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1 Introduction

This note presents an approach to handling heteroscedastic measurement errors in latent
variable models. The note is motivated by a study of hierarchical modeling of sequential
behavioral data, Dagne, Howe, Brown, and Muthén (2002). In Dagne et al. (2002) latent
variables are used to represent true log odds ratios for positive and negative responses
in subepisodes of couples’ behavioral interactions before and after the midpoint of the
episode. The precision of the observed log odds ratios as an estimate of the true log odds
ratio increases as the number of behaviors in an episode increases. Dagne et al. (2002)
give a formula for computing the variance to estimate the corresponding imprecision
in measurement. With episode being the unit of observation, this gives rise to the
heteroscedasticity of measurement error across episodes.

The approach proposed here draws on the fact that regression with a random slope
allows variance changes in an outcome as a function of individual values on the predictor.
Maximum-likelihood estimation of such a model can be performed using random slope
modeling in Mplus Version 2.1 (Muthén & Muthén, 1998-2002).

2 A Heteroscedastic Measurement Error Model

Consider a latent variable model with heteroscedastic measurement errors for a set of
continuous outcomes yij, where i corresponds to individual and j = 1, 2, . . . , p varies
across the outcomes,

yij = νj + λ′j ηi + eij + εij, (1)

where νj is a measurement intercept, λ′j is a row vector of slopes (loadings) for the
jth outcome regressed on the m latent variables, ηi is the vector of m latent variables,
E(ηi) = 0, V (ηi) = Ψ, E(eij) = 0, V (eij) = σ2

ij, E(εij) = 0 and V (εij) = θj. Here, the
heteroscedastic measurement error variances σ2

ij vary across individuals i as,

σ2
ij = σ2

j cij, (2)

where σ2
j is a parameter and cij are known, fixed values. Normality is assumed for ηi,

eij, and εij, with the terms being mutually uncorrelated.

3 The Dagne Et Al. Model in the Mplus Random

Slopes Framework

Inserting (10) in (8) in Dagne et al. (2002) shows that a special case of (1) - (2) is
considered with only two outcomes (p = 2) and a single latent variable (m = 1) with
unit loadings (λ = 1). Also, σ2

j is fixed at unity. The relationship between the notation
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in (1) - (2) and that in Dagne et al. (2002) is: i = m, νj = µj, ηi = δm, ψ = ψ2,
eij = Emj, εij = Vmj, σ2

j = 1, cij = σ2
mj, and θj = τ 2

j . In Dagne et al. (2002), cij

corresponds to the estimated within subepisode standard deviation, where the formula
for the variance estimate for σ2

mj is given in (2) in Dagne et al. (2002). These estimated
values are treated as fixed, known values, i.e. their sampling variance is not included in
the modeling.

The random slope approach to heteroscedastic measurement errors is as follows for
the Dagne et al. (2002) model. For each yj, rewrite the Dagne et al. (2002) model in
line with (1) - (2), but using a random slope regression formulation that fits into the
Mplus framework,

yij = νj + ηi + βij xij + εij, (3)

where xij is a dummy predictor variable containing the known measurement error stan-
dard deviations, xij =

√
cij, and having a random slope βij distributed as N(0, 1). This

means that the heteroscedasticity is expressed as V (βij xij|xij) = V (βij) x2
ij, giving the

desired density [βij xij|xij] = N(0, x2
ij). Note that [yij|xij] is normal and the mean and

variance structure is unchanged compared to (1) - (2),

E(yij|xij) = νj + E(ηi|xij) + E(βij) xij = νj, (4)

V (yij|xij) = V (ηi) + x2
ij + θj. (5)

The random slope approach adds a term to the log likelihood corresponding to the
added x variable in (3). Log likelihood ratio chi-square testing of nested models is not,
however, affected.

As indicated in (1) - (2), it may also be noted that the random slope variance V (β)
can be estimated providing further measurement error modeling flexibility. Given that
the heteroscedastic term V (βij) x2

ij = 0 for zero β variance, a significant β variance may
be taken as evidence of heteroscedasticity. Zero β variance means that (2) is zero and
that eij = 0 so that (1) reverts to a conventional latent variable measurement model.

4 Examples

Mplus 2.1 input for the six models estimated in Dagne et al. (2002), and the corre-
sponding data, are available at the Mplus web site, www.statmodel.com.

Model 1 in Dagne et al. (2002) has 5 parameters: ν1, ν2, ψ, θ1, and θ1. Here, n = 254.
Freeing the random slope variance for each of the two outcomes, i.e. estimating σ2

j in (2),
results in an improvement in the log likelihood corresponding to a chi-square difference
test (twice the log likelihood difference) of 5.196 with 2 degrees of freedom, which is
not significant at the 5% level (the 5% critical value is 5.991). The maximum-likelihood
estimates of the random slope variances (standard errors in parenthesis) are 0.861 (.244)
and 0.591 (.147). This implies that the Dagne et al. (2002) choice of unit variance
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values is reasonable, although a bit high for the second outcome. Also, σ2
j in (2) appears

to be different from zero so that the heteroscedastic measurement model is needed. A
conventional homoscedastic measurement model with σ2

j = 0 in (2) and eij = 0 in (1) also
uses 5 parameters as in the Dagne et al. (2002) Model 1, but has a lower log likelihood
value. The conventional model estimates the reliabilities of the two outcomes as 0.16
and 0.17, respectively. In contrast, Model 1 in Dagne et al. (2002) gives reliabilities that
vary across observations. For observations at the minimum, average, and maximum
variance estimates of subepisode variance, the reliabilities for the first outcome are 0.27,
0.10, and 0.03. For the second outcome they are 0.28, 0.10, and 0.04.
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