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Abstract

This note describes latent variable modeling with categorical outcomes in several
groups and for longitudinal data. Different parameterizations are discussed as well as is-
sues of identification. A comparison is made between formulating the modeling in terms
of conditional probabilities versus using a latent response variable formulation. Two
parameterizations used in Mplus are described, including a new parameterization intro-
duced in Version 2.1, May 2002. Differences between binary outcomes and polytomous
outcomes are discussed. The LISREL approach is also presented and compared to the
Mplus approaches. It is shown that the Mplus approach avoids the LISREL restriction
of across-group or across-time invariance of all thresholds parameters, making it possible
to study (partial) non invariance also in the thresholds. The techniques are illustrated
by factor analysis of antisocial behavior items and by Monte Carlo simulation examples
of multiple-group factor analysis and growth modeling, showing good chi-square testing
and estimation performance at rather low sample sizes.
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1 Introduction

This note contains a technical discussion of parameterization and modeling in latent
variable analysis of binary and ordered polytomous outcomes. Multiple-group and lon-
gitudinal settings are discussed together because they have analogous considerations
regarding invariance and noninvariance of parameters. Two Mplus parameterizations
are presented. A new approach introduced recently in Mplus allows for invariance test-
ing of residual variances. The LISREL approach to multiple-group and longitudinal
modeling is also presented and compared to the Mplus approaches. For technical ref-
erences, see Muthén (1979, 1983, 1984, 1996), Muthén and Christofferson (1981), and
Technical Appendix 2 of the Mplus User’s Guide (Muthén & Muthén, 1998-2002).

Section 2 presents single-group cross-sectional modeling. Section 3 discusses an ex-
ample, analyzing a factor model for antisocial behavior items. Section 4 presents the
Mplus approach for multiple-group modeling. Section 5 extends the analysis of the
antisocial behavior items to a gender comparison. Section 6 presents Mplus growth
modeling. Section 7 presents the LISREL approach to multiple-group and growth mod-
eling and Section 8 compares Mplus and LISREL approaches. Section 9 presents Monte
Carlo simulation examples using Mplus for multiple-group and growth modeling.

2 Parameterization In Single-Group, Cross-Sectional

Studies

Latent variable models for categorical outcomes can be presented in two ways, directly
postulating a conditional probability model or deriving a conditional probability model
from a linear model for latent response variables, where the observed outcomes are
obtained by categorizing the latent response variables. It is shown that the two formu-
lations give equivalent results. The discussion clarifies that the latent response variables
are a convenient conceptualization, but that it is not necessary that the data have been
generated by categorizing latent response variables.

Below, the univariate and bivariate probability expressions are considered. For sim-
plicity, a factor model with a single factor η is considered.

2.1 Conditional Probability (CP) Formulation

Consider an ordered polytomous yi variable with categories c = 0, 1, 2, . . . , C − 1 for
individual i. Consider the standard proportional-odds model (Agresti, 1990, pp. 322-
324), expressing the probability of being in one of the highest categories,

P (yi ≥ c|ηi) = F [αc + β ηi], (1)
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where F is typically chosen as a normal or logistic distribution function (cf. Muthén
& Muthén, 1998-2002; Technical Appendix 1). This formulation includes a binary y
with only one α parameter. With a polytomous y, the model assumes parallel proba-
bility curves for the events y ≥ c, i.e. only intercepts α change over those probability
expressions, not the slope β.

Item Response Theory uses an equivalent conditional probability formulation written
slightly differently,

P (yi ≥ c|ηi) = F [a (ηi − bc)], (2)

where a is called the item discrimination and bc the item difficulty.

The marginal distribution for y is obtained by integrating (1) over η, typically using
a normality assumption for η.

Bivariate counterparts to the conditional probability expression (1) introduces no
further modeling issue because the y responses are assumed conditionally independent
given η. Bivariate marginal probabilities, not conditioning on η, are again obtained by
integrating over η using a normality assumption.

2.2 Latent Response Variable (LRV) Formulation

The LRV formulation considers a continuous latent response variable y∗ that expresses
the amount of understanding, attitude, or illness required to respond in a certain cat-
egory. This acknowledges that a more fine-grained measurement could have been at-
tempted. Consider for simplicity the 1-factor model for the continuous latent response
variable y∗i for individual i,

y∗i = ν + λ ηi + εi, (3)

where ν is an intercept parameter, λ is a factor loading, η is a factor variable, and ε is
a residual. The expectation and variance of y∗ are

µ∗ = ν + λ α, (4)

σ∗ = λ2 ψ + θ, (5)

where α is the mean of η, ψ is the variance of η, and θ is the variance of the residual
ε. Here, y∗ is related to the observed ordered polytomous variable y via threshold
parameters τ as

y = c, if τc < y∗ ≤ τc+1 (6)

for categories c = 0, 1, 2, . . . , C − 1, where τ0 = −∞, τC = ∞. This leads to the
conditional probability expression,

P (y ≥ c|η) = F [−(τc − ν − λ η) θ−1/2], (7)

where F is typically chosen as a normal or logistic distribution function depending on
the distributional assumption for ε.
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Consider the standardization E(η) = α = 0 so that µ∗ = ν. Because y∗ is a latent
variable, its metric is not determined. It is therefore common to standardize to ν = 0
and σ∗ = 1. This may be viewed as θ not being a free parameter to be estimated, but a
parameter that is obtained as the remainder

θ = 1− λ2 ψ. (8)

This standardization results in one particular metric for the τ and λ parameters of (7),
but other metrics are also possible and have the same fit to data. Defining the scaling
factor ∆ corresponding to the inverted latent response variable standard deviation

∆ = 1/
√

σ∗, (9)

one obtains a more general form of (8) where the scaling factor ∆ can be fixed at other
values than one, resulting in

θ = ∆−2 − λ2 ψ. (10)

Standardizing to θ = 1 instead of σ∗ = 1,

∆ = 1/
√

λ2 ψ + 1, (11)

which gives yet another metric for the τ and λ parameters.

Given a uni- and bi-variate normality assumption for the y∗ variables, the LRV
formulation leads to the univariate and bivariate marginal probability expressions in the
binary case

P (yj = 1) =
∫ ∞

∆j(τj−µ∗j )
φ1(y

∗
j ) dy∗j , (12)

and
P (yj = 1, yk = 1) =

∫ ∞

∆j(τj−µ∗j )

∫ ∞

∆k(τk−µ∗
k
)
φ2(y

∗
j , y

∗
k) dy∗k dy∗j , (13)

where φ1 denotes a univariate standard normal density, φ2 denotes a bivariate normal
density with unit variances, zero means, and correlation coefficient,

Corr(y∗j , y
∗
k) = ∆j σ∗jk ∆k, (14)

where σ∗jk is the covariance between the two latent response variables y∗j and y∗k,

Cov(y∗j , y
∗
k) = λj ψ λk. (15)

2.2.1 LRV Model Identification

From an identification point of view, it is important to note that only standardized
quantities enter the probability expressions of (12) and (13) in that both the integration
limits and the correlation have been scaled by ∆. From these two expressions the
identification status of the model can be determined (cf Muthén, 1979). LRV models
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that are not identified in terms of uni- and bi-variate probabilities are not identified when
also using higher-order terms. This is a function of the model and holds irrespective of
estimation method. To see this, consider a multivariate normal y∗ which is N(µ,Σ) and
has threshold vector τ . The same y distribution is obtained considering ∆ y∗, which
is N(∆ µ,∆ Σ ∆), with thresholds ∆ τ . This implies that the maximum number of
parameters that can be identified is p(p − 1)/2 + r, where p is the number of variables
and r is the total number of thresholds summed over all variables. With multiple groups,
this number of parameters is multiplied by the number of groups.

In the standardization µ∗ = 0, σ∗ = 1, (12) shows that τ is identified as the corre-
sponding z score. Given the threshold parameters, (13) shows the identification of the
correlation coefficient. In line with factor analysis for continuous outcomes, fixing one λ
to one, the remaining parameters λ and ψ are identified in terms of these correlations.

It may be noted that even when the loadings λ are held equal or fixed for all items, as
when testing equality of loadings across items, the residual variances θ are not separately
identifiable. This is seen from (14) and (15). A change in a θ value can be absorbed in
the factor variance ψ to give the same correlation.

2.3 Comparison Of The Two Formulations

It is clear from (1), (7), and (8) that the CP and LRV formulations are equivalent in
terms of relating y and η to each other, with parameters related as

αc =
−τc√

θ
, (16)

β =
λ√
θ
, (17)

or using the IRT parameterization,

bc =
τc

λ
, (18)

a =
λ√
θ
. (19)

It is seen from (17) and (19) that an increased residual variance θ gives rise to a flatter
conditional probability curve and therefore attenuates the strength of the relationship
between y and η. It is clear, however, that (in a single-group analysis) θ is not separately
identifiable from the other parameters, motivating a standardization such as (8). Note
that if the standardization of (8) is used, the degree of attenuation depends both on the
loading λ and the factor variance ψ. For related discussions, see e.g. Muthén (1979),
Muthén (1988), and Muthén, Kao and Burstein (1991). IRT estimates are obtained
from the Mplus solution by using the transformation shown in (18) and (19). Standard
errors can be obtained via the Delta method (see MacIntosh & Hashim, 2000).
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A researcher may take two different viewpoints in terms of modeling, (A) focusing
on the CP formulation and its parameters α and β (or b and a) without introducing
y∗, or (B) focusing on the LRV formulation and its parameters τc, ν, λ, ψ, and θ. The
two viewpoints have somewhat different consequences in multiple-group and longitudinal
analysis.

Under (A), the researcher is only interested in relating y to η and the α and β (b and
a) parameters of the CP formulation are the only ones relevant. The CP model may be
derived via the LRV formulation using y∗ and related parameters, but this is only used
as a pedagogical vehicle to motivate the CP formulation and only the resultant (16),
(17) (or (18), (19)) functions of the LRV parameters are relevant.

Under (B), the researcher believes that the LRV formulation has actually generated
the data, so that y∗ is a substantively meaningful variable and all the LRV parameters
are in principle meaningful to the extent that they can be identified.

2.4 Factor Analysis with Covariates

The modeling discussed above can be extended to analysis with covariates (cf Muthén,
1979, 1989). The covariates may influence the factors, and therefore the indicators
indirectly, or may influence the indicators directly. Both the CP and LRV formulations
can be used to describe such modeling. Using the LRV formulation, the model in (3) is
extended as

y∗i = ν + λ ηi + κ xi + εi, (20)

where κ is the direct effect of the covariate x. In addition, the factor is related to x as

ηi = γ xi + ζi. (21)

Using the CP formulation, it follows for a binary item that

P (yi = 1|ηi, xi) = F [−(τ − λ ηi − κ xi)θ
−1/2], (22)

so that τ − κ xi can be seen as a new threshold value for the item, a threshold that
varies across x values. This implies that the inclusion of direct effects can be used to
study item bias, or differential item functioning (DIF), with respect to covariates, e.g.
dummy covariates representing groups. If the direct effect is significant, the item shows
DIF. This approach has been used in a variety of substantive applications, e.g. Gallo,
Anthony and Muthén (1994) and Muthén, Tam, Muthén, Stolzenberg and Hollis (1993).

This approach to studying DIF is a useful first, exploratory step in investigating
across-group noninvariance of items. Although the DIF only concerns the threshold
parameters, an item showing threshold DIF may also show noninvariance with respect
to loadings. The approach consists of two steps. First, a model without any direct
effects (κ = 0) is estimated. ”Modification indices” are studied to check the need for
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including direct effects (in the current Mplus version, first-order derivatives obtained by
TECH2 can be used for this purpose1).

3 Factor Analysis of Antisocial Behavior

The Mplus Web Note section (see www.statmodel.com) for this web note (Mplus Web
Note #4) contains data on antisocial behavior items from the National Longitudinal
Survey of Youth (NLSY). NLSY contains 17 antisocial behavior (ASB) items collected
in 1980 when respondents were between the ages 16 and 23. The ASB items assessed
the frequency of various behaviors during the last year. A sample of 7, 326 respondents
is analyzed. Due to a very low proportion of the high-frequency category, the items are
dichotomized as 0/1 with 0 representing never in the last year.

The exploratory factor analysis output in the Mplus Web Note section shows that
at least 3 factors are clearly defined. Here, the analysis will focus on one of the factors
for simplicity. This is the third factor in the 3-factor solution and may be labelled as
property offense, being measured well by the 8 items: property, shoplift, stealing less
than 50 dollars, stealing more than 50 dollars, conning someone, auto theft, breaking
into a building, and stealing goods.

The confirmatory factor analysis output in the Mplus Web Note section shows the
results from a 1-factor model for the 8 property offense items. The model appears to
fit the data well. The con and auto items have the lowest loadings. In IRT terms, (19)
shows that this also implies that these two items have the lowest item discrimination
values.

The MIMIC output in the Mplus Web Note section shows a factor analysis of the 8
items using gender as a covariate (male = 0, female = 1). It is seen that females have a
lower factor value than males (γ < 0 in (21)). The model may, however, be misspecified
due to gender non-invariance of items. The largest modification index is for the item
shoplift (−0.037).

Letting the gender covariate directly influence the shoplift item improves the model
fit and gives a significant direct effect (κ = 0.360 in (20) and (22)). For females the
shoplift item has a lower threshold τ −κ in (22), which implies that compared to males,
the female conditional probability curve of (22) is shifted to the left. The probability
curves can be computed2 and plotted for different factor values η. The interpretation
is that for given property offense factor value, females are more likely to admit to the
shoplift item than males.

1Note that these modification indices are not scale free, so that values cannot be compared across
covariates in different scale, only across items for a given covariate.

2In the Delta parameterization, the residual variance θ of (22) is obtained from the R2 section of
the output, 0.492. In Mplus, the function F is the standard normal distribution function which can be
looked up in a table.
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The gender non-invariance will be further explored in multiple-group analysis below.
The multiple-group analysis allows for more flexibility in representing noninvariance of
items, not only with respect to thresholds, but also with respect to loadings and residual
variances.

4 The Mplus Approach To Multiple-Group Model-

ing

This section discusses the Delta and Theta multiple-group parameterizations in Mplus,
followed by identification issues.

Considering multiple-group analysis using the LRV formulation of (3) - (5) it is im-
portant to not standardize all groups to unit y∗ variance since that would hide the
across-group variation in y∗ variance due to across-group variation in λ, ψ, and θ. The
CP formulation of (1) also benefits from a more flexible, analogous parameterization
in the case of multiple groups as suggested by the scaling factor 1/

√
θ in (16), (17).

Adding this scaling factor, gives a generalized probit model. Although the y∗ variance,
or the residual variance θ, is not separately identified in a single group, variance differ-
ences across groups are identifiable given threshold and loading invariance and this more
flexible parameterization can benefit the analysis.

In Mplus this more flexible parameterization is handled in two alternative parame-
terizations, using a ”Delta approach” or using a ”Theta approach”. In both approaches,
ν in (4) is standardized at 0 (inclusion of ν will be discussed further below).

4.1 The Delta Approach

In the Delta approach (cf. the Mplus User’s Guide, page 347; Muthén & Muthén,
1998-2002), consider the scaling factor parameter ∆g for group g, where

∆−2
g = σ∗g , (23)

i.e. ∆g is the inverted standard deviation for y∗ in group g. For two y∗ variables j and
k, the Delta approach considers the correlation in group g,

Corr(y∗gj, y
∗
gk) = ∆gj σ∗gjk ∆gk, (24)

where σ∗gjk is the covariance between the two latent response variables, σ∗gjk = λgjψgλgk.
This implies that although correlations between the latent response variables are con-
sidered, the across-group variation in λ, ψ, and θ is captured through the corresponding
across-group variation in ∆g. This avoids the well-known problem of analyzing correla-
tions when considering models that are not scale free.
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In the Delta approach, θ is not a parameter in the optimization but is obtained as a
remainder

θg = ∆−2
g − λ2

g ψg, (25)

resulting in (8) for the reference group if ∆g = 1. The Delta approach has been found
to have some advantages over the Theta approach in model estimation. The Delta ap-
proach, however, has the disadvantage that across-group differences in the scaling factors
∆g has three potential sources that are not distinguished: differences in λ; differences
in ψ; and differences in θ. This disadvantage is avoided in the Theta approach given
below. The Delta parameterization builds on the notion that, drawing on continuous-
outcome experiences, residual variances are seldom invariant, and therefore a separate
test of this is often less central. What is central for across-group factor comparisons is
that thresholds and loadings are invariant to a sufficient degree.

4.2 The Theta Approach

The Theta approach was introduced in Mplus in Version 2.1, May 2002. In the Theta
approach, the residual variance θ is a parameter in the optimization and the scaling
factor ∆g is obtained as a remainder,

∆−2
g = λ2

g ψg + θg. (26)

This implies that the θ parameters enter into the correlation (24) via the ∆g terms.
The Theta approach standardizes to θ = 1 for all variables in a reference group, while
estimating the θ parameters in the other groups. To test across-group equality of θ in a
comparison group, θ is fixed at 1 in the comparison group as well.

4.3 Multiple-Group Measurement Invariance, Identification, And
Standardization Issues In Mplus

Consider for simplicity the case of binary outcomes. Consider first the case with full
measurement invariance, i.e. that the threshold τj and loading λj for outcome j are
the same in all groups. A reference group is chosen with y∗ variances standardized to
unity, ∆g = 1 for all variables, letting ∆g be estimated for the other groups. The
Theta parameterization is analogous, standardizing residual variances to unity in the
reference group and estimating them in other groups. The standardization of ν = 0 for
all variables in all groups and the factor mean α = 0 in the reference group gives

E(y∗ref ) = 0, (27)

E(y∗nonref ) = λ αnonref . (28)

The univariate probability expression (12) shows that the standardizations identify the
thresholds for all variables in the reference group. With the usual factor analysis stan-
dardization of one loading fixed at unity, the reference group identifies the loadings as
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well as the factor variance. Consider a non-reference group. Here, the correlations (14)
identify ∆g. This is because the loadings and factor variance are already known from the
reference group, so that the ∆g play the role of loadings which are identified. Because
(12) in the non-reference group identifies E(y∗nonref ), this means that αnonref is identified
in the non-reference group. This shows that all parameters are identified.

It may be noted that the choice of scale standardization ∆g = 1 (or choice of θ
standardization) is arbitrary (cf the earlier section LRV Model Identification). In the
single-factor model considered here, a change from the standardization ∆g = 1 to ∆g = c
for all variables is absorbed into the parameters as (assuming the factor metric is set
by one λ fixed at unity) τc = c−1 τ , αc = c−1 αnonref , ψc = c−2 ψ. The ratios of ∆g

across the groups remain the same. The chi-square test of model fit and the ratios of
estimates to standard errors remain the same. If instead the factor metric is set by fixing
ψ = 1, the change is absorbed as λc = c−1 λ, with no change in α or ψ. In the Theta
parameterization, changing from the θ = 1 standardization for all variables in a reference
group to θ = c, results in the changes (assuming metric set as λ1 = 1) ∆gc =

√
c ∆g so

that τc =
√

c τ , αc =
√

c α, ψc = c ψ. The ratios of θ in the groups remain the same and
the chi-square test of model fit and the ratios of estimates to standard errors remain the
same.

Consider next binary outcomes where some outcomes do not have measurement in-
variance across groups. For such outcomes, it is not meaningul to compare y∗ distribu-
tions across groups since the y∗’s are in different metric with measurement noninvariance.
For such outcomes, the scaling factors ∆g can be fixed at unity since no across-group
comparison is made and this is also necessary to avoid indeterminacies. Analogously, in
the Theta parameterization, the residual variances are fixed at unity.

Millsap and Tein (2002) develops a set of minimal across-group invariance restrictions
on thresholds and other parameters that provides sufficient conditions for identification
and compares multiple-group model testing using LISREL and Mplus. In the discussion
above it is assumed that a considerably higher degree of invariance is present. To make
meaningful comparisons of factor distributions across groups and across time points,
a majority of the variables should have both threshold and loading invariance so that
the factors not only are in the same metric technically, but so that it is also plausible
that the variables measure factors with the same meaning in the different groups or
at the different time points. As a baseline model, all thresholds and loadings may be
held invariant, using model modification indices to relax these assumptions for variables
where this does not fit the data well.

5 Multiple-Group Analysis of Antisocial Behavior

This section continues the analysis of the 8 property offense items from the ASB in-
strument in the NLSY. The shoplift item had been found noninvariant with respect
to gender. The multiple-group output in the Mplus web note section considers several
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analyses, with and without item invariance across gender.

First, invariance is assumed for all items with respect to thresholds and loadings,
allowing residual variances to be different across the groups (using the Theta parame-
terization), or letting the scale factors be different across groups (using the Delta pa-
rameterization). The factor means and variances are allowed to vary across gender. It
should be noted that the gender difference in the factor mean is now insignificant. The
difference relative to the earlier significance finding using factor analysis with covariates
is presumably due to the group-varying residual variances (scale factors in the Delta
parameterization), or due to allowing gender differences in the factor variance.

Next, threshold and loading noninvariance is allowed for the shoplift item.3 It is seen
that the model fit improves and that the shoplift thresholds and loadings are different
across gender. For females the item has a higher loading and a lower threshold which
implies that compared to males, the female conditional probability curve of (22) is steeper
and shifted to the left. The probability curves can be computed4 and plotted for different
factor values η. The interpretation is that for given property offense factor value, females
are more likely to admit to the shoplift item than males and the difference increases
with increasing factor value. Note that the gender difference in the factor mean is now
significant, whereas it was not in the invariance model. The misspecification of gender
invariance for the shoplift item, for which females have a higher conditional probability,
attenuated the higher male factor mean to the point of becoming insignificant.

The Theta parameterization can be used to estimate a model with gender invariance
of the residual variances for the items. Here, the male (the second group) residuals are
fixed at unity, the value for females (the first group). Note that chi-square difference
testing cannot be done using the default WLSMV estimator (Muthén, du Toit, & Spisic,
1997), but that the WLS estimator will have to be used for such a purpose.

6 Growth Modeling

The longitudinal situation is analogous to the multiple-group situation, where the dif-
ferent time points correspond to the different groups. Muthén (1996) discusses details of
growth modeling with binary outcomes, relates the Mplus approach to other approaches,
and presents a Monte Carlo study using the weighted-least squares (WLS) estimator in
Mplus. A linear probit growth model may be written as,

y∗ti = η0i + η1i xt + εti, (29)

3Because the item is not invariant, the latent response variable is not in the same metric across the
groups, so that its variance should not be compared across groups and cannot be identified. Due to
this, the Delta parameterization fixes the scale factor for the item.

4In the Delta parameterization, the residual variance θ of (22) is obtained from the R2 section of
the output: 0.565 for females and 0.441 for males.
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where for example with T time points, xt = 0, 1, . . . , T − 1 so that η0i is interpreted
as an initial status (intercept) factor and η1i is interpreted as a change (slope) factor.
The model implies across-time differences in the individual values of y∗ti due to the
slope factor. In the CP formulation, this LRV formulation translates to individuals’
probabilities changing over time. To make the growth model meaningful, the y∗t values
need to be in the same metric across time. This is achieved with threshold invariance
across time. While the mean of the slope factor is a free parameter, the mean of the
intercept factor can be either (1) fixed at zero with free, across-time invariant thresholds,
or (2) free with one threshold fixed at all time points.

The mean and variance of y∗ti change over time as,

E(y∗t ) = E(η0) + E(η1) xt, (30)

V (y∗t ) = V (η0) + V (η1) x2
t + 2 xt Cov(η0, η1) + V (εt). (31)

It is seen in (31) that the variance changes over time for three reasons: due to the slope
variance, due to the intercept-slope covariance, and due to the time-specific variance
for the residual. From experience with continuous outcomes, the variance of the time-
specific residual εti is likely to vary across time. By analogy with the multiple-group
case, this implies that while the scaling factors ∆ (in the Delta parameterization), or the
residual variances (in the Theta parameterization), can be fixed at unity for a reference
time point such as the first time point, they should be let free for remaining time points
in order to not distort the growth model structure.

Muthén (1996) points out that incorporating correlations among the ε residuals is
straightforward when using the Mplus weighted least squares estimators, while harder
with maximum-likelihood estimation. The y∗ covariance between time points t and t′ is

V (η0) + V (η1) xt xt′ + (xt + xt′) Cov(η0, η1) + Cov(εt, εt′). (32)

Mplus also allows growth modeling where the dependent variable in (29) is a factor
measured with multiple categorical indicators at each time point (see also the Mplus
User’s Guide, Technical Appendix 7, page 366). This type of growth modeling with
a factor analytic measurement model was proposed in Muthén (1983). Assuming for
simplicity a model with a single factor ηf , the measurement model for indicator j and
the structural (growth) model at time point t are expressed as

y∗jti = νjt + λjt ηfti + εjti, (33)

ηfti = η0i + η1i xt + ζti. (34)

Typically, νjt = 0 since location parameters are captured by the thresholds. As a baseline
invariance assumption, λjt = λj for all t with corresponding threshold invariance. Here,
the standardization of E(η0) = 0 is used unless one threshold is fixed for one of the
indicators. With multiple indicators it is possible to identify the growth model even
with only partial measurement invariance of thresholds and loadings, including across-
time changes in scaling factors or residual variances. The multiple-indicator case also
makes it possible to identify time-specific factor residual variances V (ζt) in addition to
the indicator- and time-specific residual variances V (εjt).
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7 The LISREL Approach

7.1 Multiple-Group Analysis

The LISREL approach ultimately amounts to an analysis of mean vectors and covariance
matrices for each group in line with a conventional continuous-outcome analysis. This
gives an easy to understand approach, but it comes with the tradeoff of assuming across-
group invariance of thresholds.

A technical description of the multiple-group analysis in LISREL is hard to find
and the following is based on our understanding of notes by Jöreskog on the topic of
analyzing ordinal variables, which have been posted on the SSI web site (see Jöreskog,
2002).5 Using PRELIS and LISREL, a 3-stage approach can be taken based on the
LRV formulation (an alternative two-stage approach is also given below). In stage 1,
the thresholds are estimated using the µ∗ = 0, σ∗ = 1 standardization in a single-group
analysis of data from all groups. In stage 2, the thresholds are held fixed at their stage
1 values and the estimation concerns the y∗ µ∗, σ∗, and σ∗jk elements for all groups
together with their asymptotic covariance matrices. Stage 3 then amounts to a regular
multiple-group analysis for continuous outcomes based on these means, variances, and
covariances. Because the stage 3 analysis is in a continuous-outcome framework, the
µ∗ = 0, σ∗ = 1 standardization is not used in stage 3. Intercepts ν and residual
variances θ can be identified. The conventional standardization of α = 0 in a reference
group is used when imposing intercept (ν) invariance across groups.

The LISREL stage 2 identification issues are important for understanding the proce-
dure. Stage 2 does not use the standardization µ∗ = 0, σ∗ = 1 because these quantities
are identified from univariate probabilities due to the thresholds being fixed, known.
This can be seen as follows. More than two outcome categories are required (the binary
case is discussed below). Consider a 3-category y variable (y = 0, 1, 2), where

P (y = 2) =
∫ ∞

∆(τ2−µ∗)
φ1(y

∗) dy∗, (35)

P (y = 1) =
∫ ∆(τ2−µ∗)

∆(τ1−µ∗)
φ1(y

∗) dy∗, (36)

P (y = 0) =
∫ ∆(τ2−µ∗)

−∞
φ1(y

∗) dy∗, (37)

where ∆ = 1/
√

σ∗. Let the probits of the two integration limits be denoted p2 and p1,

pj = ∆(τj − µ∗). (38)

The three probabilities contain two independent pieces of information, which may be
viewed in terms of the two probits. The ratio p2/p1 eliminates ∆ which, given known

5We also acknowledge helpful communication with Roger Millsap.
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thresholds, identifies µ∗. Given the thresholds and µ∗, any of the probits can be used to
identify ∆ and therefore σ∗.

In principle, stage 1 and stage 2 can also be carried out in a single-step, multiple-
group analysis. Here, the thresholds are estimated, holding them equal across groups.
The model has two indeterminacies per y∗ variable. The standardization µ∗ = 0, σ∗ = 1
can be imposed in a reference group. The probit expression (38) for the reference group
identifies the thresholds. In the other groups, the p2/p1 ratio eliminates ∆ and identifies
µ∗ for those groups. Given thresholds and µ∗, the σ∗ variance is then identified in those
other groups using any of the probits. Instead of the standardization µ∗ = 0, σ∗ = 1
imposed in a reference group, the restrictions of average means over groups being zero
and average variances being one may be used to eliminate the indeterminacies.

7.1.1 Latent Response Variable Intercepts

From the point of view of the CP formulation, the ν intercept parameters in (4) can be
used to impose a less restrictive form of across-group invariance for the thresholds. This
is clear from (7), where the τc−ν term can have across-group invariance of the τc’s while
across-group differences in the ν’s. Viewing κg = τc − νg as the effective thresholds in
the CP formulation, the κg thresholds are not group invariant but allow a rigid νg shift
(maintaining the distance between them for a given variable) of all the thresholds for a
given variable. This is another generalization of an ordered probit model and is used in
the LISREL approach. From an LRV point of view, where the y∗ variables are thought
of as substantively meaningful, this is straightforward to interpret. The interpretation
from a CP point of view is less compelling because it is hard to motivate why threshold
non-invariance would take place in the form of a rigid shift. It seems more likely that
threshold non-invariance occurs quite differently with respect to different thresholds for
a variable.

7.1.2 Binary Case

The case where all outcomes are binary requires special treatment in the LISREL ap-
proach. In this case, there is only information on a single probit ∆(τ − µ∗) per group.
Even when holding thresholds invariant across groups, this does not identify both µ∗

and σ∗ in all groups. In the LISREL approach this is handled by fixing σ∗ = 1 in all
groups, only allowing µ∗ to vary across groups.

7.2 Longitudinal Analysis

In line with the Mplus longitudinal section, no special consideration arise beyond those
of multiple-group analysis.
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8 Comparing The Mplus And LISREL Approaches

This section compares the parameterizations used in the Mplus and LISREL approaches
and their consequences. While the focus is on multiple-group modeling, analogous con-
clusions hold for growth modeling. The last stage of the LISREL approach is analogous
to analysis of continuous outcomes.6 There is, however, a drawback to this simplicity.
The threshold invariance assumption that the approach is based on can be questioned.

The LISREL estimation approach is appropriate only if threshold invariance holds for
all thresholds and all variables, or if the rigid shift of thresholds across groups, discussed
above, holds. This seems like a strong assumption.7 In IRT contexts, non-invariance
of the threshold parameters is typically of central interest. This is certainly true in
Rasch modeling, where thresholds are the only measurement parameters. Therefore, it
is limiting to base the approach on the assumption that all thresholds are invariant.
In this connection it may be mentioned that the authors’ experience with continuous
outcomes is that invariance is more often found with respect to loadings than intercepts
(intercepts being analogous to thresholds for categorical outcomes). Furthermore, with
continuous outcomes, typically only partial measurement invariance is found, so that a
subset of variables have non-invariant intercepts (and loadings). Partial invariance still
allows comparisons across groups and time, and so is probably the most useful approach
in practice.

In the binary case, the LISREL approach fixes the variances at unity for all variables
and groups. This not only precludes a study of across-group differences in variances
but also distorts a meaningful multiple-group analysis. For example, a model with full
measurement invariance of thresholds and loadings, and also invariant residual variances,
would be distorted due to across-group differences in factor variances because they cause
latent respose variable variance differences. Binary growth modeling is not possible
using the LISREL approach because the restriction of unit variances for all time points
precludes representation of the variance structure of (31).

In the Mplus approach, the process of studying group invariance avoids the multiple
stages of the LISREL approach and is accomplished in a single analysis. A key value of
the Mplus approach lies in its ability to jointly study invariance of threshold, loading,
and error variance parameters. This same flexibility is critical also in growth modeling,
where the multiple time points play the role of multiple groups. Threshold invariance is

6The LISREL approach can be done in Mplus in two steps. Step 1 is the same as LISREL’s stage
1. Step 2 is a combination of LISREL’s stages 2 and 3, where the unrestricted mean vectors and
covariance matrices are not estimated in an intermediate step, but the model parameters are directly
estimated. Although Mplus’ default setup for categorical outcomes does not include the ν intercept
parameters in (4), a perfectly measured factor may be introduced behind each y∗ variable, representing
the ν parameters as α intercept parameters. It should be noted that the degrees of freedom will be
inflated as a function of the fixed thresholds.

7Jöreskog (2002), pp. 28-29 shows how to use PRELIS to test the threshold equality for a pair of
variables in a longitudinal setting, but this is not in the context of the latent variable model and no
allowance for partial violations of equality is made in the final analysis.
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not presupposed. Threshold non-invariance is possible with respect to any groups, any
subset of variables, and with respect to any threshold of a variable.

9 Monte Carlo Simulation Examples

Five examples are given using the Mplus Monte Carlo option. Two studies concern
multiple-group modeling and three studies concern growth modeling. The particular
Monte Carlo facility for categorical outcomes in Mplus 2.12 requires a population y∗

mean vector and covariance matrix for each group. Using these population values,
observations on multivariate normal y∗ variables are randomly drawn, followed by a
categorization. The Monte Carlo studies below use 500 replications. The Mplus default
WLSMV estimator is used throughout (Muthén, du Toit, & Spisic, 1997). Summarizing
the 500 replications, the study focuses on quality of parameter estimation in terms of
parameter estimate bias, the agreement between the standard deviation of estimates
and average standard error, and the 95% coverage. Chi-square model testing is also
considered, focusing on the agreement between the rejection proportion at the 5% level
and the nominal value 0.05. Because all analysis models agree with how the data are
generated, this reflects the Type I error. Power is not considered here. For general
aspects of model testing with categorical outcomes, see Muthén (1993).

The Mplus Web Note section (see www.statmodel.com) gives the Mplus input, popu-
lation y∗ mean vector and covariance matrix data, and output for each of the five studies.
Readers can easily modify the input to study other situations.

9.1 Multiple-Group Examples

The multiple-group examples consider a one-factor model for six 4-category variables in
two groups. Two versions are considered: all thresholds invariant across groups, and
a small set of thresholds invariant across groups. 8 In the first version, thresholds are
−.7, 0, and .7 for variables one, two, four and five, and −.8, 0, and .8 for variables three
and six. The loadings are all invariant with values .4, .5, .6, .4, .5, and .6. The residual
variances are constant across variables but vary across groups with the value .30 in the
first group and .49 in the second group. The factor mean is 0 in the first group and .25 in
the second group. The factor variance is 1 in the first group and 1.2 in the second group.
This implies the following y∗ mean and variance values for each of the six variables and
each group:

E(y∗group 1) = ( 0 0 0 0 0 0 ) , (39)

E(y∗group 2) = ( 0.10 0.125 0.15 0.10 0.125 0.15 ) , (40)

8The parameter choices are similar to those chosen in Millsap and Tein (2002), except absorbing the
latent response variable intercepts in the thresholds.
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V (y∗group 1) = ( 0.46 0.55 0.66 0.46 0.55 0.66 ) , (41)

V (y∗group 2) = ( 0.682 0.79 0.922 0.682 0.79 0.922 ) . (42)

9.1.1 Study A: Full Measurement Invariance

Study A uses full threshold invariance. The Theta parameterization is used.9 The results
are good already at a sample size of 100 in each of the two groups.

The output in the Mplus Web Note section shows that the WLSMV chi-square
test works well, with rejection proportion .054 at the 5% level for the 500 replications.
The parameter estimate bias is low, the agreement between the standard deviation of
estimates and average standard error is good, and the 95% coverage is good. The
coverage is somewhat low for the group 2 residual variances, but an increased sample
size avoids this. 10

9.1.2 Study B: Partial Threshold Invariance

Study B uses invariance across groups for only a small set of the thresholds. This
analysis is chosen to show the performance of the analysis in a more complex case. For
the first variable the first two thresholds are held invariant, for the second variable the
first threshold is held invariant, for the third variable the first and third thresholds are
held invariant, and for the fourth, fifth and sixth variable the first threshold is held
invariant. The true values of the thresholds are as given above, i.e. they are all invariant
across the groups. The sample size is still 100 in each of the two groups and the Theta
parameterization is used.

The output in the Mplus Web Note section shows that the WLSMV chi-square test
works well and that the parameter estimation works well. The coverage for the group 2
residual variances is somewhat less good than in Study A. Again, increasing the sample
size improves on this.

It should be noted that larger sample sizes than used here are often required for good
estimation performance. This is because the examples shown here do not have strongly
skewed distributions for the categorical outcomes, i.e. do not include categories with
few individuals.

9It may be noted that the residual variances θ are not unity in this example. To match the population
values, the analyses therefore do not use the typical group 1 θ = 1 standardization but instead the group
1 population values. As discussed in the section Multiple-Group Measurement Invariance, Identification,
And Standardization Issues In Mplus, such a change of standardization is inconsequential.

10From the standard errors it is seen that the sample sizes are not quite large enough to be able to
reject group differences in factor means and variances.
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9.2 Growth Examples

The growth modeling examples uses the model of (29) for four time points. The means
of the intercept and slope growth factors are 0.5 and −0.5, respectively. The variances of
the intercept and slope factors are 0.5 and 0.10, respectively, with covariance 0 (free in
the estimation). Three versions of the growth model were considered: binary outcomes
with thresholds 0 at all time points; 4-category outcomes with thresholds −0.7, 0, and
0.7; and multiple-indicator, 4-category outcomes. The y∗ (or factor in the multiple-
indicator case) means and variances, the residual variances, the scale factors (∆), and
the probability of y = 1 are as follows for the four time points:

E(y∗t ) = ( 0.5 0 −0.5 −1.0 ) , (43)

V (y∗t ) = ( 1.0 1.2 1.8 2.8 ) , (44)

V (εt) = ( 0.5 0.6 0.9 1.4 ) , (45)

∆t = ( 1.0 0.913 0.745 0.598 ) , (46)

P (yt = 1) = ( 0.69 0.50 0.36 0.28 ) . (47)

The 1/5 ratio of slope to intercept variance is often seen in real data. Residual variances
are increasing over time in line with what is often seen in real data. The chosen param-
eter values give R2 values, i.e. the proportion of y∗ variance explained by the growth
factors, that are constant across time at the value 0.5. Such a low value is realistic with
categorical outcomes. The Mplus WLSMV estimator is used.11

9.2.1 Study C: Binary Outcomes

Study C uses the Delta approach for the binary outcome case at a sample size of 100.
The output in the Mplus Web Note section shows that already at this low sample size,
the results are good both in terms of chi-square and parameter estimation. 12 The
coverage is good also for the scaling factors estimated in group 2. The alternative Theta
approach13 works poorly in this setting. Although reasonable coverage is obtained, the
Theta approach gives poor average estimates and across-replication agreement between
estimate variability and standard errors. At the sample size of 100 very poor results are
obtained and poor results are also obtained at 500 (good results are obtained at 1000).
This appears to be due to a few replications where if the Delta approach was used,
the residual variance would show a very low value for the first time point. The Theta
approach of fixing the residual variance then causes the residual variances for remaining
time points to blow up by attempting to keep the variance ratios correct.

11Version 2.12 of Mplus does not allow for missing data with categorical outcomes; such features will
be added in future versions.

12498 out of the 500 replications converge.
13It may be noted that the θ values are not unity in this example. To match the population values,

the analyses therefore do not use the typical standardization θ = 1 at the first time point but instead the
population value. As discussed in the section Multiple-Group Measurement Invariance, Identification,
And Standardization Issues In Mplus, such a change of standardization is inconsequential.
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The results for the Delta and Theta approaches for this example suggest an important
approach in real-data analyses. Unless the sample size is very large, the Delta approach
should be used first. This gives the residual variances as remainders as described earlier.
If the residual variances are not very small, a Theta approach can be taken if this is of
interest. In the Theta approach it is then recommended that the residual variance is
fixed for the time point with the largest residual variance value.

It may be noted that if the across-time variation in the variance of y∗ is ignored,
distorted results are obtained. This can be illustrated by using the Delta approach with
the scaling factors ∆ fixed at unity at all time points. Using a large sample of 10, 000,
there is a clear bias toward zero for the growth factor means and a strong underestimation
of the slope variance. A similar picture is obtained by using the Theta approach with
residual variances fixed at the value of the first time point.

9.2.2 Study D: Polytomous Outcomes

Study D uses the Theta approach for the 4-category outcome case at a sample size of 250.
Here, full across-time invariance of all thresholds is imposed.14 The output in the Mplus
Web Note section shows that good results are obtained. The large improvement over
the binary case is presumably due to having more information available with 4-category
outcomes, reducing the sampling variability in the estimates.

As with the multiple-group case, it should be noted that larger sample sizes than used
here are often required for good estimation performance. This is because the examples
shown here do not have strongly skewed distributions for the categorical outcomes, i.e.
do not include categories with few individuals.

9.2.3 Study E: Multiple-Indicator, Polytomous Outcomes

Study E uses the Theta approach with the same 4-category outcomes as in Study D, but
with three such indicators at each time point in line with (33) and (34). The example
allows changes over time in some of the thresholds and loadings. While a majority of
thresholds and loadings are invariant across time, the first of the three indicators is not
invariant at the first time point and the third of the three indicators is not invariant
at the last time point. This is intended to illustrate a situation where an item is not
age appropriate; the first item is not age appropriate at the beginning of the study and
the third item is not age appropriate at the end of the study. Instead of deleting such
items at those time points, the model can take the item non-invariance into account. By
keeping the item, the precision with which the factor is measured is not deteriorated.
The particular threshold noninvariance chosen in this example is as follows. For the

14For convenience in matching the population values, the Mplus setup has the intercept factor mean
free to be estimated, while fixing the middle threshold at 0. A real-data analysis may instead have the
intercept factor mean fixed at zero and all thresholds estimated with equality across time.
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first item at the first time point, the last threshold is 0.2 instead of 0.7, illustrating an
over-reporting of the highest category. For the third item at the last time point, the first
threshold is −0.2 instead of −0.7, illustrating an over-reporting of the lowest category.
The remaining thresholds are invariant and at the values of Study D, −0.7, 0.0, and 0.7.
The invariant loadings are 0.6, 1.0, and 0.8. The loading noninvariance appears for the
same items as the threshold noninvariance so that the first item at the first time point
has loading 0.3 instead of 0.6 and the third item at the last time point has loading 0.3
instead of 0.8. The WLSMV estimator with the Theta parameterization is used at a
sample size of 250.

The output in the Mplus Web Note section shows that good results are obtained. The
5% chi-square rejection percentage is 6.8%. The coverage is good in all cases, although
a bit low for residual variances. The performance at a sample size of 500 is excellent.
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