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Assignment 3 
 
 
 
For this assignment, I selected Algebra IRT scores from the LSAY data set to measure change in 
Algebra knowledge from Grade 7 to Grade 12.  Table 1 provides descriptive information. Of the 
original 3116 cases, 782 students had full assessment information at the 6 time points. 
 
 Mean Std. Dev. Variance Minimum Maximum 
Grade 7 52.012 10.487 109.977 34.42 75.60 
Grade 8 60.895 18.513 342.726 36.17 116.82 
Grade 9 72.736 19.450 378.295 35.37 112.76 
Grade 10 81.460 20.984 440.344 39.89 114.56 
Grade 11 88.699 22.450 504.007 44.69 121.66 
Grade 12 92.637 25.595 655.112 38.34 132.57 
Table 1. Descriptive statistics for Algebra IRT scores from Grade 7 to Grade 12 (N=782). 
 
There is a positive increase in the mean Algebra score (mean curve not included).  The minimum 
values do not necessarily reflect this general positive increase.  This prompted me to take a 
closer look at a few cases that had a greater amount of variation (see LSAYID=121104 as an 
example).  These types of cases might be considered outliers because their scores tended to 
bounce around a lot, but without confidence in my substantive understanding (maybe there is 
something with prior knowledge and how recently the student took an Algebra course) and for 
the purposes of this assignment, I ignored potential outliers and simply included all cases with 
complete data. 
 
The variances and range of scores increase over the years.  The increase in variance across time 
indicates that there is a greater range of Algebra scores as students progress.  Students might 
initially start off with little or no knowledge of Algebra and through experiences (i.e. course 
work), their knowledge of the subject increases at different rates.  For example, students do not 
take the same math courses and even if they do, there are often different tracks or levels of the 
courses with the same title.  In other words, Algebra for students on an honors track might look 
different than Algebra for students who are not.  It might be the same course title (Algebra) but 
the quality and rigor might not be the same.  Performance in math classes or the level/types of 
subsequent math courses might also be reflected in performance on the Algebra items.  A few (or 
combination) of these reasons could be explored through the use of covariates which helps to 
account for the increased variance over time.  The positive and moderate to high correlations 
suggest that performance over time is related (Table 2). 
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 Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 
Grade 7 - - -      
Grade 8 0.534 - - -     
Grade 9 0.482 0.729 - - -    
Grade 10 0.461 0.686 0.769 - - -   
Grade 11 0.455 0.684 0.769 0.854 - - -  
Grade 12 0.465 0.701 0.761 0.775 0.820 - - - 
Table 2. Correlations for Algebra IRT-based scale scores from Grade 7 to Grade 10.  
 
In addition to the average IRT scores increasing in a general linear pattern (as viewed in the 
sample mean plots, not included in write-up), sample plots of the observed individual score 
trajectories were visually inspected.  If students were provided with effective instruction in 
Algebra, the goal is that performance on the Algebra items would reflect this increased 
knowledge.  This increase in performance on the Algebra items seems to be the case for most 
students.  A sample plot of 10 students (Figure 1) demonstrates the general linear trend and the 
observed increases in performance. 
 

 
Figure 1. Observed values of Algebra performance for 10 selected students from Grade 7 to Grade 12. 
 
Assuming linear growth, I first fit the growth model without any covariates using fixed time 
scores (Model 1).  The chi-square test of model fit with did not indicate a good fit but this data 
does not take into account the nested nature of the data so the significant value is interpreted with 
some caution.  However, the CFI and TLI are low which also suggest that this model does not fit 
the data well.  The RMSEA 90% confidence interval does not include 0 and the SRMR is high.  
In looking to the model modification indices for ways to modify this model, freeing the alg7 and 
the slope and alg12 and the slope suggest a significant increase in the fit. 
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In Model 2, these two parameters were free to be estimated (trend with alg7, trend with alg12).  
The fit for the second model is slightly better.  The chi-square values are still significant but are 
smaller with 2 less degrees of freedom. The CFI and TLI are higher compared to the first model, 
the AIC, BIC, RMSEA and SRMR are lower than the first model.  Thus, compared to the first 
model, these indices suggest an improvement.  In addition, a likelihood ratio chi-square test 
provides another indication that there is an improvement of fit. 
 
To attempt a more substantively interesting and better fitting model, (and as suggested by the 
modification indices), I correlated a few of the residuals. Model 3 correlated the residuals for 
alg8 and alg9, alg10 with alg11 and alg10 and alg12.  There might be substantive reasons for the 
correlation of these residuals. One possible reason is that performance on the Algebra items for a 
particular year might be related to performance on Algebra items for another year because no 
new Algebra knowledge was gained in that particular year and there was no other practice with 
Algebra or Algebra-related content that might influence performance.  Maybe in Grades 8 and 9 
there is a relationship because students are changing from middle school to high school and are 
placed in particular courses based on the courses that they’ve taken and recommendations by 
middle school teachers as to what “track” they should continue on in high school.  Once students 
get to high school, most will likely take Algebra in the 9th grade.  So their performance in Grade 
9 isn’t related to subsequent years because they might receive effective and direct instruction in 
Algebra.  They might do really well on the Algebra items in 9th grade because they recently 
learned the material (so errors are not correlated with anything else) but in subsequent years 
(Grades 10-12), they tend to forget and perform less well on the Algebra items.  Perhaps Grade 
10 and 11 might be related because the Algebra concepts aren’t as fresh in their minds (assuming 
most students take Algebra in 9th grade).  Grade 10 and 12 might also be related to this decline in 
performance as time progresses.  Table 3 and 4 provide fit indices comparing these three models. 
 
 Model 1 Model 2 Model 3 
Chi-square value 449.430 228.063 167.178 
  df 16 14 11 
  p-value 0.0000 0.0000 0.0000 
CFI 0.886 0.944 0.959 
TLI 0.893 0.940 0.944 
Akaike’s Information Criterion (AIC) 37553.473 37336.107 37281.222 
Schwarz’s Bayesian Criterion (BIC) 37604.754 37397.711 38355.811 
RMSEA 0.186 0.140 0.135 
SRMR 0.146 0.099 0.091 
Table 3. Tests of model fit for Model 1, 2 and 3. 
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 Chi-square Difference 
Model 1 449.430 (16)  
Model 2 228.063 (14) 221.367 (2)* 
Model 3 167.178 (11) 60.852 (3)* 
Table 4. Difference in chi-square values for Model 1, 2 and 3. 
 
Figure 2 provides a schematic of Model 3.  This model seems to have the best fit of the three 
models and may also provide some substantive meaning. 
 

 
Figure 2.  This model (Model 3) includes correlated residuals between Grade 8 and Grade 9, Grade 10 and 
Grade 11, and Grade 10 and 12 and slopes for alg7 and alg12 are freely estimated. 
 
The R2 values for the observed variables are moderate to high, ranging from .485 (Alg8) to .852 
(Alg11).  This provides an indication of how well the variables are observed by the latent 
variables.  
 
There is a significant, positive relationship between the intercept (level) and slope (trend) which 
indicates that students who start off high tend to grow faster.  For students who start off low, 
their growth rate does not tend to be very fast, compared to students who start of higher in 8th 
grade.  The growth between time point 0 and 1 (Grade 8 and Grade 9) is 8.507.  Grade 8 (initial 
starting point) is estimated to be 63.660 which is close to the observed or expected intercept 
(Grade 8) of 60.895.  The variation of the intercepts around the mean is significant and high 
(139.605).  The variation of the slope between Grade 8 and 9 is also significant and high 
(13.888).  Table 5 compares the estimated values for each grade level with an intercept of 63.660 
and slope of 8.507. There is not much difference between the two, which is a good indication 
that the model fit the data.  Growth appears to slow down from Grade 11 to Grade 12 (<1) and 
seems to speed up from Grade 7 to 8 (>1).  These two parameters were freely estimated do seem 
to depart slightly from linearity. 
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Grade Time Score Estimated Means = intercept + slope(time score) Observed Means 

7 -1.413 63.660 + 8.507(-1.413) = 51.639 52.012 
8 0.000 63.660 + 8.507(0)         = 63.660 60.895 
9 1.000 63.660 + 8.507(1)         = 72.167 72.736 
10 2.000 63.660 + 8.507(2)         = 80.674 81.600 
11 3.000 63.660 + 8.507(3)         = 89.181 88.699 
12 3.418 63.660 + 8.507(3.418)  = 92.734 92.637 

Table 5. Estimated means from Model 3 and observed means for 782 students. 
 
In addition to the improvement in model fit and the estimated and observe means being fairly 
close, one still might wonder what else could help to explain the model.  The next step would be 
to add covariates to the model to help explain the variation across individuals beyond the growth 
factors.  A time-invariant covariate such as gender, ethnicity or home resources varies across 
individuals but does not vary over time.  A time-variant covariates such as course-taking patterns 
varies across individuals and varies over time. 
 
I tried to find a time-variant covariate that could contribute substantively and statistically to the 
story of Algebra knowledge.  I didn’t go through all of the possible covariates, but tried a few 
covariates that I thought might be meaningful (gender, math and science home resources, 
mothers level of education).  None of the variables that I selected seemed to contribute much to 
the improved fit of the model.  In fact, in some cases, the inclusion worsened the fit of the model.  
The next step would be to attempt time-varying covariates, like the highest level of math course 
taken at each grade. 
 
There is still much room for improvement in the final model (Model 3), which the inclusion of 
covariates.  Though I tried a few covariates, I was unable to find any that seemed to improve the 
fit of the model. This is not to say that the inclusion of covariates won’t fit the model, just that I 
was unable to find covariates that had some intuitive and statistical value.  The model still 
indicates a positive increase on Algebra items.  With two departures, the trend is linear.  Two 
time scores were free (Grade 7 and Grade 12).  These free time scores indicates that the mean of 
the growth factor is not a constant rate of change over all time points.  Instead, the mean of the 
slope growth is the rate of change for a time score change of one. 
 
If we are confident that these items capture knowledge of Algebra, we would infer that there is 
an increase in knowledge as reflected in performance on these items, over time.  There is 
variation between individuals in terms of where they start off and how they progress.  Students 
who have higher initial starting points (high performance in Grade 8) tend to grow faster than 
students who have lower initial starting points. This is good news for students who come with 
prior knowledge of Algebra. However, for students without the same prior knowledge, their 
growth is not as fast. These students do grow or increase in their knowledge of Algebra, but just 
not at the same rate as students who come with prior knowledge. 


