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The generality of latent variable modeling of individual differences in development

over time is demonstrated with a particular emphasis on randomized intervention

studies. First, a brief overview is given of biostatistical and psychometric ap-

proaches to repeated measures analysis. Second, the generality of the psychometric

approach is indicated by some nonstandard models. Third, a multiple-population

analysis approach is proposed for the estimation of treatment effects. The approach

clearly describes the treatment effect as development that differs from normative,

control-group development. This framework allows for interactions between treat-

ment and initial status in their effects on development. Finally, an approach for the

estimation of power to detect treatment effects in this framework is demonstrated.

Illustrations of power calculations are carried out with artificial data, varying the

sample sizes, number of timepoints, and treatment effect sizes. Real data are used

to illustrate analysis strategies and power calculations. Further modeling extensions

are discussed.
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Analysis of longitudinal data responds to the need

in many research areas for describing individual dif-

ferences in development over time. Recently, a host of

methodological contributions have been made and the

implications for applications of this new technology

have not been fully spelled out. The broad aim of this

article is to contribute to this process by discussing

new types of models and the power of detecting vari-

ous effects by such models.

Analysis of individual differences in longitudinal

data draws on several different methodological tradi-

tions with their own specific analysis focus, terminol-

ogy, and software. This complexity may have im-

peded dissemination of new research methods in this

area. Three traditions appear especially important:

biostatistics, education, and psychometrics. In the bio-

statistics tradition, the keywords include repeated

measurement, random-effects analysis of variance

(ANOVA), the mixed model, and random coefficient

modeling. Key references include Rao (1958), Laird

and Ware (1982), and Diggle, Liang, and Zeger

(1994). Key software products include BMDP5V,

SAS PROC MIXED, MIXED, and MIXOR. The edu-

cation tradition started out relatively independent of
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the biostatistics tradition but is now beginning to

merge with it. Here, keywords include slopes-as-

outcomes, multilevel modeling, and hierarchical lin-

ear modeling (HLM). Key references include Cron-

bach (1976), Burstein (1980), Goldstein (1987,1995),

Bock (1989), Bryk and Raudenbush (1992), and

Longford (1993). Key software products include

MLn, HLM, and VARCL. A largely independent tra-

dition is found in psychometrics with keywords such

as latent curve analysis and latent variable structural

equation modeling. Key references include Tucker

(1958), Meredith and Tisak (1984, 1990), and

McArdle and Epstein (1987). Key software products

include Amos, CALIS, EQS, LISCOMP, L1SREL,

MECOSA, and MX.

In the biostatistics and education traditions, the in-

dividual differences in growth or decline over time are

captured by random coefficients. Because these coef-

ficients are unknown quantities that vary across indi-

viduals, the psychometric tradition views them as la-

tent variables. Linkages between the traditions have

been described in Browne and DuToit (1991), Muthen

(1983, 1991, 1993), Rogosa (1988), Rogosa and Wil-

lett (1985), and Willet and Sayer (1994).

The currently available procedures for the random

coefficient approach have both strengths and weak-

nesses. A strength is that they draw on statistical es-

timation procedures that have been thoroughly studied

over many years. A weakness is that the modeling in

these traditions has been largely limited to a single

response variable that does not accommodate the gen-

eral analysis needs of developmental theories (see,

however, Raudenbush, Rowan, & Kang, 1991; Gold-

stein, 1995). The latent variable approach can essen-

tially be characterized in the opposite way. Although

the estimation procedures are currently not well de-

veloped for sufficiently general cases, the modeling

framework has much more of the generality that is

needed to answer researchers' questions.

In terms of generality, a comparison between cur-

rently available analysis procedures and software

within the random coefficient approach and the latent

variable approach may distinguish between two com-

ponents of the analysis: the observed and latent vari-

able data structure versus the model structure. It ap-

pears that the latent variable approach has an edge

with respect to modeling flexibility and this aspect

will be further investigated in this paper. At the same

time, however, it would appear that the random coef-

ficient approach is currently more flexible with re-

spect to the observed and latent variable data struc-

ture. One example of this flexibility concerns

randomly varying within-subject designs including

unequal intervals of observation, varied within-person

distributions of time-varying covariates having ran-

dom effects, and data missing at random. Another

example is the incorporation of clustered designs for

persons. Although the latent variable literature in-

cludes treatments of missing data (see, e.g., Arminger

& Sobel, 1990; Muthen, Kaplan, & Hollis, 1987) and

growth modeling with clustered data (see Muthen,

1997), the analyses do not yet allow the flexibility of

the random coefficient approach.

The latent variable framework is considered further

in this article for reasons of model flexibility. When

translating the random coefficient model into the la-

tent variable framework, one finds that the standard

random coefficient growth curve model corresponds

to a very limited latent variable model. The latent

variables are not introduced to represent latent vari-

able constructs in the traditional psychometric sense

of being measured by multiple indicators at a single

timepoint. Instead, observations at multiple time-

points of the same outcome variable are used to de-

termine latent variables that represent the shapes of

the individual curves. Formally, the corresponding la-

tent variable model is a confirmatory factor analysis

model with unusually restrictive factor loading con-

straints. Once the random coefficient growth curve

model has been put into the latent variable frame-

work, many general forms of longitudinal analysis

can be studied, including mediational variables influ-

encing the developmental process, ultimate (distal)

outcome variables influenced by the developmental

process, multiple developmental processes for more

than one outcome variable, sequential-cohort and

treatment-control multiple-population studies, and

longitudinal analysis for latent variable constructs in

the traditional psychometric sense of factor analytic

measurement models for multiple indicators. The la-

tent variable framework also accommodates missing

data (see, e.g., Arminger & Sobel, 1990; Muthen et

al., 1987), categorical and other nonnormal variable

outcomes (see, e.g., Muthen, 1984, 1996), and tech-

niques for clustered (multilevel) data (Muthen, 1994,

1997; Muthen & Satorra, 1995), but these features

will not be discussed here.

The full potential of the more general longitudinal

modeling that can be carried out within the latent

variable framework has not yet been realized in terms

of real-data analyses of substantive research ques-

tions. One aim of this article is to speed up this pro-
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cess by outlining some nonstandard, prototypical

models within the latent variable framework. Empha-

sis will be placed on a model in an especially chal-

lenging area, the case of longitudinal modeling widiin

a true experimental design. These types of designs are

often encountered in behavioral research in the form

of prevention studies or intervention programs in

mental health or evaluations of educational programs.

Intervention programs are often characterized by

community-based participant recruitment (e.g.,

schools, courts, government agencies) and the dis-

semination of treatment is through a field setting (e.g.,

classrooms, after-school groups, etc.; see Brown, Kel-

lam, & Liao, 1996, for an overview). Developmental

studies with randomized interventions make particu-

larly good use of the longitudinal research design and

warrant further methodological attention.

It is expensive and time-consuming to carry out

longitudinal studies and particularly so with a large

number of participants. It is therefore important to

know the minimum number of participants and time-

points that can be used to answer the research ques-

tions. In planning a longitudinal study, it is critical to

estimate the power to detect certain effects, such as

treatment effects in intervention studies. Little is

known, however, about power issues for longitudinal

modeling in general and intervention effects in par-

ticular, especially in the more general settings out-

lined above. A second aim of this article is therefore

to present some relevant power results for longitudi-

nal modeling in intervention studies. This article uses

the general latent variable framework to consider

power estimation using a method developed for latent

variable models by Satorra and Saris (1985).

Although the article focuses on multiple-population

longitudinal studies as motivated by an intervention

context, it should be pointed out that the proposed

growth analysis and power estimation techniques are

generally applicable to multiple population settings.

Such settings may for example involve gender differ-

ences and differences among populations varying in

their risk for problematic development. The power

estimation approach is also of interest in single popu-

lation settings involving questions of power to detect

certain growth patterns.

Latent Variable Longitudinal Modeling

A Conventional Random Coefficient Model

Using a simple random coefficient growth curve

model as a starting point, a translation into latent vari-

able modeling will be made to show the key features

of the latent variable longitudinal model. The gener-

alizations of this model will then be shown both in

terms of the formulas for a general latent variable

model as well as in terms of path diagrams. Through-

out this article, we simplify the discussion by focusing

on continuous normal outcome variables. It is clear,

however, that methodology for categorical and other

nonnormal variables is both very much needed in

practice and has seen recent methodological ad-

vances.

Consider growth for a single outcome variable y

observed for individual i at tune-point t as related to

a time-varying covariate v,r and a time-invariant co-

variate wt. For simplicity, only one time-varying and

one time-invariant covariate is considered. The key

idea is that each individual has his or her own growth

trajectory. Growth will be expressed in terms of a

random coefficient model described as a two-level

model. Level 1 is written as

Jit = a, + bf,, + cuvit + eit, (1)

where a; is an intercept, xit is a time-related variable

(such as age or grade), fo, and cit are slopes, vit is a

time-varying covariate, and eit is a residual. Level 2 is

written as

fl; = a + dawt + eai{ Oi = a + daW

C^^

(2)

where a, b, da, and db are (fixed) intercept and slope

parameters, wt is a time-invariant covariate, and eai

and ehi are residuals. It is assumed that the e-a are

uncorrelated with eai and ebi, whereas the latter two

residuals may be correlated with one another.

This random coefficient model may, for example,

describe linear growth over time by using the xit co-

efficients 0, 1, 2, ... in Equation 1, so that aL repre-

sents the initial status of individual i on his or her

growth trajectory and bt represents his or her linear

growth rate on this trajectory. It is straight-forward to

add nonlinear growth by adding terms that are non-

linear in xir Note, however, that we are not consid-

ering models that are nonlinear in the random coeffi-

cients (for such model, see, e.g., Browne & Du Toil,

1991). The time-invariant covariate w explains part of

the variation in each individual's growth trajectory by

Equation 2. Each individual's growth trajectory is

also influenced by the time-varying covariate v as

seen in Equation 1.

The specific random coefficient model that is con-
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sidered here is a conventional model for growth curve

modeling in biostatistics with two exceptions. First, as

indicated above, cit = c, so that the coefficients for

the time-varying covariates are not allowed to vary

across individuals. This restriction is necessary to fit

the random coefficient model into the conventional

latent variable modeling framework given that this

framework cannot handle products of random vari-

ables such as c,-,v,r Second, for the same reason, we

assume that xit = x,, which means that all individuals

are observed at the same timepoints. It should be

pointed out that the latter restriction is in principle not

necessary hi the latent variable framework when dif-

ferent individuals are observed at different timepoints

because of missing data such that different individuals

may have different numbers of observations. Muthen

et al. (1987) discussed missing data techniques that

can be used in conventional structural equation mod-

eling software when there is a small number of miss-

ing data patterns and where each missing data pattern

is represented by a sizable number of observations.

Recent developments in structural equation modeling

software also incorporate the contrary case, allowing

for individually varying missing data patterns (see

also Arminger & Sobel, 1990).

In the latent variable tradition, the random coeffi-

cients a; and b/ in the model of Equations 1 and 2 are

reconceptualized as latent variables, that is, factors.

This idea was introduced as latent curve analysis by

Meredith and Tisak (1984, 1990) and we use this

general term from now on. The term has an advantage

over the common term growth modeling in that it

represents modeling of individual curves that corre-

spond not only to monotonic growth but also to sta-

bility, decline, and combinations thereof. For a peda-

gogical description of latent curve analysis, see

McArdle (1988), Willet and Sayer (1994), and Mu-

then (1995); this description will be only briefly re-

stated here and readers new to the area are referred to

those papers for more detail. It is convenient to view

the model in terms of conventional latent variable

modeling path diagrams. Figure 1 shows this particu-

lar model for five timepoints and a time-varying co-

variate v that only influences the last three timepoints.

In this and subsequent latent curve figures, the sub-

script i denoting variation across individuals is sup-

pressed for both manifest and latent variables but

should be understood.

It is clear from Figure 1 that the latent curve model

can be easily translated into input for existing latent

variable modeling software. The c coefficients of

Equation 1 are the slopes for the v covariate at the

different timepoints and the d coefficients of Equation

2 are slopes for the w covariate. At the different time-

points, the outcome variable yit is related to the two

latent curve factors with slopes of unity for the a,

factor and x, for the fc, factor. It should be noted that

the x, scores need not be predetermined, fixed values.

The latent variable framework makes it clear that

these values are slopes that can be estimated, allowing

for a flexible model to represent nonlinear trajecto-

ries. For example, the scores 0, 1, x3, x4, xs may be

used, where *3, x4, and xf are parameters to be esti-

mated. Estimates of these parameters can be com-

pared with the unit step from the first to the second

timepoint.

Further details of the model hi Figure 1 are as fol-

lows. The intercept (or mean if there is no time-

invariant covariate) for the at factor is a and the in-

tercept (mean) for the bt factor is b. Allowing an

intercept (mean) parameter a for the at factor, the

intercepts in the regressions of each of the five y,

variables on the factors and the time-varying covariate

should be held fixed at zero. An alternative that will

be used in this paper is to set the a mean of the a,

factor at zero in Equation 2 and instead let there be a

common intercept in the yit regression Equation 1.

The common intercept is obtained by restricting the

intercepts for each of the five y, regressions to be

equal across time. This alternative parameterization is

equivalent to the original, but it generalizes in a more

straightforward fashion to multiple-indicator models

and models with interactions between treatment and

initial status.

Further parameters are the two residual variances

and the residual covariance for the two factors (these

parameters constitute the factor covariance matrix el-

ements if there is no time-invariant covariate). The

residuals in Equation 1 may be allowed to have dif-

ferent variances across time and to have certain pat-

terns of correlation across time. They are uncorrelated

with the residuals in Equation 2. Identification issues

are discussed in Muthen (1995). The model imposes a

structure on both the mean vector and covariance ma-

trix for the observed variables. The model specifica-

tion is discussed further below within a general frame-

work. Input for the LISCOMP program (Muthen,

1984, 1987, 1989) used in this article is given in Part

1 of a technical appendix, which is available from

either Bengt O. Muthen or Patrick J. Curran. The

same results would be obtained with Amos, EQS, and

LISREL.
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Figure 1. Latent variable growth model for five timepoints with a time-invariant and a time-varying covariate.

A General Latent Variable Framework

The latent curve model described above fits into the
following general latent variable framework (cf.
Bollen, 1989; JSreskog & SBrbom, 1979). For popu-
lation (group) g, consider a /j-dimensional observed
variable vector y* related to an m-dimensional latent
variable vector if through a factor-analytic measure-
ment model,

where as is an m-dimensional vector of structural in-
tercepts (for endogenous T\S) or means (for exogenous
TIS), Bs is an m-dimensional matrix of structural
slopes, and £* is an m-dimensional vector of structural
residuals. Here, V(£s) = y?g, a residual (for endog-
enous TIS) or latent variable (for exogenous TIS) co-
variance matrix.

Under regular assumptions on the residuals, we
have the mean and covariance structure

= Vs + + e*, (3) E(f) = n* = Vs + A*(/ -

where v* is a vector of measurement intercepts, A* is
a p x m-dimensional matrix of measurement slopes
(factor loadings), and e* is a p-dimensional vector of
measurement residuals. Here, V(eg) = 9*. The latent
variables have the structural relations

and

V(yO) = 2* = A»(/ -

(5)

1 A* + 0*.

(6)

if = a* + + £*, (4)

This is the standard multiple-population structural
equation modeling formulation used in LISREL-type
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modeling. With the customary assumption of i.i.d.

sampling from each of the G populations, a simulta-

neous, multiple-population analysis is commonly

achieved by minimizing the fitting function F,

F =
5=1

) - In 15*1 -p]}/(N- 1),

(7)

where N is the total sample size and

F = S* + (y* - »«*)(y* - | (8)

which gives maximum-likelihood estimation under

multivariate normality for y? (see, e.g., Joreskog &

Sorbom, 1979; Sorbom, 1982). At the optimal value

of F, (N - 1)F is asymptotically distributed as a chi-

square variable.

The simple example in Figure 1 of the previous

subsection may be fitted into this modeling frame-

work by letting y in Equation 3 contain all nine ob-

served variables and i\ contain the two curve factors

as well as one factor corresponding to each observed

variable, where the latter factors are measured without

error. This specification is explicated in Part 1 of the

technical appendix, which can be obtained from

Bengt O. Muthen or Patrick J. Curran. Note that this

specification prepares for multiple indicators of latent

variable constructs, both among the outcome vari-

ables and among the covariates. In the Figure 1 ex-

ample, the parameters of Equations 5 and 6 are as

follows: v = 0, A contains Os and Is, 6 = 0, B

contains the coefficients (1*,), a contains the equal

intercepts in the regressions of each dependent-

variable i]s and the means of the covariates, and ¥

contains the residual covariance matrix for the depen-

dent-variable TIS and the covariance matrix for the

covariates. For an introduction to this specification,

see Willet and Sayer (1994) and Muthen (1995).

Some Nonstandard, Prototypical Models

Following are some potential applications of the

general latent variable framework given above that

generalize the conventional random coefficient

growth model discussed in an earlier section. These

are given as examples of model types that are likely to

play important roles in future longitudinal analyses.

Each of these examples can be further extended to

include latent variable constructs TI measured by mul-

tiple indicators as in Equation 3, where these con-

structs assume the role of outcome variables, covari-

ates, mediators, and ultimate outcomes. All constitute

examples that can be fit into existing software tech-

nology and illustrate that currently, the latent variable

approach to growth modeling appears to be more flex-

ible than random coefficient modeling techniques.

Figure 2 shows a latent curve model where the

influence of the time-invariant covariate w is medi-

ated by a variable z. It is of interest to study to which

extent the influence of w on the two curve factors is

indirect through z and to which extent there is a direct

influence. This has practical importance when the me-

diator is a variable that can be manipulated and the

covariate cannot be manipulated. In this case, the ex-

tent to which there is an indirect influence through the

mediator indicates the extent to which an intervention

aimed at manipulating the mediator can have an in-

fluence on the developmental process.

Figure 3 shows a latent curve model where an ul-

timate outcome variable y6 is influenced by the two

curve factors of a previously observed outcome vari-

able. In this model, the trajectory of an individual, not

his or her scores on the outcome variable, is the pre-

dictor of the ultimate outcome variable.

Figure 4 shows a latent curve model that may be

seen as a generalization of that in Figure 3. Here, one

developmental process preceeds and predicts the

course of a second, later occurring, developmental

process. Muthen (1997), Stoolmiller (1994), Curran,

Harford, and Muthen (1996), and Curran, Slice, and

Chassin (1997) used variations of this model where

the two developmental processes were concurrent and

where the initial status factor of each process was

hypothesized to influence the growth rate factor of the

other process.

A Nonstandard, Prototypical Model for
Intervention Studies

The types of latent curve models shown in Figures

1—4 can all be generalized to the simultaneous analy-

sis of data from several populations (i.e., multiple-

population analysis). To a limited extent, population

differences can be captured in single-population

analysis by representing the groups as dummy vari-

ables used as time-invariant covariates. Although this

enables population differences in location for the

curve factors, other parameters are not allowed popu-

lation differences (we note in passing that represent-

ing groups by time-varying dummy variables does not

describe population differences among individuals but

changes in group membership for the same indi-

vidual). To achieve more generality in the modeling,
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Figure 2. Growth model with a mediating variable.

however, researchers need to use a multiple-popu-

lation approach instead of a dummy-variable ap-

proach. This is particularly beneficial in the setting of

intervention studies.

A Two-Group Formulation

Consider an intervention study where individuals

are measured before being randomized into a treat-

ment or a control group and then measured repeatedly

thereafter. In line with Joreskog and Sorbom (1979),

this may be viewed as data from two different popu-

lations. The control group population represents the

normative set of individual trajectories that would

have been observed also in the treatment group had

they not been chosen for treatment. The effect of

treatment is assessed by comparing the set of trajec-

tories in the treatment population with those in the

control population.

This two-group setting may be described in path

diagram form as shown in Figure 5. This is readily

generalized to the case where there are several treat-

ment groups. In Figure 5, the top graph represents the

control group, where for simplicity we may assume

linear growth, using an initial status factor and a linear

growth rate factor. Also for simplicity, no covariates

are included.

The bottom graph in Figure 5 represents the treat-

ment group. In line with conventional multiple-

population latent variable analysis, we could specify a

two-factor growth model also here and test for equal-

ity of parameters across the two populations. Lack of

equality would then be taken as evidence of effects of

treatment. There is, however, a better alternative

which offers a more useful analysis with respect to

treatment effects. This alternative is shown in Figure

5. Here, an additional growth factor is introduced for

the treatment population. Whereas the first two fac-

tors are the same as for the control group, the third
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Figure 3. Growth model with a distal outcome variable.

factor represents incremental or decremental growth

or decline that is specific to the treatment group. We

will call this factor the added curve factor due to

treatment.

The interpretation of the three factors in the treat-

ment group can be described as follows. For simplic-

ity, the intervention is assumed to take place after the

initial timepoint. Using the x, scoring of 0,1,2, 3, and

4, only the first factor influences >•[. At subsequent

time-points, the second factor gives additional contri-

butions. The first factor can therefore be interpreted as

the individual's initial status before the intervention

started, whereas the second factor represents the

growth rate. This is the growth rate that the individual

would progress according to had he or she not re-

ceived the treatment. The parameters for the first and

second growth factors in the treatment population are

constrained to be equal to those of the control popu-

lation. Thereby, the added growth factor captures the

incremental or decremental growth beyond that of the

control population. The treatment effect is thereby

expressed in this added third growth factor that is

specific to the treatment population. The treatment

effect can be characterized by the mean of the added

growth factor, adding or subtracting to the control

growth rate. It can, however, also be characterized by

the variance of the added growth factor, where an

increased variance represents a treatment effect that

makes growth more heterogeneous among individu-

als. Note that a treatment effect inducing a smaller

variance in the outcome variable can also be repre-

sented in this model. This is achieved by a negative

covariance between the first and the third growth fac-

tors.

Restricting the parameters of the first two growth

factors to be equal across the control and treatment

populations is warranted in a randomized intervention

study. Often, however, the randomization breaks

down during the course of the study and the two

groups do differ significantly at the pre-intervention

timepoint (cf. Cook & Campbell, 1979). In such

cases, the equality constraints related to the initial

status factor should be relaxed. First of all, this in-

volves relaxing the mean of zero for the initial status

factor in the treatment population. The intercepts in

the y regressions are still held equal over time and

across populations, but the treatment initial status

mean is thereby allowed to be different from the zero

value of the control population. Second, this involves

relaxing the across-population equality constraint for

the initial status variance. The above approach can

still be used as long as it is realistic to assume invari-

ance across the two populations for the parameters of

the second growth factor. As usual in nonexperimen-

tal studies, the realism of the modeling can be im-

proved by using time-invariant covariates so that the
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1 1

Figure 4. One growth process influencing a later growth process.

equality constraints are instead applied to parameters

describing the conditional means and (co-)variances

of the two growth factors.

The effect of treatment may be more complex than

merely changing the growth rate of a process that has

the same functional form as that of the control group

(i.e., a line in the above example). For example, the

control group may follow linear trajectories whereas

the treatment group may follow nonlinear trajectories.

The third factor may in this case be represented for

example by a quadratic growth term, using jt? scoring

of 0, 1, 4, 9, and 16. Another solution, offering more

flexibility, is to use estimated xt scores as discussed

earlier.

The above discussion focuses on treatment effects

that are permanent in the sense that the differences

between the two average trajectories keep increasing

over time. It is also important to be able to capture

temporary treatment effects, given that such effects

are probably more common in intervention studies.

The approach of estimating x, scores is useful here

given that these scores are allowed to first increase

and then decrease. If there is a specific hypothesis for

when a treatment effect begins or ends, one can in-

stead use piece-wise curve factors that influence the

outcomes only at certain timepoints (for piece-wise

linear modeling, see, e.g., Bryk & Raudenbush, 1992;

Seltzer, Frank & Bryk, 1994).

Treatment-Initial Status Interactions

We describe an extension of the above two-group

latent curve model that responds to a central concern

of intervention studies, namely trying to understand

for whom an intervention is effective. Our formula-

tion is related in spirit to both the Bryk and Weisberg

(1976) valued-added analysis and the Rogosa (1991)

discussion of how to view treatment interactions in

the context of aptitude-treatment interactions. It is fre-

quently the case that individuals at different pre-

intervention (baseline) levels on the outcome variable

benefit differently from the intervention (see, e.g.,

Cronbach & Snow, 1977). In analysis of covariance

(ANCOVA) studies using pre- and postintervention

measures, this is often studied in terms of an interac-

tion between the baseline and the treatment, using the

baseline as a covariate. In longitudinal modeling, the

initial status factor provides a more relevant covariate.

The baseline variable may in fact be seen as a fallible
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Figure 5. A two-group growth model for intervention studies.

indicator of this factor. These concerns lead to longi-

tudinal modeling of interactions involving the treat-

ment and the initial status in their influence on the rate

of change.

In terms of the Figure 5 latent curve model, the

interaction may be expressed by letting the initial sta-

tus factor influence the added growth factor in the

treatment population. For example, in a remedial
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reading program, a negative influence may be viewed

as lower initial status individuals having larger incre-

mental growth rate effects from the treatment. In the

latent variable framework, the influence is expressed

in terms of a structural regression with the added

growth factor as the dependent variable and the initial

status factor as the independent variable. This is a logical

formulation given that the initial status factor has tem-

poral precedence over the added growth factor. Includ-

ing this structural regression in the model, the treat-

ment effect can be described in an even richer way.

The mean and variance of the added growth factor is

then expressed as a function of the initial states mean

and variance, the structural regression intercept and

slope, and the residual variance in that regression.

It may seem paradoxical that an interaction can be

described by a structural regression that is a linear

function of initial status, but it should be kept in mind

that the regression is formulated within a simulta-

neous analysis of the control and treatment groups,

where the control group does not include this regres-

sion, thereby inducing the interaction. The multiple-

group approach of linear structural equation modeling

thus enables interaction modeling for a continuous

latent variable when the other variable involved is an

observed categorical grouping variable as with the

treatment-control dichotomy. Interactions among

continuous latent variables, however, require special

techniques (see, e.g., Jaccard & Wan, 1996).

The intercept and slope in the added structural re-

gression have clear interpretations in terms of main

effect and interaction effect of treatment. If the slope

is zero, the intercept represents the mean of the added

growth factor given that the initial status factor mean

is zero. The intercept therefore represents the main

effect of treatment. With a nonzero slope, the condi-

tional mean of the added growth factor given the ini-

tial status factor at its mean value of zero is still equal

to the intercept (the main effect). The slope value

indicates to what extent changes away from the mean

of the initial status factor influences the added growth

factor beyond its main effect (intercept) value. The

slope therefore represents the interaction effect that

the treatment induces.

It may be noted that a negative slope value repre-

sents a treatment that produces a more homogeneous

outcome. The negative slope serves to reduce the vari-

ance of the outcome variable in the treatment group

because individuals with high initial values tend to get

lower growth rates and individuals with low initial

values tend to get higher growth rates.

It is also possible to include a more complex inter-

action using this two-group framework. In the treat-

ment population we may allow not only the first but

also the second growth factor to influence the added

growth. The second factor represents the normative

growth rate the individual would have had without

treatment. For example, if the normative growth rate

is low for the individual, the added treatment growth

rate may be high, representing a negative influence

from the second factor to the added growth factor.

It is worth pointing out two methodological issues

about this approach to treatment interactions. First, it

is made possible by the specification of an added

growth factor specific to the treatment population so

that the treatment effect is separated from normative

growth. Second, the approach of regressions among

growth factors is currently unique to the latent vari-

able approach. For example, it is not possible in the

conventional random coefficient specification of

Equations 1 and 2 to represent a treatment initial sta-

tus interaction by including a, on the right-hand side

of the equation for bt

Analysis Strategies

Given the complexity of the proposed approach to

intervention analysis, a careful analysis strategy is re-

quired. Five analysis steps are discussed here.

As a first step, the normative development can be

studied by a separate analysis of the control group.

Previous research may have established a priori hy-

potheses about the form of these trajectories. Inspec-

tion of individual and overall developmental patterns

may also contribute to choosing the models attempted

in the analyses. In this single-group analysis, it is

valuable to rule out that the control population exhib-

its any of the postintervention changes in trajectories

that are hypothesized to be due to treatment. In this

way, if such trajectory changes are found for the treat-

ment population, they are more clearly attributable to

the treatment.

As a second step, the treatment group can be ana-

lyzed separately. Here, the basic trajectory form (lin-

ear, nonlinear) may be investigated. The treatment

may induce curve shapes different from those in the

control group.

As a third step, a two-group analysis is performed

where the latent curve factors found for the control

group are repeated in the treatment group. For all

control factors but the initial status factor, one may

specify an added treatment factor. For example, the

control population may have both a linear and a qua-
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dratic growth factor beyond the initial status factor. In

this case, the treatment population may have added

factors for both linear and quadratic growth, or the

control population may have only linear growth, in

which case it may suffice to have an added quadratic

factor in the treatment population.

As a fourth step, treatment interaction is tested for

in the two-group analysis. Here, the initial status fac-

tor in the treatment group is allowed to influence the

treatment group growth factors.

As a fifth and final step, a sensitivity analysis is

carried out for the two-group model from Step 4.

First, the model is scrutinized in terms of successful

randomization. Deviations from perfect randomiza-

tion can be allowed for by relaxing the equality re-

strictions with respect to the initial status factor. Sec-

ond, tests of overall treatment effect are carried out

with treatment effect parameters set to zero. The as-

sessment of treatment effects can thereby be ex-

pressed as a chi-square difference test for the models

of Steps 3 and 4. There are several treatment effect

parameters: interactions, main effects, and variance

effects. For example, if an interaction is captured by

the initial status influencing the added linear growth

factor, the interaction parameter is the slope in this

structural regression, the main effect is the intercept,

and the residual variance represents the variance ef-

fect. Using this example, the testing may be done in

stages, first restricting the slope to zero, and second, if

this is found tenable, restricting the intercept to zero.

Power Estimation in the Latent
Variable Framework

The estimation of power to detect misspecified la-

tent variable models has been discussed in Satorra and

Saris (1985) and Saris and Satorra (1993); see also

Saris and Stronkhorst (1984). In principle, power can

be estimated for any model by carrying out a Monte

Carlo study that records the proportion of replications

in which the incorrect model is rejected. Satorra and

Saris proposed a method that gives a tremendous sim-

plification over such a brute force approach. A key

technique is based on the likelihood-ratio chi-square

test for maximum-likelihood estimation of mean and

covariance structure models such as the one in Equa-

tions 5 and 6. Here, we will use this technique to

estimate the power to detect intervention effects in the

two-group latent curve model discussed above. The

Satorra-Saris approach is particularly suitable for the

intervention setting given that power estimates are

desired for very specific model misspecifications con-

cerning the absence of treatment effects. MacCallum,

Browne, and Sugawara (1996) discussed power esti-

mation techniques that concern overall model fit, but

that will not be considered here.

Under multivariate normality for y6, (N — l)Fmin,

where Fmin is the optimal value in Equation 7, is dis-

tributed asymptotically as a chi-square variate when

the model in Equations 5 and 6 is correct. Satorra and

Saris (1995) showed that when the model is incorrect

but not highly misspecified, (N— i)Fmin is asymptoti-

cally distributed as a noncentral chi-square variate

with a certain noncentrality parameter, which can be

approximated by a two-step procedure. This proce-

dure involves two models, one more general that is

assumed correctly specified and one more restrictive

that is misspecified.

In our intervention setting, we are interested in the

power to detect intervention effects and the more re-

strictive model sets the corresponding parameters) to

zero. As a first step, the more general two-group latent

curve model is estimated including the treatment ef-

fect(s). In a second step, the estimated mean vectors

and covariance matrices from Step 1 are used in place

of the corresponding sample statistics and analyzed by

the more restrictive model that sets the treatment ef-

fect parameters) to zero. The value of (N - l)Fmin in

this second step represents an approximation to the

noncentrality parameter. Once this parameter has

been obtained, the power can be obtained from tables

for noncentral chi-square distributions as a function of

the degrees of freedom and the a level of the test (see,

e.g., Saris & Stronkhorst, 1984). A technical appen-

dix, which may be obtained from Bengt O. Muth6n or

Patrick J. Curran, gives a short SAS IML program that

computes the power in this way. The degrees of free-

dom refer to the number of treatment effect param-

eters.

Saris and Satorra (1993) point to simulation studies

that indicate that this procedure for estimating power

can be sufficiently accurate for practical purposes at

small sample sizes. A simulation study by Curran

(1994) found very good results at sample sizes of 100.

To verify the accuracy for the present two-group

growth model, we carried out a limited simulation

study. Data were generated over 1,000 replications

from the Figure 5 linear growth model with a certain

sample size and treatment main effect size (defined

below). The proportion of the replications for which

the t value of the treatment effect exceeded its 5%

critical value was recorded. This t value refers to the

incorrect hypothesis of zero treatment effect. The
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study focused on power values close to 0.80, varying

the sample size. For a treatment effect size of 0.30 and

a total sample of 200 divided equally among control

and treatment group observations, the Satorra-Saris

method obtained a power of 0.734 (this is the result

shown below in Figure 9, curve C) as compared with

0.755 from the simulation. An even better agreement

was obtained at the higher total sample size of 500

with a treatment effect size of 0.20 where the Satorra-

Saris method obtained a power of 0.783 (see Figure 6,

curve B), whereas the simulation resulted in 0.780.

In this article, the Satorra-Saris method for esti-

mating power will be used to compute power curves

as a function of sample size for a variety of hypo-

thetical two-group models of the type shown in Figure

5. Here, parameter values will be chosen to represent

various treatment effect sizes. These values generate

the mean vectors and covariance matrices that are

used in the second step of the power method. The

method will also be used in connection with the real-

data analysis. Here, the parameter estimates obtained

from an analysis of the real data are taken to represent

population values that the analyst believes are mean-

ingful for power analysis. These values are used to

generate the mean vectors and covariance matrices for

the second step of the power method.

Analysis of Examples

The general analytic and power estimation frame-

work will now be illustrated. First, power curves will

100 150 200 250 300 350 400 450 500 550 600 650 700 750 BOO 850 900 950 1000

Sample Size

'(A) Latent growth model, mean & variance

-(B) Latent growth model, mean only

-(C) Latent growth model, variance only

-(D)ANCOVA model

Figure 6. Power to detect a main effect of ES = .20 assessed at Time 5.
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be calculated for various artificial models, including

models with an interaction between treatment and ini-

tial status. Second, a real-data example with this type

of interaction is analyzed and the power to detect the

intervention effects is estimated.

Artificial Data: Power Curves

In this section, a set of power curves will be shown

for different cases of the two-group intervention linear

growth model of Figure 5. Many different situations

are in principle of interest: We may have an experi-

mental study with individuals randomized into treat-

ment and control groups, or the study may be nonex-

perimental with pre-existing differences measured by

covariates; the study may have a balanced design or

not; the treatment effect may be permanent or tempo-

rary; and there may be interactions between the treat-

ment and the initial status, or not. To limit space, we

did not consider nonexperimental studies with covari-

ates and temporary treatment effects.

The calculation of power curves calls for a consid-

eration of effect size (Cohen, 1988). In a traditional

two-group Mest setting, effect size is typically de-

fined as the treatment and control group difference in

outcome means, divided by a standard deviation

based on the pooled outcome variance. A small effect

size is typically taken to be 0.20, a medium effect size

0.50, and a large effect size 0.80 (Cohen, 1988). In the

latent curve model setting, the definition of effect size

is not as straightforward. First, although Cohen-type

definitions concern manifest variables, treatment ef-

fects in our models can also be expressed in terms of

latent variables. For example, in the Figure 5 model,

the treatment effect may be expressed in terms of the

mean difference for v at the last timepoint or in terms

of the increase in the growth factor mean due to the

added growth factor in the treatment group. Second, if

reporting Cohen-like effect sizes for manifest vari-

ables, the standard deviation could be based on the

control group rather than pooling over the treatment

and control groups. The control group provides the

normative value, whereas the treatment group vari-

ance in part reflects the treatment effect. In this ar-

ticle, we report effect sizes in several of these metrics.

The power calculations to be illustrated below raise

the issue of how low the sample size can be for trust-

worthy analysis results given the dependence on as-

ymptotic theory. Here, it should be noted that consid-

erations of power may suggest sample sizes that are

smaller than what can be recommended for obtaining

good estimates of parameters and standard errors. For

example, the simple artificial growth model of Figure

5 has 10 parameters in the control group. A conven-

tional requirement in the latent variable literature is

5-10 observations per parameter (see, e.g., Bentler &

Chou, 1988). Interpreting this as 5-10 individuals per

parameter is probably too strong of a requirement

given that each individual contributes serveral obser-

vations over time, which, although not independent,

are not correlated 1.0. Using this rule of thumb, how-

ever, would lead to a minimum of 50 and preferrably

100 control group observations. Although the treat-

ment group contributes information to the estimation

of parameters describing the normative development

in the two-group analysis, the risk of model misspeci-

fications can be reduced by determining normative

development from control group observations alone.

With a balanced design, a total of 100-200 control

and treatment group observations may therefore be

desired for this particular growth model. This total

sample size requirement may exceed the number re-

quired for a power of at least 0.80 and this should be

kept in mind when studying the power figures below.

No Treatment Interactions

Consider the two-group intervention latent curve

model of Figure 5. The means and variances are the

same in the control and treatment group at the first

timepoint due to randomization and there is linear

growth in both groups. In line with what is commonly

seen in practice, the control group variance of the

growth rate is set at 20% of the variance of its initial

status factor. For the control group growth, the pa-

rameter values are chosen so that the growth over the

five timepoints corresponds to one standard deviation

at the fifth timepoint. The treatment group increase

over the five timepoints is chosen to produce various

effect sizes in the sense of Cohen (1988). The effect

size is calculated here as the difference in treatment

and control group means for y at the fifth timepoint

divided by the square root of the variance at the fifth

timepoint pooled across the control and treatment

groups. This treatment effect is achieved by a nonzero

mean and variance for the added growth factor (the

third factor) in the treatment population. The added

growth rate variance is taken to be the same as the

control group growth rate variance. For a small effect

size of 0.20 (Cohen, 1988), this means that in standard

deviation units of the control group growth factor, the

treatment group growth rate mean corresponds to an

increase of .23 over the control group growth rate

mean. The residuals are specified to have equal vari-
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ances across time and to be uncorrelated across time.

The correlations among the repeated measures across

time range from .32 to .50 for the control group. The

parameter values, mean vectors, and covariance ma-

trices for this case are given in a technical appendix

that may be obtained from Bengt O. Muthen or Pat-

rick J. Curran.

In this setting, power may refer to the detection of

different parts of the treatment-control population dif-

ferences: (a) the detection of a growth rate mean dif-

ference; (b) the detection of a growth rate mean, vari-

ance difference, or both; and (c) the detection of a

growth rate mean, variance difference, or growth re-

sidua] variance differences. Using the Satorra-Saris

(1985) method, power is estimated for the three cases

by using the misspecified model that restricts the cor-

responding parameters to be equal across the two

populations. For (a) and (b), this equality constraint

amounts to fixing the mean and variance to zero for

the third added growth factor in the treatment popu-

lation. In most intervention studies, it is probably of

central interest to focus only on the growth rate mean

effect as in (a). This says that an intervention is suc-

cessful only if the mean of the growth rate changes

and not successful if only the variance of the growth

rate changes. In (b), the variance of the growth rate is

an additional concern and in some studies this may be

the only treatment effect. Although for a given sample

size, it will be seen that the power is considerably

larger for (b) than for (a), it would seem that the

design should strive for a sample size that gives suf-

ficient power already for (a). The added concern of

residual variances in (c) is probably of little interest in

most studies because seldom can randomization be

expected to work out well enough for residual vari-

ance differences to be attributed to treatment effects.

Treatment effects and ANCOVA. Figure 6 gives

power curves for the five-timepoint linear growth

model with effect size 0.20 and sample sizes ranging

from 100 to 1,000. Here, sample size refers to the total

number of individuals in the control and treatment

group, divided equally (balanced case).

The top curve of Figure 6, curve A, corresponds to

the power of detecting both a growth rate mean and

variance effect, whereas curves B and C correspond to

the power to detect a growth rate mean effect only and

a growth rate variance effect only, respectively. It is

seen that curves B and C do not differ greatly,

whereas curve A shows considerably larger power. In

this article, we focus on curves of type B concerning

mean growth rate. For this linear growth model, curve

B shows that a rather large total sample size of about

525 is needed to achieve a power of 0.80 for this small

effect size. Figure 8 shows the corresponding curves

for larger effect sizes.

For comparison, Figure 6 also gives the power

curve, curve D, for detecting a treatment effect using

conventional ANCOVA. Here, the y measurement at

the last timepoint is the outcome variable and the y at

the first timepoint is the covariate. The Satorra-Saris

(1985) method in a two-group setting is used also here

with the standard ANCOVA specification of equal

slopes across groups for the covariate. Analogous to

the growth model, the means and variances of the

covariate are also held equal across groups while the

residual variances are allowed to be different. The

ANCOVA results are in this case very close to what

would be obtained from a t test given that the corre-

lation between the outcome variable and the covariate

is only 0.28. Comparison of curve D with curve B

shows the latent curve modeling advantage of using

information from all timepoints versus using only the

first and last timepoint as in ANCOVA. The sample

size needed to achieve a power of 0.80 is about 725

for the ANCOVA model versus only 525 for the

growth model.

From a design point of view, power curves such as

these can be used for cost considerations. For ex-

ample, the increased cost of the study due to a need

for a larger sample size with ANCOVA than with

growth modeling for a given power level can be

weighed against the decreased cost due to needing

only two measurement occasions with ANCOVA. Al-

though using a more costly design, it should be noted

that apart from the power advantage, growth model-

ing has distinct analysis advantages over ANCOVA in

that the latter cannot capture the form of the growth

from the first to the last timepoint nor discover any

limitations in duration of treatment effects.

Study length and number of measurement occa-

sions. The comparison of longitudinal modeling

with ANCOVA raises the issue of how the number of

timepoints affects power. There are three key aspects

of this: the length of the study, the number of mea-

surement occasions for a given study length, and the

study length for a given number of measurement oc-

casions. These three aspects will be illustrated in turn.

In Figure 7, the length of the study is varied as

three, four, five, and seven timepoints. The figure

only considers the power to detect the growth rate

mean difference, corresponding to curve B in Figure

6. As in Figure 6, a small effect size of .20 at the fifth
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-(A) First seven time points

-(B) First five time points

-(C) First, third, & fiftti time points

-(D) First lour time points

-(E) First three time points

Figure 7. Power to detect a main effect of ES = .20 assessed at Time 5 varying as a function of total number of measurement

occasions.

timepoint is considered. It is seen that the required

sample size for obtaining a power of 0.80 drops

sharply when extending the study length from three to

four timepoints, with smaller drops when extending to

five or seven timepoints. Given that effect size is de-

fined at Timepoint 5, study length and effect size are

to some extent confounded because effect size grows

over time. The effect size does not, however, vary

greatly over time because the variances increase over

time. With a small effect size of .20 at Timepoint 5,

effect sizes at Timepoints 3, 4, 6, and 7 are .159, .186,

.209, and .214, respectively.

Figure 7 also illustrates the effect of number of

measurement occasions for a given study length.

Power curve C corresponds to using only three mea-

surement occasions over the five timepoints, skipping

Timepoints 2 and 4. This curve may be compared

with that of the five-timepoint model for the same
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study length (curve B). Here, there is no confounding

in the sense that the two curves have the same effect

size at Tiraepoint 5. The gain in using five versus

three measurements is measured by the drop from 600

to 525 observations when requiring a power of .80. As

noted above, ANCOVA at Timepoint 5 requires a

sample of 725 for a power of .80. For a given study

length, this shows that the largest gain is obtained by

moving from the two-timepoint ANCOVA to the

three-timepoint longitudinal modeling, whereas using

more measurement occasions in the modeling gives

diminishing returns. There are, however, clear advan-

tages to using more than three timepoints in longitu-

dinal modeling from the perspective of distinguishing

between alternative growth forms (see, e.g., Muthen,

1995).

Figure 7 also shows the effect of study length for a

given number of measurement occasions. Curve C

and curve E both correspond to a three-timepoint

growth model. Whereas curve C has measurements

at Timepoints 1, 3, and 5, curve E has measurements

at Timepoints 1, 2, and 3. The shorter study length

for curve E requires a sample size of 950 for a power

of .80, as compared with a sample size of 600 for

curve C.

Treatment effect size. Figure 8 considers different

effect sizes, ranging from small to medium: 0.20,

0.30, 0.40, and 0.50. In standard deviation units of the

control group growth factor, the corresponding treat-

ment-group growth rate mean increases over the con-

trol-group growth rate mean correspond to .41, .61,

.82, and 1.02, respectively. The power curves again

correspond to the detection of the growth rate mean

difference in the five-timepoint growth model. For

example, it is seen that the sample size needed for a

power of 0.80 decreases from 525 to 130 as the effect

size increases from 0.20 to 0.40.

Figure 9 and Figure 10 give curves corresponding

to those of Figure 8 but when using only three and

four timepoints, respectively. As before, the effect

sizes refer to Timepoint 5.

Treatment Interactions

The final set of power curves are given for the case

where there is an interaction between the treatment

and the level of the initial status factor in their influ-

ence on the added growth rate factor in the treatment

population. The same linear growth model as above

is considered except that for the treatment population,

the added growth rate factor is regressed on the initial

status factor. The intercept and residual variance pa-

rameters of this regression are chosen so that the mean

and variance of the added growth rate factor is the

same as above. In line with the no-interaction cases

above, the effect size for the interaction is considered

in terms of the manifest variables at Timepoint 5 (see

also Aiken & West, 1991). The slope is chosen so

that an initial status factor value of one standard de-

viation away from its zero mean results in a certain

Timepoint 5 effect size for y. These effect sizes will

also be expressed in latent variable terms of how

much an initial status factor value of one standard

deviation away from its zero mean changes the con-

ditional mean of the added growth factor in standard

deviation units of this added growth factor. The pa-

rameter values, mean vectors, and covariance matri-

ces for this case are given in a technical appendix,

which may be obtained from Bengt O. Muthen and

Patrick J. Curran.

In terms of the conceptualization of the treatment-

initial status interaction, power can refer to several

aspects of the treatment effect. As discussed earlier,

we may consider effects expressed by one or more of

the three parameters in the regression of the added

growth rate factor on the initial status factor in the

treatment population. The intercept represents the

overall (main) treatment-control difference, the slope

represents the interaction of treatment and initial sta-

tus, and the residual variance represents the treatment

variance increment in the growth rate that is unrelated

to the interaction. Here, we limit attention to the

power of detecting a nonzero slope representing the

interaction. This means that we are assessing the

power of detecting an interaction while allowing for a

possible overall (main) treatment effect.

Figure 11 shows the power curves for the interac-

tion effect for the five-timepoint linear growth model

with manifest-variable effect sizes 0.20, 0.25, 0.30,

0.35, and 0.40 (an effect size larger than .40 was not

possible given the previous choice of variance for the

added growth factor). Using the above definition of

latent-variable effect size, this corresponds to effect

sizes .14, .18, .22, .26, and .30. While a manifest-

variable interaction effect size of .40 requires a total

sample size of about 275 (see curve A), a small mani-

fest-variable interaction effect size of .20 requires

over 1,000 observations (see curve E). It is seen that

considerably larger sample sizes are needed to obtain

a power of 0.80 than in the corresponding no-

interaction models of Figure 8. This finding is in line

with the case of interactions in multiple regression

(Aiken & West, 1991).
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Figure 8. Power to detect various effect sizes assessed at Time 5 based on the first five measurement occasions.

Balanced Versus Unbalanced Data

We finally consider effects on power of deviations

from balanced data. Here, we return to the no-

interaction case considered earlier. Figure 12 shows

how the power varies as a function of the proportion

of treatment-group observations for a given total

sample size of 250, 500, 750, and 1,000. The five-

timepoint model with no interaction effect and a small

effect size is considered. It is seen that the power

curves are not completely symmetric around the bal-

anced case where the proportion is .5. Choosing an

unbalanced design in favor of more treatment obser-

vations is better than choosing an unbalanced design

in favor of more control observations. This is because

the present growth model has larger variances in the

treatment group than in the control group, whereas the

reverse would hold if the treatment group variances

were smaller. The reverse situation was verified by

using a growth model with a negative interaction

slope that induced lower treatment group variances

after treatment. Figure 12 also shows that the impor-
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Figure 9. Power to detect various effect sizes assessed at Time 5 based on the first three measurement occasions.

tance of a nearly balanced design is more critical

when the sample size, and therefore the power, is

lower.

Figure 13 shows how the power varies as a function

of the number of control group observations for a

given number of treatment group observations and

vice versa. Again, the no-interaction, five-timepoint

model with a small effect size is considered. Holding

the treatment group sample size fixed at 250, it is seen

that the power increases rapidly as the control group

sample size approaches the treatment group sample

size, but that further increases in the control group

sample size give quickly diminishing returns. Overs-

ampling the treatment group has a better payoff in

terms of power.

Power curves related to the proportion of treatment

and control group cases are useful in terms of cost

considerations. Treatment group observations are pre-

sumably considerably more expensive than control

group observations. The power calculations can for

example be used to answer the question: If we attempt

to reduce cost by reducing the treatment group sample

size from 250 to 200, how much does the control

group sample size have to increase to maintain the

same power? The answer from the above model is that

the control group sample size has to increase by 200
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Figure 10. Power to detect various effect sizes assessed at Time 5 based on the first four measurement occasions.

from 250 to 450, implying that treatment observations

are in this case four times more valuable from the

point of view of power.

Real Data: Analysis and Power Estimation

A school-based preventive intervention study will

be used to illustrate the general growth modeling

and power estimation capabilities of the latent vari-

able framework. The data are from a longitudinal

study of Baltimore public school children in Grades

1-6 (see, e.g., Kellam, Rebok, lalongo, & Mayer,

1994). The outcome variable that we consider corre-

sponds to teacher-reported behavioral assessments

of aggressiveness for each child in his or her class.

Teacher ratings of aggression were made using the

Teacher Observation of Classroom Behavior—

Revised (TOCA-R) instrument. The TOCA-R mea-

sures the frequency of 18 types of aggressive behav-

ior, each measured on a six-point scale ranging from

almost never to almost always. The intervention in-

volved a classroom team-based behavior management

strategy promoting good behavior, the good behavior
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Figure 11. Power to detect an interaction given a main effect of ES = .20 assessed at Time 5.

game (GBG). After an initial assessment in fall of first

grade, the interventions were administered during the

first two grades. Assessments were made fall and

spring for the first two grades and every spring there-

after through Grade 6.

Kellam et al. (1994) concluded that boys who were

found to be more aggressive at the initial measure-

ment occasion in the fall of Grade 1 benefitted more

from the GBG treatment in terms of the Grade 6 out-

come. This finding was obtained by ANCOVA and

subsetting of the sample with respect to the initial

level of aggression. We reanalyze these data using the

latent curve model and allowing for an interaction

between the treatment and the initial status factor. The

maximum-likelihood estimator of Equation 7 will be

used. This analysis differs in two important respects

from the Kellam et al. analyses: using all eight time-

points instead of only the first and last, and using the

latent curve model's initial status factor as covariate

instead of the first timepoint measure.

We will use data from the 186 boys who were in the

same intervention condition for two years. The 75

children of the GBG group are viewed as our treat-

ment group, whereas the remaining 111 children are
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Figure 12. Power to detect a main effect of ES = .20 assessed at Time 5 as a function of the proportion of cases in treatment

group.

viewed as our control group. The data are therefore

unbalanced. Although the analyses have realistic fea-

tures, the inferences given below should only be

viewed as illustrative for two reasons. First, the sam-

pling design results in clustering of individual obser-

vations within classrooms and schools and for sim-

plicity this has been ignored in our analyses. Muthen

and Satorra (1995) discussed effects of clustering

when this is ignored in latent variable modeling and

suggested methodology that can incorporate such

sampling features. Their results show that with large

average cluster size or large intraclass correlations,

ignoring the clustering may lead to distorted results in

terms of underestimated standard errors and likeli-

hood-ratio chi-square values that are inflated. In the

present data, the major clustering effect is most likely

because of classrooms; there are eight treatment class-

rooms and 13 control classrooms. Given that the av-

erage class size in the analyses is only around 9 and

that the aggression intraclass correlations for class-

rooms are not likely to be large, the Muthen and Sa-

torra results suggest that little distortion is to be ex-
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Figure 13. Power to detect a main effect of ES = .20 assessed at Time 5 as a function of treatment and control group sample

size.

pected. Second, as is typical in longitudinal studies,

there are missing data for many individuals at several

of the eight timepoints. For simplicity in the present

growth analyses, the missing data issue will be

avoided here by using imputed values. The resulting

data do, however, show the same essential features

and analysis results as those of Kellam et al. (1994).

To serve as a comparison with the growth model

analyses, ANCOVA was also carried out using the

last timepoint as outcome and the first timepoint as

the baseline covariate. This analysis indicated a sig-

nificant interaction between treatment and baseline—

the t value for the interaction was -2.03, i.e., F(l,

182) = 4.12,p = 0.044.

Latent Curve Analysis

Plots of the means of aggression over the eight

timepoints are shown in Figure 14A and B for the

control (CON) group and the treatment (GBG) group,
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overall and based on low, medium, and high values at

baseline (Timepoint 1). For the control group, there is

an approximate linear progression over time overall,

and there are no apparent differences in this trend

among the three groups on the basis of baseline val-

ues. For the treatment group, a linear trend is also

indicated, except for the boys with high baseline val-

ues, where a downturn is seen after spring of third

grade. The overall linear trend in the treatment group

appears similar to that of the control group. Plots of

individual values show similar trends. In the latent

curve analyses that follow, model fit will be evaluated

using both the likelihood-ratio chi-square and the root

mean squared error of approximation (RMSEA;

Steiger & Lind, 1980) augmented with a 95% confi-

dence interval calculated using the computer program

10 11 12

-CON, total sample
-CON, low at Time 1
- CON, medium at Time 1
-CON, high at Time 1

- GBG, total sample
- GBG, low at Time 1
- GBG, medium at Time 1
- GBG, high at Time 1

Figure 14. Panel A: Growth of Teacher Observation of Classroom Behavior—Revised (TOCA-R) scores in control group

as a function of Time 1 standing. Panel B: Growth of TOCA-R scores in treatment group as a function of Time 1 standing.

CON = control group; GBG = good behavior game group.
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FITMOD (Browne, 1991). The RMSEA is bounded

between zero and infinity and values falling below

about 0.05 are thought to reflect "close" model fit

(Browne & Cudeck, 1993).

Step 1: Control group analysis. In line with our

proposed analysis strategy, the control group was ana-

lyzed in a first step. A two-factor, linear growth model

was chosen using the x, scores 0, 1, 2, 3, 5, 7, 9, and

11 to capture the fact that only spring measures were

collected after the first two grades. The residuals were

allowed to have unequal variances and be correlated

at adjacent timepoints, x2(24, JV = 111) = 31.9, p =

0.13, RMSEA = .055, confidence interval (CI) (0,

11). Here, the positive growth rate factor mean and

variance are both significantly different from zero at

the .01 level. Evidence of nonlinear growth was also

investigated. A quadratic factor was added using

squared x, scores 0, 1, . . ., 121. It should be recog-

nized that the use of a quadratic function is only rel-

evant for a limited time period of the development. In

these analyses, the x, scores were not centered at their

means as is sometimes advocated when using a qua-

dratic function. This is for two reasons. First, center-

ing changes the interpretation of the initial status fac-

tor to status at the centering point so that in the

treatment group, it is no longer defined as a pre-

intervention status factor. Because of this, the two-

group model approach no longer has the desired fea-

ture of describing the influence of pre-intervention

status on the change in development. Second, the cus-

tomary problem of near collinearity of x, scores when

not centering has not been found to be an issue in

these latent curve analyses. In the latent variable

framework, these scores do not appear as predictor

variables but as coefficients (parameters) and there is

an issue of high parameter estimate correlations. In

single-group analysis for the control group and for the

treatment group, the uncentered and centered model

versions have exactly the same model fit and only

involve a reparameterization. Comparison of the un-

centered and centered versions of the single-group

model for the control group and for the treatment

group did show a high correlation between the param-

eter estimates of the means of the linear and quadratic

factors for the uncentered solutions (-.93 and —.95,

respectively) but not for the centered solutions. This

high correlation is, however, expected and does not

involve parameters for which a clear-cut separation is

key. Furthermore, the high correlation does not appear

to give rise to any problems of numerical instability

such as inflated standard errors. For example, the pa-

rameterizations for the uncentered and centered solu-

tions can be shown to give the same quadratic factor

mean and for this parameter the estimates and the

estimated standard errors are exactly the same for

both the control and treatment group analysis when

comparing the uncentered and centered solutions. The

analysis results (uncentered model) were as follows.

The quadratic factor showed no significant variation

across individuals but did obtain a negative mean

which was significant at the 1% level; with the qua-

dratic variance fixed at zero, X2(23, N — 111) =

24.97, p = 0.35, RMSEA = .028, CI(0, .093). In

summary, the final, nonlinear control group model

indicates a linear increase in the aggression score over

grades with a slight decrease at the later grades.

Step 2: Treatment group analysis. As a second

step, the treatment group was analyzed separately.

The quadratic model found in the control group ob-

tained a good fit also here; x2(23, N = 75) = 30.66,

p = 0.13, RMSEA = .067, CI(0, .13). Attempts to

allow for a nonzero variance in the quadratic factor

failed because of nonconvergence. The analysis

shows a quadratic factor mean that is not significantly

different from zero at the 5% level (the t value is

-1.60). This implies that a linear growth model fits

well in the treatment group. The estimated mean for

the quadratic factor, while insignificant, is the same as

in the control group. Given the low treatment group

sample size of 75, the power to detect a nonzero qua-

dratic mean at the estimated parameter values is only

.34 as estimated by the Satorra-Saris (1985) method

(a treatment group sample size of 220 would be re-

quired for a power of .80).

Step 3: Two-group analysis without interactions.

As a third step, the control and treatment groups were

analyzed simultaneously in a two-group analysis.

Here, the above quadratic growth model was used for

the control group and the parameters for these three

factors were held equal across the two groups. Al-

though there is not statistically significant evidence of

a quadratic factor in the growth analysis of the treat-

ment group, the two-group approach includes this fac-

tor. Note, however, that this factor is specified to have

zero variance (and zero covariances) and only con-

tributes a mean parameter. In the absence of a priori

theory, the added effects of treatment are modeled

based on the impressions of the plots above. In the

treatment group, the added growth factor is chosen to

be linear for simplicity. Preliminary analyses indi-

cated that there was no variation across individuals for

this factor and the corresponding variance is therefore
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fixed at zero. As a first analysis, no interaction is

allowed for. This two-group model fit the data rea-

sonably well, x2(51, N = 186) = 75.00, p = .02,

RMSEA = .050, CI(.013, .078). The treatment effect

is here described by the mean of the added linear

factor. The estimate of this mean is, however, not

significant even at the 10% level.

Step 4: Two-group analysis with interactions. As

a second two-group analysis, the initial status factor in

the treatment group is allowed to influence the added

linear factor, thereby accommodating a possible in-

teraction between treatment and initial status. The

added linear factor was found to have zero residual

variance so that its variation is solely determined by

the initial status variation. Adding a single slope pa-

rameter to represent the interaction, this two-group

analysis resulted in a well-fitting model, x2(50, N =

186) = 64.56, p = 0.08, RMSEA = .04, CI(0, .07).

The interaction is significant (the one degree of free-

dom chi-square difference value is 10.44 with p —

.002). It is noteworthy that no treatment effect would

have been discovered if the interaction effect had not

been included.

Step 5: Sensitivity analysis affinal model. To test

for deviations from successful randomization into

treatment and control groups, the above two-group

(50 degree of freedom) model was relaxed to allow

for the initial status factor mean of the treatment

group to deviate from the zero value of the initial

status factor in the control group. This test indicated

that the treatment group mean was marginally higher

than zero (the chi-square difference with one degree

of freedom was 4.41 with p — 0.04). Even when

allowing for this pre-existing difference, however, the

interaction effect remained significant at the same

level and the more parsimonious model of no pre-

existing differences was maintained.

Finally, the overall effect of treatment on the

growth factors was tested. Here, the two treatment

effect parameters were set at zero, resulting in a sig-

nificant worsening of the fit relative to the 50 degree

of freedom model (the chi-square difference test value

with 2 df was 12.01 with p < 0.01). The hypothesis of

no treatment effect is therefore rejected.

Estimated two-group model. Table 1 presents the

estimates of the two-group treatment interaction

model with 50 degrees of freedom. The model speci-

fication is given in a technical appendix, which may

be obtained from Bengt O. Muthen or Patrick J. Cur-

ran. The variances for the initial status and linear

growth rate factors are significantly different from

zero, indicating across-student heterogeneity in the

across-grade trajectories of aggressive behavior.

There is a significant treatment effect on growth that

interacts with initial status. The interaction is ex-

pressed in terms of the regression of the added linear

growth factor on the initial status factor, which has a

significant negative estimate of the slope. The 95%

confidence interval for the slope is -.081, -.023. The

negative slope indicates an interaction of the expected

kind: Initially more aggressive boys benefit more

from the intervention. Given that the residual variance

is zero in this regression, the variation in the added

linear growth factor of the treatment group is solely

due to the variation in initial status. The negative in-

tercept is not significant, indicating that we cannot

reject that there is no overall treatment effect. The

95% confidence interval tor the intercept is —.038,

.006. It is interesting to compare the t value for the

two-group growth model interaction slope with that of

the ANCOVA interaction. While the former is -3.35

withp = .003, the latter is only-2.03 wimp = .044.

Figure 15 displays the estimated model in terms of

the model implied means for the outcome variables.

Here, graphs are given for the control and treatment

groups at three different levels of the initial status

factor: at the mean and at half a standard deviation

below and above the mean. The figure shows the ef-

fect of the interaction so that only individuals at

higher initial status values benefit clearly from the

treatment. At the last timepoint, the mean difference

between the control and treatment group individuals

in the highest initial status category of the figure is

about one third of a standard deviation.

It is interesting to note that the treatment effect

findings were made possible by using a two-group

approach with an added growth factor to capture treat-

ment effects. A quadratic growth factor could not be

found in the separate analysis of the treatment group.

In contrast, the two-group analysis revealed an inter-

action such that a nonlinear trajectory with a stronger

downward trend at later grades is realized for the

more aggressive subset of boys. Furthermore, a con-

ventional two-group growth analysis does not give an

equally clearcut analysis. A conventional two-group

analysis would use the same three growth factors in

both groups and study differences between the param-

eter estimates of the linear and quadratic growth fac-

tors. A covariance between the initial status factor and

the quadratic factor would not be included if the latter

does not have a significant variance, which is the case

here. This means that the same quadratic model as
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Table 1

Final Two-Group Growth Model for Aggression Data

Parameter

Growth factors

Initial status

M
Variance

Linear growth rate

M

Variance

Quadratic growth rate

M

Residual variance

Added linear growth rate regressed on initial status

Intercept

Slope

Residual variance

Growth factor covariances

Initial-status linear growth rate

Residual variances for outcome variables

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

Time 8

Residual covariances for outcome variables

Time 1-2

Time 2-3

Time 3^

Time 4-5

Time 5-6

Time 6-7

Time 7-8

Common intercept for the outcome variables

Control group

(n = 111)

0.44 (.088)

0.45 (.079)

0.41 (.069)

0.52 (.080)

0.51 (.079)

0.42 (.074)

0.26 (.083)

0.29 (.094)

0.29 (.071)

0.077 (.031)

0.25 (.058)

0.13 (.047)

-0.0059 (.049)

0.055 (.058)

-0.11 (.066)

Treatment group

(n = 75)

-0.016 (0.013)

-0.052 (0.015)

0."

0.53 (.14)

0.44 (.12)

0.50 (.11)

0.70 (.13)

0.74 (.13)

0.80 (.15)

0.24 (.10)

0.61 (.18)

0.070 (.100)

0.031 (.061)

0.032 (.097)

0.099 (.069)

0.031 (.11)

0.021 (.072)

-0.032 (.11)

Both

0."

0.80(0.1100)

0.0860 (0.0200)

0.0045 (0.0012)

-0.0051 (0.0016)

0."

-0.0015 (0.0089)

2.04 (0.023)

Note. Standard errors are given in parentheses; v2 (50, N = 186) = 64.56, p = 0.08.
' Parameter is fixed in this model.

was found above for the control group is applied in

both groups. This two-group model fits the data well,

X2(47,iV = 186) = 59.44, p = .ll.RMSEA = .038,

CI(0, .069). It does not, however, show significant

group differences in terms of t values for either the

linear or quadratic means and the linear mean estimate

is, in fact, higher for the treatment group. In conclu-

sion, these illustrative analyses indicate that an inter-

vention effect is only seen for initially more aggres-

sive students so that an interaction effect is present

with no overall, main effect.

Power Estimation

We finally consider power estimation for the final

two-group model of Table 1. On the basis of this

estimated model, the effect size for the interaction is

.38 using the same definition as given earlier for the

artificial data. Figure 16 gives the power of detecting

a nonzero interaction slope parameter in a model with

parameter values equal to the estimated values in

Table 1. The three curves in this figure indicate how

small the combined sample size could have been
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Time

—O— Control group: 1/2 sd above mean

—•—Treatment group: 1/2 sd above mean

—o—Control group: At the mean

—*—Treatment grojp: At the mean

• Treatment group: 1/2 sd below mean

—n—Control group: 1/2 sd below mean

Figure 15. Model implied growth trajectories of Teacher Observation of Classroom Behavior—Revised (TOCA-R) scores

as a function of initial status. Each timepoint represents one 6-month interval.

while still making it possible to find the treatment

interaction effect. Curve A gives the power as a func-

tion of total sample size with balanced data. Curves B

and C show the power with the treatment group

sample size fixed at its actual value while varying the

control group sample size and with the control group

sample size fixed at its actual value while varying the

treatment group sample size, respectively.

With the actual sample of 75 and 111 in the treat-

ment and control group, respectively, the power to

detect the interaction is .90. This shows that an inter-

action can be detected with high power even for a

total sample size of only 186 when the interaction

effect size is moderate (.38 in this case). For balanced

data, curve A shows that a total sample size of 130

instead of the original 186 observations would have

been sufficient to detect the interaction with a power

of .80. If instead a balanced design had been used with

the original total sample size of 186, the power would

have been .92 instead of .90.
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Figure 16. Power to detect the interaction treatment effect from the Kellam et al. (1994) aggressive behavior intervention.

Conclusions

The analyses of this paper indicate some of the

generality of the latent variable approach to longitu-

dinal modeling of individual differences in develop-

ment. In the specific application of multiple-

population analysis of intervention effects, it is

possible to separate normative development in a con-

trol group from the change in course due to treatment.

Change in course due to the interaction between treat-

ment and initial status can be captured by structural

regressions between latent curve variables. Power es-

timation is readily available through standard latent

variable techniques. The generality of the latent vari-

able approach to longitudinal modeling and power

estimation is particularly exciting when considering

that the multiple-population study of interventions can

be put into the framework of either one of the longi-

tudinal modeling generalizations shown in Figures 2-

4. To this may also be added the generalization of
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multiple indicators of latent variable constructs. The

general modeling potential is largely unexplored and

hopefully this article can stimulate new types of

analyses.

The article focuses on multiple-population longitu-

dinal studies as motivated by an intervention context.

It is clear, however, that these analysis and power

estimation techniques are more generally applicable.

The multiple-population settings may, for example,

involve gender differences or differences among dif-

ferent risk populations. Single-population settings

also benefit from power estimation for detection of

certain developmental patterns.

The artificial data studies of power show the im-

portance of going beyond the ANCOVA approach

and use more than two timepoints in assessing inter-

vention effects. They also illustrate the tradeoffs be-

tween using more timepoints or larger samples. They

show that interaction effects can be detected without

unduly large sample sizes if the interaction effects are

sizable. Furthermore, the power calculations show

that designs that have a balance between control and

treatment group sizes are not always the most pow-

erful.

It is clear that power estimation is directly related to

the parameter values of a specific model and therefore

the above power curves are only illustrative. The im-

portance of the approach is, however, that the re-

searcher can compute his or her own power curves for

a model with parameter values that he or she hypoth-

esizes. Many different scenarios can be easily as-

sessed and can give important guidance for design

decisions.

The real-data analyses of aggressive behavior

among elementary school children showed the com-

plexities of a real intervention analysis. The interven-

tion effect here is only seen for initially more aggres-

sive students so that an interaction effect is present

with no overall, main effect.

Although complex, the approaches discussed above

rely on strongly simplified assumptions. A central

issue of growth modeling that has been ignored here

is missing data, in particular attrition over time. At-

trition should also play a key role in design decisions.

While the use of many timepoints increases power,

this benefit is reduced by an increasing attrition rate.

Also, the above discussion focuses on normally dis-

tributed data for the outcome variables, while many

intervention studies have strongly nonnormal and cat-

egorical outcome variables. Recent research (Curran,

West, & Finch, 1996; Satorra & Neudecker, 1995)

shows that there is a strong reduction in power when

variables clearly deviate from normality. Further-

more, longitudinal data are often obtained through

cluster sampling giving rise to multilevel data. This

fact has also been ignored above, and analysis meth-

ods and power calculation need to be studied for such

situations.
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