.  The 

analysis requires that one binary variable and one continuous variable be 

created from the outcome being studied.   

 

The DATA TWOPART command is used to create a binary and a 

continuous variable from a variable with a floor effect.  In this example, 

a set of binary and continuous variables are created using the default 

value of zero as the cutpoint.  The CUTPOINT option of the DATA 

TWOPART command can be used to select another value.  The two 

variables are created using the following rules: 

 

1. If the value of the original variable is missing, both the new binary 

and the new continuous variable values are missing. 
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2. If the value of the original variable is greater than the cutpoint value, 

the new binary variable value is one and the new continuous variable 

value is the log of the original variable as the default. 

3. If the value of the original variable is less than or equal to the 

cutpoint value, the new binary variable value is zero and the new 

continuous variable value is missing.   

 

The TRANSFORM option of the DATA TWOPART command can be 

used to select an alternative to the default log transformation of the new 

continuous variables.  One choice is no transformation.   

 

The NAMES option of the DATA TWOPART command is used to 

identify the variables from the NAMES option of the VARIABLE 

command that are used to create a set of binary and continuous variables.  

Variables y1, y2, y3, and y4 are used.  The BINARY option is used to 

assign names to the new set of binary variables.  The names for the new 

binary variables are bin1, bin2, bin3, and bin4.  The CONTINUOUS 

option is used to assign names to the new set of continuous variables.  

The names for the new continuous variables are cont1, cont2, cont3, and 

cont4.  The new variables must be placed on the USEVARIABLES 

statement of the VARIABLE command if they are used in the analysis. 

 

The CATEGORICAL option is used to specify which dependent 

variables are treated as binary or ordered categorical (ordinal) variables 

in the model and its estimation.  In the example above, bin1, bin2, bin3, 

and bin4 are binary variables.  The MISSING option is used to identify 

the values or symbols in the analysis data set that are to be treated as 

missing or invalid.  In this example, the number 999 is the missing value 

flag.  The default is to estimate the model under missing data theory 

using all available data.  By specifying ESTIMATOR=MLR, a 

maximum likelihood estimator with robust standard errors using a 

numerical integration algorithm will be used.  Note that numerical 

integration becomes increasingly more computationally demanding as 

the number of growth factors and the sample size increase.  In this 

example, one dimension of integration is used with a total of 15 

integration points.  The ESTIMATOR option of the ANALYSIS 

command can be used to select a different estimator.     

 

The first | statement specifies a linear growth model for the binary 

outcome.  The second | statement specifies a linear growth model for the 

continuous outcome.  In the parameterization of the growth model for 
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the binary outcome, the thresholds of the outcome variable at the four 

time points are held equal as the default.  The mean of the intercept 

growth factor is fixed at zero.  The mean of the slope growth factor and 

the variances of the intercept and slope growth factors are estimated as 

the default.  In this example, the variance of the slope growth factor is 

fized at zero for simplicity.  In the parameterization of the growth model 

for the continuous outcome, the intercepts of the outcome variables at 

the four time points are fixed at zero as the default.  The means and 

variances of the growth factors are estimated as the default, and the 

growth factors are correlated as the default because they are independent 

(exogenous) variables.   

 

It is often the case that not all growth factor covariances are significant 

in two-part growth modeling.  Fixing these at zero stabilizes the 

estimation.  This is why the growth factor covariance between iu and sy 

is fixed at zero.  The OUTPUT command is used to request additional 

output not included as the default.  The TECH1 option is used to request 

the arrays containing parameter specifications and starting values for all 

free parameters in the model.  The TECH8 option is used to request that 

the optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes.  An explanation of the other commands can be found in Example 

6.1. 
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EXAMPLE 6.17: LINEAR GROWTH MODEL FOR A 

CONTINUOUS OUTCOME WITH FIRST-ORDER AUTO 

CORRELATED RESIDUALS USING NON-LINEAR 

CONSTRAINTS 
 

 
TITLE: this is an example of a linear growth 

model for a continuous outcome with first-

order auto correlated residuals using non-

linear constraints 

DATA: FILE = ex6.17.dat; 

VARIABLE: NAMES = y1-y4; 

MODEL: i s | y1@0 y2@1 y3@2 y4@3; 

 y1-y4 (resvar); 

 y1-y3 PWITH y2-y4 (p1); 

 y1-y2 PWITH y3-y4 (p2); 

 y1 WITH y4 (p3); 

MODEL CONSTRAINT: 

 NEW (corr); 

 p1 = resvar*corr; 

 p2 = resvar*corr**2; 

 p3 = resvar*corr**3; 

 

The difference between this example and Example 6.1 is that first-order 

auto correlated residuals have been added to the model.  In a model with 

first-order correlated residuals, one residual variance parameter and one 

residual auto-correlation parameter are estimated.   

 

In the MODEL command, the label resvar following the residual 

variances serves two purposes.  It specifies that the residual variances 

are held equal to each other and gives that residual variance parameter a 

label to be used in the MODEL CONSTRAINT command.  The labels 

p1, p2, and p3 specify that the residual covariances at adjacent time 

points, at adjacent time points once removed, and at adjacent time points 

twice removed are held equal.  The MODEL CONSTRAINT command 

is used to define linear and non-linear constraints on the parameters in 

the model.  In the MODEL CONSTRAINT command, the NEW option 

is used to introduce a new parameter that is not part of the MODEL 

command.  This residual auto-correlation parameter is referred to as 

corr.  The p1 parameter constraint specifies that the residual covariances 

at adjacent time points are equal to the residual variance parameter 

multiplied by the auto-correlation parameter.  The p2 parameter 
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constraint specifies that the residual covariances at adjacent time points 

once removed are equal to the residual variance parameter multiplied by 

the auto-correlation parameter to the power of two.  The p3 parameter 

constraint specifies that the residual covariance at adjacent time points 

twice removed is equal to the residual variance parameter multiplied by 

the auto-correlation parameter to the power of three.  An explanation of 

the other commands can be found in Example 6.1. 

 

EXAMPLE 6.18:  MULTIPLE GROUP MULTIPLE COHORT 

GROWTH MODEL  
 

 
TITLE: this is an example of a multiple group  

 multiple cohort growth model 

DATA:  FILE = ex6.18.dat; 

VARIABLE: NAMES = y1-y4 x a21-a24 g; 

 GROUPING = g (1 = 1990 2 = 1989 3 = 1988); 

MODEL: i s |y1@0 y2@.2 y3@.4 y4@.6; 

 [i] (1); [s] (2); 

 i (3); s (4); 

 i WITH s (5); 

 i ON x (6); 

 s ON x (7); 

 y1 ON a21; 

 y2 ON a22 (12); 

 y3 ON a23 (14); 

 y4 ON a24 (16); 

 y2-y4 (22-24);  

MODEL 1989:  

 i s |y1@.1 y2@.3 y3@.5 y4@.7; 

 y1 ON a21; 

 y2 ON a22; 

 y3 ON a23; 

 y4 ON a24; 

 y1-y4; 

MODEL 1988: 

 i s |y1@.2 y2@.4 y3@.6 y4@.8; 

 y1 ON a21 (12); 

 y2 ON a22 (14); 

 y3 ON a23 (16); 

 y4 ON a24; 

 y1-y3 (22-24); 

 y4; 

OUTPUT: TECH1 MODINDICES(3.84); 
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In this example, the multiple group multiple cohort growth model shown 

in the picture above is estimated.  Longitudinal research studies often 

collect data on several different groups of individuals defined by their 

birth year or cohort.  This allows the study of development over a wider 

age range than the length of the study and is referred to as an accelerated 

or sequential cohort design.  The interest in these studies is the 

development of an outcome over age not measurement occasion.  This 

can be handled by rearranging the data so that age is the time axis using 

the DATA COHORT command or using a multiple group approach as 

described in this example.  The advantage of the multiple group 

approach is that it can be used to test assumptions of invariance of 

growth parameters across cohorts. 

 

In the multiple group approach the variables in the data set represent the 

measurement occasions.  In this example, there are four measurement 

occasions: 2000, 2002, 2004, and 2006.  Therefore there are four 

variables to represent the outcome.  In this example, there are three 

cohorts with birth years 1988, 1989, and 1990.  It is the combination of 

the time of measurement and birth year that determines the ages 

represented in the data.  This is shown in the table below where rows 

represent cohort and columns represent measurement occasion.  The 
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entries in the table represent the ages.  In this example, ages 10 to 18 are 

represented. 

 

M.O./ 

Cohort 

2000 2002 2004 2006 

1988 12 14 16 18 

1989 11 13 15 17 

1990 10 12 14 16 

 

The model that is estimated uses the time axis of age as shown in the 

table below where rows represent cohort and columns represent age.  

The entries for the first three rows in the table are the years of the 

measurement occasions.  The entries for the last row are the time scores 

for a linear model. 

 

Age/ 

Cohort 
10 11 12 13 14 15 16 17 18 

1988   2000  2002  2004  2006 

1989  2000  2002  2004  2006  

1990 2000  2002  2004  2006   

Time 

Score 
0 .1 .2 .3 .4 .5 .6 .7 .8 

 

As shown in the table, three ages are represented by more than one 

cohort.  Age 12 is represented by cohorts 1988 and 1990 measured in 

2000 and 2002; age 14 is represented by cohorts 1988 and 1990 

measured in 2002 and 2004; and age 16 is represented by cohorts 1988 

and 1990 measured in 2004 and 2006.  This information is needed to 

constrain parameters to be equal in the multiple group model.   

 

The table also provides information about the time scores for each 

cohort.  The time scores are obtained as the difference in age between 

measurement occasions divided by ten.  The division is used to avoid 

large time scores which can lead to convergence problems.  Cohort 1990 

provides information for ages 10, 12, 14, and 16.  The time scores for 

cohort 2000 are 0, .2, .4, and .6.  Cohort 1989 provides information for 

ages 11, 13, 15, and 17.  The time scores for cohort 1989 are .1, .3, .5, 

and .7.  Cohort 1988 provides information for ages 12, 14, 16, and 18.  

The time scores for cohort 1988 are .2, .4, .6, and .8.   
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The GROUPING option is used to identify the variable in the data set 

that contains information on group membership when the data for all 

groups are stored in a single data set.  The information in parentheses 

after the grouping variable name assigns labels to the values of the 

grouping variable found in the data set.  In the example above, 

observations with g equal to 1 will be assigned the label 1990, 

individuals with g equal to 2 will be assigned the label 1989, and 

individuals with g equal to 3 will be assigned the label 1988.  These 

labels are used in conjunction with the MODEL command to specify 

model statements specific to each group. 

 

In multiple group analysis, two variations of the MODEL command are 

used.  They are MODEL and MODEL followed by a label.  MODEL 

describes the overall model to be estimated for each group.  MODEL 

followed by a label describes differences between the overall model and 

the model for the group designated by the label.  In the MODEL 

command, the | symbol is used to name and define the intercept and 

slope factors in a growth model.  The names i and s on the left-hand side 

of the | symbol are the names of the intercept and slope growth factors, 

respectively.  The statement on the right-hand side of the | symbol 

specifies the outcome and the time scores for the growth model.  The 

time scores for the slope growth factor are fixed at 0, .2, .4, and .6.  

These are the time scores for cohort 1990.  The zero time score for the 

slope growth factor at time point one defines the intercept growth factor 

as an initial status factor for age 10.  The coefficients of the intercept 

growth factor are fixed at one as part of the growth model 

parameterization.  The residual variances of the outcome variables are 

estimated and allowed to be different across age and the residuals are not 

correlated as the default.  The time scores for the other two cohorts are 

specified in the group-specific MODEL commands.  The group-specific 

MODEL command for cohort 1989 fixes the time scores at .1, .3, .5, and 

.7.  The group-specific MODEL command for cohort 1988 fixes the time 

scores at .2, .4, .6, and .8. 

 

The equalities specified by the numbers in parentheses represent the 

baseline assumption that the cohorts come from the same population.  

Equalities specified in the overall MODEL command constrain 

parameters to be equal across all groups.  All parameters related to the 

growth factors are constrained to be equal across all groups.  Other 

parameters are held equal when an age is represented by more than one 

cohort.  For example, the ON statement with the (12) equality in the 
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overall MODEL command describes the linear regression of y2 on the 

time-varying covariate a22 for cohort 1990 at age 12.  In the group-

specific MODEL command for cohort 1988, the ON statement with the 

(12) equality describes the linear regression of y1 on the time-varying 

covariate a21 for cohort 1988 at age 12.  Other combinations of cohort 

and age do not involve equality constraints.  Cohort 1990 is the only 

cohort that represents age 10; cohort 1989 is the only cohort that 

represents ages 11, 13, 15, 17; and cohort 1988 is the only cohort that 

represents age 18.  Statements in the group-specific MODEL commands 

relax equality constraints specified in the overall MODEL command.  

An explanation of the other commands can be found in Example 6.1. 

 

EXAMPLE 6.19: DISCRETE-TIME SURVIVAL ANALYSIS 
 

 
TITLE: this is an example of a discrete-time 

survival analysis 

DATA: FILE IS ex6.19.dat; 

VARIABLE: NAMES ARE u1-u4 x; 

 CATEGORICAL = u1-u4; 

 MISSING = ALL (999); 

ANALYSIS: ESTIMATOR = MLR; 

MODEL: f BY u1-u4@1; 

 f ON x; 

 f@0; 

 

 

 
 

 

In this example, the discrete-time survival analysis model shown in the 

picture above is estimated.  Each u variable represents whether or not a 

single non-repeatable event has occurred in a specific time period.  The 

value 1 means that the event has occurred, 0 means that the event has not 
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occurred, and a missing value flag means that the event has occurred in a 

preceding time period or that the individual has dropped out of the study 

(Muthén & Masyn, 2005).  The factor f is used to specify a proportional 

odds assumption for the hazards of the event.   

 

The MISSING option is used to identify the values or symbols in the 

analysis data set that are to be treated as missing or invalid.  In this 

example, the number 999 is the missing value flag.  The default is to 

estimate the model under missing data theory using all available data.  

The default estimator for this type of analysis is a robust weighted least 

squares estimator.  By specifying ESTIMATOR=MLR, maximum 

likelihood estimation with robust standard errors is used.  The BY 

statement specifies that f is measured by u1, u2, u3, and u4 where the 

factor loadings are fixed at one.  This represents a proportional odds 

assumption where the covariate x has the same influence on u1, u2, u3, 

and u4.  The ON statement describes the linear regression of f on the 

covariate x.  The residual variance of f is fixed at zero to correspond to a 

conventional discrete-time survival model.  An explanation of the other 

commands can be found in Example 6.1. 

 

EXAMPLE 6.20: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING THE COX REGRESSION MODEL 
 

 
TITLE: this is an example of a continuous-time      

  survival analysis using the Cox regression 

model 

DATA: FILE = ex6.20.dat; 

VARIABLE: NAMES = t x tc; 

 SURVIVAL = t; 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

MODEL: t ON x; 

 

 

 

 

 

In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  This is the Cox regression model (Singer 
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& Willett, 2003).  The profile likelihood method is used for model 

estimation (Asparouhov et al., 2006).  

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  In this example, t is the 

variable that contains time-to-event information.  Because nothing is 

specified in parentheses behind t, the default baseline hazard function is 

used.  The TIMECENSORED option is used to identify the variables 

that contain information about right censoring.  In this example, the 

variable is named tc.  The information in parentheses specifies that the 

value zero represents no censoring and the value one represents right 

censoring.  This is the default.  

 

In the MODEL command, the ON statement describes the loglinear 

regression of the time-to-event variable t on the covariate x.  The default 

estimator for this type of analysis is maximum likelihood with robust 

standard errors.  The estimator option of the ANALYSIS command can 

be used to select a different estimator.  An explanation of the other 

commands can be found in Example 6.1. 

 

EXAMPLE 6.21: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING A PARAMETRIC PROPORTIONAL HAZARDS MODEL 
 

 
TITLE: this is an example of a continuous-time  

 survival analysis using a parametric 

proportional hazards model 

DATA: FILE = ex6.21.dat; 

VARIABLE: NAMES = t x tc; 

 SURVIVAL = t(20*1); 

 TIMECENSORED = tc (0 = NOT 1 = RIGHT); 

ANALYSIS: BASEHAZARD = ON; 

MODEL: [t#1-t#21]; 

 t ON x; 

 

The difference between this example and Example 6.20 is that a 

parametric proportional hazards model is used instead of a Cox 

regression model.  In contrast to the Cox regression model, the 
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parametric model estimates parameters and their standard errors for the 

baseline hazard function (Asparouhov et al., 2006). 

 

The SURVIVAL option is used to identify the variables that contain 

information about time to event and to provide information about the 

number and lengths of the time intervals in the baseline hazard function 

to be used in the analysis.  The SURVIVAL option must be used in 

conjunction with the TIMECENSORED option.  In this example, t is the 

variable that contains time-to-event information.  The numbers in 

parentheses following the time-to-event variable specify that twenty time 

intervals of length one are used in the analysis for the baseline hazard 

function.  The TIMECENSORED option is used to identify the variables 

that contain information about right censoring.  In this example, this 

variable is named tc.  The information in parentheses specifies that the 

value zero represents no censoring and the value one represents right 

censoring.  This is the default.   

 

The BASEHAZARD option of the ANALYSIS command is used with 

continuous-time survival analysis to specify whether the baseline hazard 

parameters are treated as model parameters or as auxiliary parameters.  

The ON setting specifies that the parameters are treated as model 

parameters.  There are as many baseline hazard parameters as there are 

time intervals plus one.  These parameters can be referred to in the 

MODEL command by adding to the name of the time-to-event variable 

the number sign (#) followed by a number.  In the MODEL command, 

the bracket statement specifies that the 21 baseline hazard parameters are 

part of the model. 

 

The default estimator for this type of analysis is maximum likelihood 

with robust standard errors.  The estimator option of the ANALYSIS 

command can be used to select a different estimator.  An explanation of 

the other commands can be found in Examples 6.1 and 6.20. 
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EXAMPLE 6.22: CONTINUOUS-TIME SURVIVAL ANALYSIS 

USING A PARAMETRIC PROPORTIONAL HAZARDS MODEL 

WITH A FACTOR INFLUENCING SURVIVAL 
 

 
TITLE: this is an example of a continuous-time  

 survival analysis using a parametric 

proportional hazards model with a factor 

influencing survival 

DATA: FILE = ex6.22.dat; 

VARIABLE: NAMES = t u1-u4 x tc; 

 SURVIVAL = t (20*1); 

 TIMECENSORED = tc; 

 CATEGORICAL = u1-u4; 

ANALYSIS: ALGORITHM = INTEGRATION;  

 BASEHAZARD = ON; 

MODEL: f BY u1-u4; 

 [t#1-t#21]; 

 t ON x f; 

 f ON x; 

OUTPUT: TECH1 TECH8; 

 

 

 
 

 

In this example, the continuous-time survival analysis model shown in 

the picture above is estimated.  The model is similar to Larsen (2005) 
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although in this example the analysis uses a parametric baseline hazard 

function (Asparouhov et al., 2006). 

   

By specifying ALGORITHM=INTEGRATION, a maximum likelihood 

estimator with robust standard errors using a numerical integration 

algorithm will be used.  Note that numerical integration becomes 

increasingly more computationally demanding as the number of factors 

and the sample size increase.  In this example, one dimension of 

integration is used with a total of 15 integration points.  The 

ESTIMATOR option of the ANALYSIS command can be used to select 

a different estimator.   

 

In the MODEL command the BY statement specifies that f is measured 

by the binary indicators u1, u2, u3, and u4.  The bracket statement 

specifies that the 21 baseline hazard parameters are part of the model.  

The first ON statement describes the loglinear regression of the time-to-

event variable t on the covariate x and the factor f.  The second ON 

statement describes the linear regression of f on the covariate x.  An 

explanation of the other commands can be found in Examples 6.1 and 

6.21. 

 

EXAMPLE 6.23: N=1 TIME SERIES ANALYSIS WITH A 

UNIVARIATE FIRST-ORDER AUTOREGRESSIVE AR(1) 

MODEL FOR A CONTINUOUS DEPENDENT VARIABLE 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a univariate first-order 

autoregressive AR(1) model for a 

continuous dependent variable 

DATA: FILE = ex6.23.dat; 

VARIABLE: NAMES = y; 

 LAGGED = y(1); 

ANALYSIS: ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (2000);  

MODEL: y ON y&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable shown 

in the picture above is estimated (Shumway & Stoffer, 2011).  The 

subscript t refers to a time point and the subscript t-1 refers to the 

previous time point.  The dots indicate that the process includes both 

previous and future time points using the same model. 

 

In the VARIABLE command, the NAMES option is used to assign 

names to the variables in the data set.  The data set in this example 

contains one variable y.  The variable y is measured over multiple time 

points.  The number of times it is measured is equal to the number of 

records in the data set.  The records must be ordered by time.  The 

LAGGED option is used to specify the maximum lag to use for an 

observed variable during model estimation.  The variable y has lag 1.  

The lagged variable is referred to by adding to the name of the variable 

an ampersand (&) and the number of the lag. 

 

In the ANALYSIS command, by specifying ESTIMATOR=BAYES, a 

Bayesian analysis will be carried out.  In Bayesian estimation, the 

default is to use two independent Markov chain Monte Carlo (MCMC) 

chains.  If multiple processors are available, using PROCESSORS=2 

will speed up computations.  The BITERATIONS option is used to 

specify the maximum and minimum number of iterations for each 

Markov chain Monte Carlo (MCMC) chain when the potential scale 

reduction (PSR) convergence criterion (Gelman & Rubin, 1992) is used.  

Using a number in parentheses, the BITERATIONS option specifies that 

a minimum of 2,000 and a maximum of the default of 50,000 iterations 

will be used. 

 

In the MODEL command, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point. An 

intercept, regression coefficient, and residual variance are estimated. 
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An N=1 time series analysis with a univariate second-order 

autoregressive AR(2) model can also be estimated.  For this analysis, the 

LAGGED option is specified as LAGGED = y (2); and the MODEL 

command is specified as follows: 

  
MODEL: y ON y&1 y&2; 

 

In the MODEL command, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 

dependent variable y&1 which is y at the previous time point and the 

dependent variable y&2 which is y at two time points prior.  An 

intercept, two regression coefficients, and a residual variance are 

estimated.  A model where only y at lag 2 is used is specified as follows: 

 
MODEL: y ON y&1@0 y&2; 

 

where the coefficient for y at lag 1 is fixed at zero. An intercept, 

regression coefficient, and residual variance are estimated. 

  

The OUTPUT command is used to request additional output not 

included as the default.  The TECH1 option is used to request the arrays 

containing parameter specifications and starting values for all free 

parameters in the model.  The TECH8 option is used to request that the 

optimization history in estimating the model be printed in the output.  

TECH8 is printed to the screen during the computations as the default.  

TECH8 screen printing is useful for determining how long the analysis 

takes and to check convergence using the PSR convergence criterion.  

The PLOT command is used to request graphical displays of observed 

data and analysis results.  These graphical displays can be viewed after 

the analysis is completed using a post-processing graphics module.  The 

trace plot and autocorrelation plot can be used to monitor the MCMC 

iterations in terms of convergence and quality of the posterior 

distribution for each parameter. The posterior distribution plot shows the 

complete posterior distribution of the parameter estimate.  Also available 

are time series plots of observed values, autocorrelations at different 

lags, and partial autocorrelations at different lags.  An explanation of the 

other commands can be found in Example 6.1. 
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EXAMPLE 6.24: N=1 TIME SERIES ANALYSIS WITH A 

UNIVARIATE FIRST-ORDER AUTOREGRESSIVE AR(1) 

MODEL FOR A CONTINUOUS DEPENDENT VARIABLE 

WITH A COVARIATE 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a univariate first-order 

autoregressive AR(1) model for a 

continuous dependent variable with a 

covariate 

DATA: FILE = ex6.24.dat; 

VARIABLE: NAMES ARE y x; 

 LAGGED = y(1) x(1); 

ANALYSIS: ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (1000);  

MODEL: y ON y&1 x x&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

 

 
 

 

In this example, the N=1 time series analysis with a univariate first-order 

autoregressive AR(1) model for a continuous dependent variable with a 

covariate shown in the picture above is estimated.  The subscript t refers 

to a time point and the subscript t-1 refers to the previous time point.  

The dots indicate that the process includes both previous and future time 

points using the same model. 

 

In the MODEL command, the ON statement describes the linear 

regression over multiple time points of the dependent variable y on the 
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dependent variable y&1 which is y at the previous time point, a covariate 

x, and a covariate x&1 which is x at the previous time point.  An 

intercept, three regression coefficients, and a residual variance are 

estimated.  An explanation of the other commands can be found in 

Examples 6.1 and 6.23. 

 

EXAMPLE 6.25: N=1 TIME SERIES ANALYSIS WITH A 

BIVARIATE CROSS-LAGGED MODEL FOR CONTINUOUS 

DEPENDENT VARIABLES 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a bivariate cross-lagged 

model for continuous dependent variables 

DATA: FILE = ex6.25.dat; 

VARIABLE: NAMES = y1 y2; 

 LAGGED = y1(1) y2(1); 

ANALYSIS: ESTIMATOR = BAYES;   

 PROCESSORS = 2; 

 BITERATIONS = (500);  

MODEL: y1 ON y1&1 y2&1; 

 y2 ON y2&1 y1&1;   

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

 

 
 

 

In this example, the N=1 time series analysis with a bivariate cross-

lagged model for continuous dependent variables shown in the picture 

above is estimated.  This model is also referred to as a first-order vector 

autoregressive VAR(1) model, see e.g., Shumway and Stoffer (2011).  

The subscript t refers to a time point and the subscript t-1 refers to the 
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previous time point.  The dots indicate that the process includes both 

previous and future time points using the same model. 

 

In the MODEL command, the first ON statement describes the linear 

regression over multiple time points of the dependent variable y1 on the 

dependent variable y1&1 which is y1 at the previous time point, and the 

dependent variable y2&1 which is y2 at the previous time point.  The 

second ON statement describes the linear regression over multiple time 

points of the dependent variable y2 on the dependent variable y2&1 

which is y2 at the previous time point, and the dependent variable y1&1 

which is y1 at the previous time point.  Two intercepts, four regression 

coefficients, two residual variances, and one residual covariance are 

estimated.  An explanation of the other commands can be found in 

Examples 6.1 and 6.23. 

 

EXAMPLE 6.26: N=1 TIME SERIES ANALYSIS WITH A 

FIRST-ORDER AUTOREGRESSIVE AR(1) CONFIRMATORY 

FACTOR ANALYSIS (CFA) MODEL WITH CONTINUOUS 

FACTOR INDICATORS 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a first-order autoregressive 

AR(1) confirmatory factor analysis (CFA) 

model with continuous factor indicators 

DATA: FILE = ex6.26.dat; 

VARIABLE: NAMES = y1-y4; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000);  

MODEL: f BY y1-y4 (&1);  

 f ON f&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the N=1 time series analysis with a first-order 

autoregressive AR(1) confirmatory factor analysis (CFA) model with 

continuous factor indicators shown in the picture above is estimated.  

This model is also referred to as a direct autoregressive factor score 

(DAFS) model.  For a discussion of N=1 time series factor analysis, also 

referred to as dynamic factor analysis, see e.g., Molenaar (1985); Zhang, 

Hamaker, and Nesselroade (2008); and Asparouhov, Hamaker, and 

Muthén (2017).  The subscript t refers to a time point and the subscript t-

1 refers to the previous time point.  The dots indicate that the process 

includes both previous and future time points using the same model. 

 

In the MODEL command, the BY statement specifies that f is measured 

by y1, y2, y3, and y4.  The metric of the factor is set automatically by 

the program by fixing the first factor loading to one.  This option can be 

overridden.  An ampersand (&) followed by the number 1 is placed in 

parentheses following the BY statement to indicate that the factor f at 

lag 1 can be used in the analysis.  The factor f at lag 1 is referred to as 

f&1.  The intercepts and residual variances of the factor indicators are 

estimated and the residuals are not correlated as the default.  The ON 

statement describes the linear regression over multiple time points of the 

factor f on the factor f&1 which is f at the previous time point.  A 

regression coefficient and residual variance of the factor are estimated.  

The intercept of the factor is fixed at zero as the default.   

 

A white noise factor score (WNFS) model (Zhang & Nesselroade,  2007) 

can be estimated using the MODEL command below where instead of 

regressing the factor f on f&1, the factor indicators y1, y2, y3, and y4 are 

regressed on f&1. 
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MODEL: f BY y1-y4 (&1);  

 y1-y4 ON f&1; 

 

An explanation of the other commands can be found in Examples 6.1 

and 6.23.   

 

EXAMPLE 6.27: N=1 TIME SERIES ANALYSIS WITH A 

FIRST-ORDER AUTOREGRESSIVE AR(1) IRT MODEL WITH 

BINARY FACTOR INDICATORS 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a first-order autoregressive 

AR(1) IRT model with binary factor 

indicators 

DATA: FILE = ex6.27.dat; 

VARIABLE: NAMES = u1-u4; 

 CATEGORICAL = u1-u4; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: f BY u1-u4*(&1);  

 f@1; 

 f ON f&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 

 

In this example, an N=1 time series analysis with a first-order 

autoregressive AR(1) IRT model with binary factor indicators is 

estimated.  The subscript t refers to a time point and the subscript t-1 

refers to the previous time point.  The dots indicate that the process 

includes both previous and future time points using the same model. 

 

The CATEGORICAL option specifies that the variables u1, u2, u3, and 

u4 are binary.  In the MODEL command, the BY statement specifies that 

f is measured by u1, u2, u3, and u4.  The metric of the factor is set 

automatically by the program by fixing the first factor loading to one.  

The asterisk following u1-u4 overrides this default.  The metric of the 

factor is set by fixing the factor residual variance to one.  An ampersand 

(&) followed by the number 1 is placed in parentheses following the BY 

statement to indicate that the factor f at lag 1 can be used in the analysis.  

The factor f at lag 1 is referred to as f&1.  The thresholds of the factor 

indicators are estimated as the default.  The ON statement describes the 
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linear regression over multiple time points of the factor f on the factor 

f&1 which is f at the previous time point.  A regression coefficient and 

residual variance of the factor are estimated.  The intercept of the factor 

is fixed at zero as the default.  An explanation of the other commands 

can be found in Examples 6.1, 6.4, and 6.23.   

 

EXAMPLE 6.28: N=1 TIME SERIES ANALYSIS WITH A 

BIVARIATE CROSS-LAGGED MODEL WITH TWO FACTORS 

AND CONTINUOUS FACTOR INDICATORS 
 

 
TITLE: this is an example of an N=1 time series 

analysis with a bivariate cross-lagged 

model with two factors and continuous 

factor indicators 

DATA: FILE = ex6.28.dat; 

VARIABLE: NAMES = y11-y14 y21-y24; 

ANALYSIS: ESTIMATOR = BAYES; 

 PROCESSORS = 2; 

 BITERATIONS = (2000); 

MODEL: f1 BY y11-y14 (&1);  

 f2 BY y21-y24 (&1);  

 f1 ON f1&1 f2&1; 

 f2 ON f2&1 f1&1; 

OUTPUT: TECH1 TECH8; 

PLOT: TYPE = PLOT3; 
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In this example, the N=1 time series analysis with a bivariate cross-

lagged model with two factors and continuous factor indicators shown in 

the picture above is estimated.  The subscript t refers to a time point and 

the subscript t-1 refers to the previous time point.  The dots indicate that 

the process includes both previous and future time points using the same 

model.  

 

In the MODEL command, the first BY statement specifies that f1 is 

measured by y11, y12, y13, and y14.  The second BY statement specifies 

that f2 is measured by y21, y22, y23, and y24.  The metric of the factors 

is set automatically by the program by fixing the first factor loading to 

one.  This option can be overridden.  An ampersand (&) followed by the 

number 1 is placed in parentheses following the BY statements to 

indicate that the factors f1 and f2 at lag 1 are used during model 

estimation. The factors f1 and f2 at lag 1 are referred to as f1&1 and 

f2&1, respectively.  The intercepts and residual variances of the factor 

indicators are estimated and the residuals are not correlated as the 

default.  The first ON statement describes the linear regression over 
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multiple time points of the factor f1 on the factor f1&1 which is f1 at the 

previous time point and the factor f2&1 which is f2 at the previous time 

point.  The second ON statement describes the linear regression over 

multiple time points of the factor f2 on the factor f2&1 which is f2 at the 

previous time point and the factor f1&1 which is f1 at the previous time 

point.  Four regression coefficients, two residual variances, and one 

residual covariance of the factors are estimated.  The intercepts of the 

factors are fixed at zero as the default.  An explanation of the other 

commands can be found in Examples 6.1 and 6.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


