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Researchers often have expectations that can be expressed in the form of inequality constraints

among the parameters of a structural equation model. It is currently not possible to test these

so-called informative hypotheses in structural equation modeling software. We offer a solution to

this problem using Mplus. The hypotheses are evaluated using plug-in p values with a calibrated

alpha level. The method is introduced and its utility is illustrated by means of an example.

Order-restricted inference has been studied in the frequentist framework (see, e.g., Barlow,

Bartholomew, Bremner, & Brunk, 1972; Robertson, Wright, & Dykstra, 1988; Silvapulle &

Sen, 2004) as well as in the Bayesian framework (e.g., Hoijtink, Klugkist, & Boelen, 2008;

Klugkist, Laudy, & Hoijtink, 2005). However, testing order constraints has received relatively

little attention in the structural equation modeling (SEM) literature (Gonzalez & Griffin,

2001; Stoel, Galindo-Garre, Dolan, & Van den Wittenboer, 2006). SEM is often used and

its attractiveness is largely due to its flexibility in specifying and testing hypotheses among

both observed and latent variables in multiple groups.

SEM software can be used to impose inequality constraints among the parameters of

interest. More specifically, to evaluate a research question, model parameters such as regression

coefficients can be constrained to being greater or smaller than either a fixed value or other

regression coefficients. We call hypotheses that contain inequality constraints informative

hypotheses. Mplus (Muthén & Muthén, 2007) allows for such user-specified constraints and

order constraint parameter estimation is available. The problem is that a null hypothesis test

for the evaluation of an informative hypothesis is lacking in SEM software.
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We offer a solution to this problem based on the parametric bootstrap method available in

Mplus. Plug-in p values are obtained using a likelihood ratio test. The performance of these p

values is evaluated and we show that the alpha level should be calibrated. Using some examples,

we demonstrate how this can be done.

CONSTRAINT PARAMETER ESTIMATION AND HYPOTHESIS TESTING

Ritov and Gilula (1993) proposed to obtain maximum likelihood estimates of order-restricted

models by a pooling adjacent violators algorithm (see also Robertson et al., 1988, p. 56). The

procedure in Mplus (Muthén & Muthén, 2007), the slacking parameter method, is based on

the solution of Ritov and Gilula. The core of the algorithm is estimating the parameters via

the maximum likelihood method such that the likelihood is maximized using the sequential

quadratic programming method (Han, 1977). In this method the parameters that contain inequal-

ity constraints are updated in an iterative process where inequality constraints are treated as

equality constraints whenever the estimates do not fit the constraints imposed on the parameters.

This is done by the introduction of “slack” parameters into the model. See Schoenberg (1997)

for more details.

How to test inequality constraint hypotheses has mainly been studied outside the SEM

model. See Barlow et al. (1972), Robertson et al. (1988), and Silvapulle and Sen (2004)

for a comprehensive overview. In 2002 the Journal of Statistical Planning and Inference

published a special issue on testing inequality constraint hypotheses (Berger & Ivanova, 2002;

Chongcharoen, Singh, & Wright, 2002; Khalil, Saikali, & Berger, 2002; Lee & Yan, 2002;

Perlman & Wu, 2002a, 2002b; Sampson & Singh, 2002; Sen & Silvapulle, 2002; Silvapulle,

Silvapulle, & Basawa, 2002), but none of these articles discussed constraints in SEM models.

Testing informative hypotheses for SEM models has been described by Stoel et al. (2006). In

this study, constraints were imposed on variance terms to obtain only positive values. Hypothesis

tests were performed to test the benefit of these constraints (see also Gonzalez & Griffin, 2001).

Also, Tsonaka and Moustaki (2007) described testing parameter constraints in SEM models.

They specifically described factor analysis where a parametric bootstrap was performed to

obtain the results. However, they only considered a comparison between a constrained and an

unconstrained model. In this study we also focus on constraint hypothesis testing within the

SEM model, and although we present examples of a path model, our solution is not limited to

these kind of models. We also show that the alpha values used in constraint hypothesis testing

need to be calibrated, which is not done in the studies just described.

In almost all of the literature already described, the likelihood ratio test (LRT) is used to test

the inequality constraint hypothesis at hand. The null distribution of this test is a chi-square

distribution with degrees of freedom equal to the difference between the number of parameters

of the models under comparison (Bollen, 1989). An important result from the work of Barlow

et al. (1972), Robertson et al. (1988), and Silvapulle and Sen (2004) is that one of the regularity

conditions of the LRT does not hold when testing inequality constraint hypotheses (see also

Andrews, 1996, 2000; Ritov & Gilula, 1993; Stoel et al., 2006). Consequently, the asymptotic

distribution of the LRT is no chi-square distribution and its p value cannot straightforwardly

be computed.
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Moreover, model selection criteria, such as the Akaike’s Information Criterion or Bayesian

Information Criterion, cannot be used to distinguish between statistical models with inequality

constraints between the parameters of interest. These criteria use the likelihood evaluated in its

maximum as a measure of model fit, and the number of parameters of the model as a measure of

complexity. The problem is that model selection criteria cannot distinguish between hypotheses

when these hypotheses do not differ in model fit, but only in the number of constraints imposed

on the parameters of interest.

For example, consider the hypothesis f™1 �™2g < ™3 > 0 where ™1 : : : ™3 denote, for example,

mean scores on some variable. Furthermore, suppose we want to compare this informative

hypothesis to an unconstrained hypothesis where the parameters are allowed to have any

value. Suppose the unconstraint parameter estimates fit the constraints, so that the estimated

parameters agree with f™1 � ™2g < ™3 > 0. In this case, both the constraint and unconstraint

hypotheses do not differ in model fit; that is, the maximum of the likelihood is the same for

both models. The problem is how to account for model complexity. Because the parameters are

restricted, the number of parameters used to determine model complexity is clearly not equal

to 3. So far, quantifying the number of parameters for constraint hypotheses received hardly

any attention in the literature.

In conclusion, evaluating informative hypothesis in SEM models is not possible with the LRT

or with traditional model selection criteria. Constraint parameter estimation and informative

hypothesis testing has extensively been studied, but literature for SEM models is sparse. Also,

as we show in this article, calibration of the alpha level is essential when testing inequality

constraint hypotheses. This received hardly any attention in the literature described before. We

show how informative hypotheses can be tested in SEM models using Mplus, but we first

introduce an example in which the hypotheses of interest are informative.

ILLUSTRATION: ETHNICITY AND ANTISOCIAL BEHAVIOR

The problem of testing inequality constrained hypotheses in SEM and its solution is illustrated

using the following example. Deković, Wissink, and Meijer (2004) investigated whether the

leading theories about antisocial behavior in the dominant culture of adolescents can be

generalized to members of different ethnic groups. For this example the dominant culture is the

Dutch culture, which is compared to the Moroccan, Turkish, and Surinamese cultures in the

Netherlands. Three aspects of the parent–adolescent relationship were assessed: positive quality

of the relationship (affection and intimacy), negative quality of the relationship (antagonism

and conflict), and disclosure (how much adolescents tell the parents). The sample consists of

603 adolescents (M age D 14.4, range D 14–16 years); 68% of the adolescents are Dutch

(n D 407), 11% are Moroccan (n D 68), 13% are Turkish (n D 79), and 8% are Surinamese

(n D 49). Adolescents were classified into these ethnic categories according to their responses

on a single item in the questionnaire: “What ethnical group best describes you?” Using these

data we present three examples where the hypothesis under investigation is informative.

The structural equation model used here is given by

y
g
i D Bgy

g
i C �gx

g
i C —

g
i with xi � N.�g

x ; ˆg/ (1)



446 VAN DE SCHOOT, HOIJTINK, DEKOVIĆ

where, if q is the number of dependent variables, r is the number of independent variables,

g D 1; : : : ; G denotes group membership, and i D 1; : : : ; I denote persons, then y
g
i is a

q � 1 vector of dependent variables for person i within group g, Bg is a q � q matrix of

regression coefficients between ys where the diagonal must consist of zeros, xi is a r � 1

vector of independent variables, �
g
x is a r � 1 vector of means for each independent variable

with covariance matrix ˆg, �g is q�r matrix of regression coefficients between ys and xs, and

—
g
i is q � 1 vector with error terms that is assumed to have a multivariate-normal distribution,

—
g
i � N.0; ‰g/, which is independent of y and x. Under these assumptions, the observed y i

and xi have a multivariate-normal distribution with

�

y
g
i

x
g
i

�

� NqCr
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�
g
x

; †g

�

(2)

where † represents the implied covariance matrix that is given by
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with I being the identity matrix and

†
g
xx D ˆg

†
g

yy0 D .I � B
g/�1.� gˆg� 0g C ‰g/.I � B

g/�10

†
g
xy D ˆg�g.I � B

g/�10

:

(4)

Let ™ D f™1; ™2g with ™1 D fB1; : : : ; BG ; �1; : : : ; �Gg and ™2 D fˆ1; : : : ; ˆG ; ‰1; : : : ; ‰Gg.

Then, the likelihood function can be given by

log f .y; x j ™/ D
PG

gD1.Ng

N
/F

g
ML

�

S
g ; †g

�

(5)

where Ng is the sample size for group g, S
g is the sample covariance matrix among the

observed variables in group g, y D fy1; : : : ; yN g, x D fx1; : : : ; xN g and where F
g
ML is given

by

F
g

ML D log j †g j Ctr
h

S
g†g�1

� log j S
g j �.q C r/

i

(6)

We consider two types of hypothesis tests (Silvapulle & Sen, 2004), Type A is of the form

H0 W A™1 D c

H1 W A™1 > c;
(7)

and Type B is of the form

H0 W A™1 > c

H1 W unconstrained;
(8)
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where the unconstrained model refers to a model without any constraints imposed on the

parameters and where, if m is the number of inequality constraints imposed on the model and

k the number of parameters involved, A is an m � k matrix of known constants, and c is an

m � 1 vector of known constants. More specific examples will be given in the sequel.

Example 1: Simple Regression

The first example is a simple regression model where levels of antisocial behavior are regressed

on either a negative or positive relation with the parent and adolescent disclosure (see Figure

1), where B D 0 and

� D
�

”1 ”2 ”3

�

; (9)

‰ D
�

§1

�

; (10)

ˆ D

2

4

¥11

¥12 ¥22

¥13 ¥23 ¥33

3

5 : (11)

Note that this model is based on the total sample, therefore the superscript g is not needed.

Deković et al. (2004) stated that adolescent disclosure is the strongest predictor of antisocial

behavior, followed by either a negative or positive relation with the parent (see also Dishion

& McMahon, 1998). We therefore hypothesize that the regression coefficients ”1 and ”2 are

smaller than ”3. Using

A D

�

�1 0 1

0 �1 1

�

; (12)

™1 D

2

4

”1

”2

”3

3

5 ; (13)

c D

�

0

0

�

; (14)

FIGURE 1 Path model among relationship characteristics, disclosure, and prevalence of antisocial behavior.
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the hypotheses tested for this example with m D 2, are for Type A

H0 W

versus

H1 W

�

”3 � ”1 D 0

”3 � ”2 D 0

�

�

”3 � ”1 > 0

”3 � ”2 > 0

�

;

(15)

and for Type B

H0 W

versus

H1 W

�

”3 � ”1 > 0

”3 � ”2 > 0

�

�

”3 ; ”1

”3 ; ”2

�

:

(16)

Note that H1 in Equation 16 can also be written as f”1 ; ”2g < ”3. This type of notation will

be used in the remainder of this article. We used Mplus version 5 (Muthén & Muthén, 2007)

to estimate the unconstrained and constrained regression coefficients (see Table 1). As can be

seen in this table, the unconstrained estimate of ”2 is not smaller than ”3. Consequently, the

constrained estimates of ”2 and ”3 are set equal by the introduction of a “slack” parameter

(see the lower panel of Table 1).

Example 2: Multigroup Analysis

Research about the nature and impact of antisocial behavior is dominated by studies conducted

with White, Western, middle-class adolescents (Deković et al., 2004). It could be questioned

whether the model in Figure 1 is the same for different ethnic groups living in The Netherlands:

Dutch (indicated by g D 1), Turkish (g D 2), Moroccan (g D 3), and Surinamese adolescents

TABLE 1

Regression Coefficients for Example 1

Coefficient B SE

Unconstrained
”1 .06 .02
”2 .24 .03

”3 .23 .03
Constrained

”1 .06 .02
”2 .235 .03
”3 .235 .03
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(g D 4), where B D 0 and

�1 D Œ ”1
1 ”1

2 ”1
3 �

:::

�4 D Œ ”4
1 ”4

2 ”4
3 � ;

(17)

‰1 D Œ §1
1 �

:::

‰4 D Œ §4
1 � ;

(18)

ˆ1 D

:::

ˆ4 D

2

4

¥1
11

¥1
12 ¥1

22

¥1
13 ¥1

23 ¥1
33

3

5

2

4

¥4
11

¥4
12 ¥4

22

¥4
13 ¥4

23 ¥4
33

3

5 :

(19)

The null hypothesis is that the regression coefficients for the predictors of antisocial behavior

are the same for all ethnic groups (see, e.g., Greenberger & Chen, 1996):

H0 W

2

4

”1
1 D ”2

1 D ”3
1 D ”4

1

”1
2 D ”2

2 D ”3
2 D ”4

2

”1
3 D ”2

3 D ”3
3 D ”4

3

3

5 (20)

According to Deković et al. (2004) there are also indications in the literature that the same

risk factors have different effects in different ethnic groups, a so-called process times context

interaction phenomenon. The authors expected that cross-ethnic variations result in weaker

relations between parent–child relations and adolescent behavior compared to Dutch families.

This was mainly expected because of differences in family expectations (Phalet & Schönpflung,

2001) and differences in intergenerational conflicts due to migration (Deković, Noom, & Meeus,

1997). The informative hypothesis H1 is:

H1 W

2

4

”1
1 > f”2

1; ”3
1; ”4

1g
”1

2 > f”2
2; ”3

2; ”4
2g

”1
3 > f”2

3; ”3
3; ”4

3g

3

5 : (21)

The hypotheses that are tested for this example are for Type A: Equation 20 versus Equation 21;

and for Type B: Equation 21 versus the unconstrained model. In Table 2 the unconstrained and

constrained regression coefficients are shown. As can be seen, not all unconstraint regression

coefficients are in agreement with the constraints of H1 in Equation 21. For example, ”2 for the

Dutch adolescents is smaller instead of higher than ”2 for Moroccan adolescents. The bottom

of Table 2 renders parameter estimates, obtained with the parameter slack method, that are in

agreement with the constraints.
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TABLE 2

Regression Coefficients for Dutch, Moroccan, Turkish, and Surinamese

Adolescents for Example 2

Ethnicity

Coefficient Dutch Moroccan Turkish Surinamese

Unconstrained
”1 .05 (.03) .12 (.09) .04 (.08) .15 (.09)
”2 .28 (.03) .23 (.11) .16 (.08) .08 (.11)

”3 .20 (.04) .33 (.13) .25 (.10) .24 (.14)
Constrained

”1 .06 (.02) .06 (.02) .03 (.07) .06 (.02)

”2 .28 (.03) .28 (.03) .16 (.08) .08 (.11)
”3 .22 (.03) .22 (.03) .22 (.03) .16 (.12)

Note. Values in parentheses represent standard error.

Example 3: Path Model

The third example includes the variable hanging around with deviant peers. The hypothesis

states that problem behavior is not only directly predicted by disclosure and a negative or

positive relation with the parent, but is also indirectly predicted via hanging around with

deviant peers (see Figure 2), where

B D

�

0 0

“21 0

�

; (22)

� D

�

”11 ”12 ”13

”21 ”22 ”23

�

; (23)

‰ D

�

§11

0 §22

�

; (24)

ˆ D

2

4

¥11

¥12 ¥22

¥13 ¥23 ¥33

3

5 : (25)

Note that this model is based on the total sample, therefore superscript g is not needed.

As argued by Deković et al. (2004), children spend, especially in adolescence, more and

more time with their peers without adult supervision (see also Mounts & Steinberg, 1995).

During this period peers become the most important reference group for adolescents. Deković

et al. (2004) stated that especially in this period the association with deviant peers has emerged

as the most prominent predictor of problem behavior. The hypotheses tested for Example 3 are

hypothesis Type A:

H0 W “21 D ”21 D ”22 D ”23

versus

H1 W “21 > f”21 ; ”22 ; ”23g
(26)
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FIGURE 2 Path model among relationship characteristics, hanging around with deviant peers, and prevalence

of antisocial behavior.

and hypothesis Type B

H0 W “21 > f”21 ; ”22 ; ”23g
versus

H1 W “21 ; ”21 ; ”22 ; ”23 :

(27)

The unconstrained and constrained regression coefficients are shown in Table 3. As can be

seen in Table 3, the constrained coefficients do not differ from their unconstrained counterparts.

Hence, the constraints imposed by the informative hypothesis are not contradicted by the data.

PARAMETRIC BOOTSTRAP

To evaluate informative hypotheses like those presented in the previous section we make

use of the parametric bootstrap. Bootstrapping is an approach for statistical inference falling

within a broader class of resampling methods (Efron & Tibshirani, 1993). Various authors have

TABLE 3

Regression Coefficients for Example 3

Coefficient B SE

Unconstrained
”11 .05 .03

”12 .31 .03
”13 .22 .04
“21 .55 .02

Constrained
”11 .05 .03

”12 .31 .03
”13 .22 .04
“21 .55 .02
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suggested using the parametric bootstrap when the parameter space is restricted (Galindo-Garre

& Vermunt, 2004, 2005; Ritov & Gilula, 1993; Stoel et al., 2006; Tsonaka & Moustaki, 2007).

Bootstrap Method

The method we advocate starts with the observed data z D fy; xg and the likelihood in

Equation 5 (see Start in Figure 3). Step 1 is a parametric bootstrap from a population in which

the null hypothesis is true. First, ™ is estimated under H0 using the data z resulting in

f .zjO™H0jz/ : (28)

Using Equation 28, T bootstrap samples of size n are generated, resulting in data sets z
rep
t ,

for t D 1; : : : ; T (see Figure 3). Then, ™ is estimated for each replicated data set under H0,

rendering

f .z
rep
1 jO™H0jz

rep

1
/ : : : f .z

rep
T jO™H0jz

rep

T
/ : (29)

Further, ™ is estimated under H1, rendering

f .z
rep

1 jO™H1jz
rep

1
/ : : : f .z

rep

T jO™H1jz
rep

T
/ : (30)

The second step, denoted by Step 2 in Figure 3, is to repeat these computations conditional on

the observed data set and to compute f .zjO™H0jz/ and f .zjO™H1jz/.

The final step (see the lower part of the top panel of Figure 3) is to choose a test statistic,

denoted by ƒ, to investigate the compatibility of the null hypothesis with the observed data.

Like many previous studies (e.g., Barlow et al., 1972; Robertson et al., 1988, Silvapulle & Sen,

2004), we also use the LRT for evaluating the hypotheses at hand, but, as illustrated before,

we do not use a p value based on a chi-square distribution.

Because f .zj™/ is proportional to the likelihood, an LRT is performed for each replicated

data set rendering

ƒt D �2log

(

f .z
rep
t jO™H0jz

rep
t

/

f .z
rep
t jO™H1jz

rep
t

/

)

(31)

and for the observed data set it renders

ƒ D �2log

(

f .zjO™H0jz/

f .zjO™H1jz/

)

: (32)

Now, a p value can be computed using

p D P.ƒt > ƒ jH0; z/ : (33)
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FIGURE 3 Graphical representation of the parametric bootstrap method.
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It can be approximated by the proportion of LRT values from the simulated data sets that are

equal or larger than the LRT value of the observed data set, resulting in the definition of the

plug-in p value

p �

P

T

tD1 It

T
; (34)

where It is an indicator function taking the value 1 if the inequality holds and 0 otherwise:

It D

�

1 if ƒt > ƒ

0 otherwise :
(35)

A hypothetical distribution is illustrated in the graph in the lower part of Figure 3. To determine

whether the ƒ value from the observed data set stems from a population where the null

hypothesis is true, it has to be smaller than a chosen alpha value. Traditionally an alpha value

of .05 is used and as such the observed ƒ value has to lie on the left side of the dotted line

in Figure 3. However, as we will show in the next section, in many situations the alpha value

needs to be calibrated.

The procedure previously described can be conducted for Type A and B hypothesis testing.

The parameter estimates and likelihood values can be obtained using Mplus and we developed

R code that automatically computes the LRT values and the plug-in p value from the output

files of Mplus. Input files for all examples and R code can be downloaded from http://www.

fss.uu.nl/ms/schoot.

FREQUENCY PROPERTIES OF THE ASYMPTOTIC p VALUES

In the previous section we showed how to obtain plug-in p values for the evaluation of

informative hypotheses. An appealing property for any p value, and consequently for our

plug-in p value, is, considered as a random variable, to be asymptotically uniform [0,1] under

the null hypothesis: P.p < ’jH0/ D ’. However, in some situations exact uniformity of p

values cannot be attained (Andrews, 2000; Bayarri & Berger, 2000; Galindo-Garre & Vermunt,

2004, 2005; Stoel et al., 2006). Andrews (2000), for example, showed that the results of the

bootstrap procedure are not coherent when inequality constraints are imposed on the model

parameters. Furthermore, Galindo-Garre and Vermunt (2004) showed in a simulation study that

the parametric bootstrap can produce p values that are higher than expected.

The bootstrap procedure described in the previous section can also lead to p values that

are biased. To determine whether the actual alpha level differs from its nominal level a double

bootstrap procedure is used (Efron & Tibshirani, 1993). This procedure renders a calibrated

alpha level: P.p < ’�jH0/ D ’, where ’� denotes the calibrated alpha level.

As can be seen in Figure 4, in the double bootstrap procedure there are two stages of boot-

strapping. In Stage 1, data sets are generated using f .zjO™H0jz/. Note that we make an important

assumption here. We implicitly assume that in our procedure O™H0jz is a good approximation of

the true population values ™H0 , which are unknown. We assume that with n sufficiently large,

the true population values will be close to the estimated values f .zjO™H0jz/.



TESTING INEQUALITY CONSTRAINED HYPOTHESES 455

FIGURE 4 Graphical representation of the double bootstrap method.
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The result of Stage 1, are S data sets (for s D 1; : : : ; S ) and the double bootstrap algorithm

amounts to treating each bootstrap sample z
rep
s like an original data set in the second stage of

the double bootstrap procedure (see Stage 2 in Figure 4). For each first-stage data set, z
rep
s , a

plug-in p value can be computed based on the procedure described in the previous section.

In total, S plug-in p values are computed and a hypothetical distribution of these values is

shown in the lower part of Figure 4. As can be seen, it does not have a uniform distribution, but

is skewed. In Figure 4, the 5th percentile of generated plug-in p values has a plug-in p value

of .02. That is, 5% of the p values are smaller than .02, and for example 11% of the p values

are smaller than .05. In such a case, the alpha level for evaluation of the p value computed

for the observed data set needs to be calibrated. That is, the p value should be compared to

’� D :02 instead of ’ D :05, because P.p < :02jH0/ D :05.

RESULTS FOR EXAMPLES

Example 1

To evaluate the performance of the plug-in p value for Example 1, in total four double

bootstraps are performed with S D 1,000 and T D 1,000: (a) hypothesis test Type A with

n D 50; (b) hypothesis test Type B with n D 50; (c) hypothesis test Type A with n D 640;

and (d) hypothesis test Type B with n D 640. In Figure 5 the four corresponding distributions

of plug-in p values are displayed.

As can be seen in Figure 5a and 5c the distribution for hypothesis test Type A is almost

uniform for both n D 50 and n D 640 with P.p < :048jH0/ D :05 and P.p < :046jH0/ D :05,

respectively. As was shown by Silvapulle & Sen (2004, pp. 32–33), the p values of this

statistical model and for hypothesis test Type A are uniformly distributed. Our results for small

and large sample sizes are pretty close to being uniform and the small deviations are sampling

errors. Hence, the traditional alpha level of ’ D :05 is used to evaluate the results for the

observed data set.

For hypothesis test Type B, however, the distribution is clearly not uniform, see the distri-

butions in Figure 5b and 5d. High values of the plug-in p value do not exist and low values

appear too often. For small n, P.p < :02jH0/ D :05 (see Table 4) and the alpha level for

the analysis with the observed data set needs to be calibrated, ’� D :02. Accidentally, for

large n, P.p < :048jH0/ D :05 and ’� does not need to be calibrated much, ’� D :048.

However, as can be seen in Figure 5d the distribution is clearly not uniform, for example,

P.p < :30jH0/ D :50 and P.p < :38jH0/ D :70, indicating that calibration is necessary for

different alpha levels.

To evaluate the hypotheses in Equations 15 and 16 for the observed data set, a parametric

bootstrap is performed where 1,000 data sets were generated. Each of these samples was

fitted under H0 for hypothesis test Type A and B. Based on the results shown in Table 4, it

can be concluded that for hypothesis test Type A, H0 can be rejected (p < :001; ’ D :05).

This implies that the hypothesis H0 W ”1 D ”2 D ”3 is rejected in favor of the informative

hypothesis, H1 W f”1; ”2g < ”3. Moreover, the result of hypothesis test Type B indicates that

the informative hypothesis is rejected (p < :001; ’� D :048) in favor of the unconstrained



TESTING INEQUALITY CONSTRAINED HYPOTHESES 457

(a)

(b)

FIGURE 5 Distribution of plug-in p values for Example 1: In (a) and (c), hypothesis test Type A is evaluated;

in (b) and (d) hypothesis test Type B is evaluated; in (a) and (b) n D 50; in (c) and (d) n D 640. (continued )
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(c)

(d)

FIGURE 5 (Continued ).

model H1 W ”1; ”2; ”3. Inspection of Table 1 reveals that ”2 > ”3 and as such the unconstrained

parameter estimates do not fit either H0 W ”1 D ”2 D ”3 or H1 W f”1; ”2g < ”3.

In conclusion, levels of antisocial behavior are not evenly predicted by how much adolescents

tell the parents and by either a positive or a negative quality of the relationship with the parents

(rejection of H0). However, the expectation that disclosure is the best predictor does not hold

(rejection of H1).
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TABLE 4

Results for the Double Bootstrap Procedure and the Parametric Bootstrap

Procedure for Examples 1 to 3

Hypothesis Test ’� ƒ Plug-In p Value

Example 1 Type A (n D 50) .048 — —
Type A (n D 640) .046 42.01 <.001

Type B (n D 50) .024 — —
Type B (n D 640) .048 17.41 <.001

Example 2 Type A .038 2.55 .49

Type B .058 1.07 .46
Example 3 Type A .056 132.42 <.001

Type B — 0.0 >.999

Example 2

To evaluate the hypotheses for Example 2, two double bootstraps are performed to determine

the correct alpha level for hypothesis test Type A and Type B, with S D 500, T D 500, and

group sizes for group g D 1; : : : ; 4 equal to the sample sizes.

The results are shown in Table 4 and the distribution of p values is shown in Figure 6a

and b for hypothesis test Type A and B, respectively. The hypothesis H0, shown in Equation

20, cannot be rejected in favor of hypothesis H1 (p D :49; ’� D :04), shown in Equation 21.

For hypothesis test Type B the informative hypothesis cannot be rejected in favor of the

unconstrained hypothesis (p D :46; ’� D :056). So, after testing the informative hypothesis it

appears that the observed differences shown in Table 2 are too small to reject H0 shown in

Equation 20. This makes sense because confidence intervals, if computed row-wise using 1.96

times SE, overlap and as such provide a lot of support for H0 in Equation 20.

In conclusion, compared to Dutch adolescents, adolescents from different ethnic groups are

satisfied to a similar degree with their relationships with parents. Besides, Dutch adolescents

disclose as much information as adolescents from different ethnic groups.

Example 3

For Example 3, a double bootstrap was performed with S D 1,000, T D 1,000 and n D 640

for hypothesis test Type A and B. The results are shown in Table 4 and the distribution of

p values for hypothesis test Type A is shown in Figure 7. For this hypothesis test, the null

hypotheses is rejected in favor of the informative hypothesis (p < :001; ’� D :04).

For hypothesis test Type B, it appears that for all S bootstraps p D 1. This result implies

that in none of the S bootstraps did the constraint parameter estimates violate the inequality

constraints imposed on the regression coefficients. Also, for the observed data set, p D 1.

We wanted ’ to have the property P.p < :05jH0/ D :05, but for this example we observed

P.p < :05jH0/ D 0. This simulation study shows that that we cannot make an incorrect

conclusion with respect to hypothesis test Type B.

Thus, the association with deviant peers is the most prominent predictor of problem behavior.

A visual inspection of Table 3 confirms this conclusion because the unconstraint estimate “21

is larger than the unconstraint estimates of ”21; ”22, and ”23.
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(a)

(b)

FIGURE 6 Distribution of plug-in p values for Example 2: In (a) test Type A is evaluated, and in (b) test

Type B is evaluated.
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FIGURE 7 Distribution of plug-in p values for Example 3, test Type A.

CONCLUSION

Traditional hypotheses tests and model selection criteria are not equipped to deal with infor-

mative hypotheses formulated in terms of inequality constraints among the parameters of a

structural equation model. In this article we presented a solution for this problem using Mplus.

Some issues that need further elaboration are now discussed.

First, p values are often used in SEM and are evaluated using the traditional alpha level of

.05. Using the double bootstrap procedure we evaluated the frequency properties of the plug-in

p values resulting from our method. These results show clearly that the distribution of the

p values is not always uniform and calibration is needed. This is especially the case when

evaluating hypotheses of Type B.

Second, we used rather simple SEM models. However, there are no technical limitations

to using inequality constraints for more complicated models in Mplus, for example, including

latent effects, second-order effects, or categorical variables. Figure 8 shows a hypothetical SEM

model with one latent variable and seven observed variables. For this model constraints could be

imposed on, for example, ”1 : : : ”3. In this article we only discussed informative hypotheses with

inequality constraints of the type ”1 > ”2 > ”3. There are, however, no technical limitations

to evaluate an informative hypothesis consisting of combinations of equality and inequality

constraints of the form ”1 > ”2 D ”3, f”1 � ”2g > 2, or f”1 � ”2g < ”3 > 1.

A limitation of the procedure is that computational time can be substantial. To compute the

examples in this article we used Pentium computers (3.20 MHz) containing two dual processors

(Mplus can deal with multiple processors) with 1 GB memory. The models for Example 1 and

3 took approximately 2 days to compute, but Example 2 took more than 2 weeks.
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FIGURE 8 Hypothetical SEM model.

So, although inequality constraints can be tested using the approach proposed, further

research should focus on decreasing computation time. We therefore recommend implementing

our procedure in Mplus. If this can be achieved, the method will be attractive for researchers

like Deković et al. (2004), because they will be able to evaluate informative hypotheses easily

and quickly.
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