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Assignment 6 
 
 
The purpose of this assignment is to explore two methods of modeling change: growth mixture 
modeling (GMM) and latent class growth analysis (LCGA).  The difference between GMM and 
LCGA is that GMM allows for within-class variation in the latent trajectory classes and LCGA 
does not allow for within-class variation.  In other words, LCGA does not allow for individual 
differences within the latent classes.1  Since GMM considers separate growth models for each 
class, this allows for differences in the effects of the covariates, residuals, and growth functions. 
This might result in differences in terms of growth rates for the different classes or differences in 
terms of the significant effects and magnitude of the effects of the covariates in the different 
classes.2 
 
Mplus Version 3.01 was used to carry out a GMM and LCGA on the LSAY data set math 
achievement scores for Grades 7-12.  Two assigned covariates (gender and educational 
expectations) were also used.  The initial sample size included 3116 students.  However, 14 cases 
were missing data on all of the achievement outcomes and 40 cases were missing data on the 
covariates.  Models without covariates included 3102 cases and models with covariate(s) 
included 3062 cases. 
 
Table 1 presents descriptives for the math achievement variables (mth7, mth8, mth9, mth10, 
mth11, mth12) for Grades 7-12 used in these analyses.  The sample size decreases substantially 
from Grades 7-12 so all cases are used in the analyses.  There seems to be a substantial loss in 
Grades 11 and 12, which is why listwise deletion was not used in these analyses.  Instead, cases 
are assumed to be missing at random.  There is a positive increase in math scores as well as an 
increase in the variation of scores from Grades 7 to Grade 12. 
 
 N Mean Std. Dev. Variance Minimum Maximum 
Grade 7 3065 50.39 10.20 104.02 27.28 85.02 
Grade 8 2581 53.83 11.02 121.51 24.92 88.54 
Grade 9 2241 58.81 12.60 158.87 26.57 94.19 
Grade 10 2040 63.57 13.65 186.30 29.60 95.17 
Grade 11 1593 67.64 13.77 189.72 31.46 97.29 
Grade 12 1168 68.61 14.79 218.79 27.31 98.36 
Table 1. Descriptive information of the math IRT scores for Grades 7-12. 

 
Table 2 presents correlations for these achievement variables.  There are fairly high correlations 
between these achievement variables (>.75) which suggest that achievement over time is highly 
related.  
 

                                                           
1 Muthen, L.K. and Muthen, B.O. (1998-2004). Mplus User’s Guide. Third Edition. Los Angeles, CA: Muthen & 
Muthen. 
2 Muthen, B.O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal 
data. In D. Kaplan (Ed.), Handbook of Quantitative Methodology for the Social Sciences. Newbury Park, CA: Sage 
Publications. 
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 Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 
Grade 7 
 

- - -      

Grade 8 .830 
(n=2550) 

- - -     

Grade 9 .806 
(n=2214) 

.867 
(n=2037) 

- - -    

Grade 10 .787 
(n=2019) 

.831 
(n=1837) 

.902 
(n=1821) 

- - -   

Grade 11 .773 
(n=1574) 

.812 
(n=1438) 

.867 
(n=1410) 

.910 
(n=1430) 

- - -  

Grade 12 .766 
(n=1156) 

.810 
(n=1065) 

.855 
(n=1033) 

.892 
(n=1040) 

.923 
(n=977) 

- - - 

Table 2. Correlation between math IRT achievement scores. All correlations are significant at the .01 level (2-
tailed). 

 
There are 1591 males and 1471 females included in this sample. Tables 3 provides frequencies 
for the two covariates (female, expect).  The student expectation covariate is collected in Grade 7 
and is coded as follows: 1=HS only, 2=Vocational training, 3=some college, 4=Bachelor's, 
5=Master's, 6=Dr, PhD. Only 44 cases are missing information on this variable.  A majority of 
the respondents expect to obtain at least a Bachelor’s degree.  Approximately 30% of the 
students in this sample expect less than a Bachelor’s degree. 
 
 Male Female Total 
HS only 135 81 216 
Vocational training 137 70 207 
Some college 301 256 557 
Bachelor’s degree 470 447 917 
Master’s degree 307 333 640 
Dr, Ph.D. 241 284 525 

Total 1591 1471 3062 
Table 3. Frequencies of student’s educational expectations by gender. 
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Latent Class Growth Analysis (LCGA) 
 
LCGA is considered a “special type of growth mixture model” in that “individuals within classes 
are treated as homogenous with respect to their development.”  To accomplish this, these LCGA 
analyses are carried out with zero growth factor variances and covariances.3  There were 3102 
cases used in these analyses (14 cases missing data on all variables).  Table 5 presents fit indices 
for 1-7 classes for the LCGA. 
 
Number of 

Classes 
Loglikelihood Number of 

Parameters 
BIC AIC Entrophy LRT  

p-value for 
k-1 

1 -49673.928 8 99412.174 99363.856 N/A N/A 
2 -46041.720 11 92171.878 92105.440 0.842 0.0000 
3 -44247.873 14 88608.304 88523.747 0.850 0.0000 
4 -43473.400 17 87083.476 86980.799 0.840 0.0000 
5 -43071.706 20 86304.207 86183.411 0.812 0.0236 
6 -42853.512 23 85891.940 85753.024 0.785 0.0002 
7 -42762.914 26 85734.864 85577.829 0.761 0.2108 

Table 4. Fit indices for latent class growth analysis for 1-7 classes and no covariates. 

 
The entropy values are fairly high for the different number of classes (>.76).  The BIC and AIC 
values continue to decrease as the number of classes increase.  There is no dip at which point the 
values start to increase so using these indices aren’t very helpful in this example for determining 
the number of classes.  The likelihood ratio test is not significant at 7 classes which would 
suggest that the 6 class model is sufficient.  But it is not clear from these indices what number of 
classes is the best.  Checking the proportion of students classified into the 6 class solution and 5 
class solution, it seems like the additional class in the 6 class model is a combination of several 
classes.  It seems to be students who started off moderate to low and grew at a moderate rate.  
Turning to substantive questions or hypotheses and trying to interpret the different number of 
classes and running a GMM would be the next steps.  Because the LCGA does not allow for 
class specific variation, I would expect this LCGA modeling approach to include a higher 
number of classes to help explain some of the variation.  The mean intercept and slope values for 
each class were used as starting values in the GMM models to follow. 
 

                                                           
3 Muthen, B.O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal 
data. In D. Kaplan (Ed.), Handbook of Quantitative Methodology for the Social Sciences. Newbury Park, CA: Sage 
Publications. 
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Growth Mixture Model (GMM) 
 
In the GMM framework, differences in variances between the latent classes are permitted.  The 
first strategy was to conduct a GMM without using the 2 assigned covariates.  I started off with 
the default setting in Mplus described in the Mplus User’s Guide Example 8.1 which allows the 
growth factor intercepts to be different across classes but holds the residual variances and 
residual covariances of the growth factors equal across classes.  A maximum likelihood estimator 
with robust standard errors using a numerical integration algorithm was used for these models 
(algorithm = integration). 
 
Number of 

Classes 
Loglikelihood Number of 

Parameters 
BIC AIC Entrophy LRT  

p-value for 
k-1 

1 -42711.235 11 85510.908 85444.470 N/A N/A 
2 -42639.400 14 85391.357 85306.800 0.574 0.0000 
3 -42576.788 17 85290.252 85187.575 0.675 0.0000 
4 -42520.275 20 85201.347 85080.551 0.626 0.0000 
5 -42502.467 23 85189.850 85050.935 0.594 0.3664 
6 -42502.493 26 85214.021 85056.986 0.620 0.6853 
7 -42478.375 29 85189.905 85014.751 0.635 0.4911 

Table 5. Summary of fit indices for a growth mixture model without class specific variances and without 
covariates. 

 
The likelihood ratio test suggests that a 4 class solution fits the data best.  The BIC and AIC dips 
at 5 classes which suggests that the 5 class solution fits the model best.  But the Vuong-Lo-
Mendell-Rubin likelihood ratio test suggests a 4 class solution fits best.  In looking at the 5 class 
solution, one of the classes has a low number of students classified in this particular class (4%). 
This class of students seems to start off moderately high but has a high rate of growth.  However, 
the entropy value for the 5 class solution is lower (0.594) which suggests that students are not 
classified well.  The students in the small class have a 12% probability of being classified with 
students who have similar initial starting values to another class.  The probability of being 
classified in another category seems fairly high for all of the classes in this model, which is why 
the entropy value is lower than the other models.  The entropy value for the 4 class solution is 
higher than the 5 class solution so there seems to be some justification for the 4 class solution, 
despite lower BIC and AIC values in the 5 class solution. 
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Class 1 

 

Class 2 

 
Class 3 

 

Class 4 

 

Figure 1. Estimated means and observed individual trajectories for 4 class growth mixture model with no 
variation between the classes and no covariates. 

 
In trying to refine the 4 class model, I checked for class specific variance by looking at the plots 
of the estimates for the variances of the average initial starting point and growth factor means for 
each class (Figure 1).  Class 2 seems to have a different intercept and slope variation than the 
other classes which suggests that Class 2 might have a class specific variance. I continued with 
the 4 class solution and attempted to allow different things to vary (Table 7). 
 
 Loglikelihood -2*Difference 
Class invariance -42520.275 (20)  
1. Class 2 intercept variance different from Class 1, 3, & 4 -42493.570 (21) 53.41 (1)* 
2. Class 2 slope variance different from Class 1, 3, & 4 -42507.067 (21) 26.42 (1)* 
3. Class 2 intercept and slope variances different from Class 1, 3, & 4 -42506.321 (22) 27.91 (2)* 
4. Class 2 slope with intercept different from Class 1, 3, & 4 -42518.249 (21) 4.052 (1)* 
5. Class 2 outcome residuals different from Class 1, 3, & 4 -42307.315 (26) 425.92 (5)* 
1 and 5. Class 2 intercept variance and outcome residual variances 
different from Class 1, 3, & 4 

-42291.639 (27) 457.27 (7)* 

Table 6. Loglikelihood values and difference between loglikelihood values. The difference is between the class 
invariant model and the Class 2 specific variance. The difference between the two models is then multiplied 
by -2.  This difference is chi-square distributed. These are 4 class growth mixture models. * indicates a 
significant improvement. 

 
In looking at the chi-square difference test from the invariant model (variance equal across 
classes), there seems to be improvements when allowing Class 2 to have different intercept 
variance, slope variance, intercept and slope variance, slope with intercept variance, outcome 
residual variances when compared to Class 1, 3 and 4.  Though, it seems logical that all of these 
things could be class specific, I opted to just select the two changes that seemed to produce the 
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largest loglikelihood differences: intercept variances and outcome residuals which are different 
for Class 2 than Class 1, 3 and 4. 
 
A further step to improve the model is to add covariates.  Two covariates: female and expect 
were used in this assignment.  Sometimes the addition of covariates changes the class formation 
relative to the class specific variance without covariates.  To check this, I ran a 2, 3, 4 and 5 class 
GMM solution with the two covariates to see if the fit indices would continue to support a 4 class 
solution (Table 8). 
 
Number of 

Classes 
Loglikelihood Number of 

Parameters 
BIC AIC Entrophy LRT  

p-value for 
k-1 

2 -41835.553 20 83831.643 83711.107 0.608 0.0000 
3 -41766.355 25 83733.380 83582.710 0.603 0.0000 
4 -41710.308 30 83661.421 83480.617 0.625 0.0000 
5 -41682.801 35 83646.540 83435.601 0.625 0.1182 

Table 7. Summary of fit indices for growth mixture model with class invariance and gender and educational 
expectations as covariates. 

 
The inclusion of the two covariates continues to provide support for a 4 class solution.  The 
entropy value is similar to the 4 class model without covariates. The likelihood ratio test is not 
significant for the 5 class model which suggests that the 4 class model is sufficient.  The AIC and 
BIC values are decreasing but do not seem to dip. 
 
The estimates suggest that there is no significant effect of gender.  There seems to be a 
significant impact of educational expectations but gender does not seem to be very informative in 
terms of looking at where students start off and how fast they grow.  So, I decided to exclude 
gender as a covariate and instead include only educational expectation.   
 
The default in GMM is for class invariance in terms of the growth factors on the covariate.  This 
default does not allow for differential effects of educational expectations for each class.  Again, 
one way to check for this is to look at the plots for the four class solution.  
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Figure 2. Estimated means and observed individual trajectories for 4 class growth mixture model with no 
variation between the classes and 1 covariate. 

 
The plots suggest that Class 2 seems to have variances that might be different than the other 3 
classes. Table 9 compares the fit indices for the 4 class invariant model with 1 covariate.  The 
first run uses the default settings of equal variances across all classes, and equal effect of the 
covariate across classes.  This is what I considered the default of baseline model. 
 
The next step was to allow the class variances to differ. From rationale earlier presented, the 
intercept variances and the outcome residuals for Class 2 is allowed to be different from the 
intercept variances and outcome residuals for Class 1, 3 and 4.  The effect of the covariate is 
similar in this model. There is an improvement in this model over the default model of class 
invariance. However, the entrophy value is lower in this model (0.571). 
 
The next step was to hold the class variances similar but allow the effect of the covariate to 
differ. This allows the effect of educational expectations to differ for Class 2 but to be held 
constant for Class 1, 3 and 4. This seems to be the best model and will be interpreted at the end 
of this assignment.  There is no class specific variance in terms of the intercept or outcome 
residuals for Class 2 in this model. 
 
The final step was to allow the class variances to differ and the effect of the covariate to differ. 
The addition of the covariate and allowing for class invariance in Class 2 and allowing for class 
specific effects of the covariate does not seem to improve the model.  The inclusion of the 
covariates seems to take away with the need for class invariance.   
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The 4 class solution without covariates also seems to fit well, but substantively, I could see an 
argument for including educational expectations as ways of talking about the differences 
between classes.  
 

Equal 
effect of 

covariate 

Equal 
class 

specific 
variance 

Loglikelihood Number of 
Parameters 

BIC AIC Entrophy LRT  
p-value for 

k-1 
Yes Yes -41738.080 25 83676.830 83526.160 0.629 0.0000 
Yes No -41519.311 32 83295.481 83102.622 0.571 0.0008 
No Yes -41737.674 27 83692.072 83529.348 0.629 0.0005 
No No -41514.989 34 83302.889 83097.977 0.565 0.0004 

Table 8. Summary of fit indices for 4-class growth mixture model with 1 covariate. The first model is the 
default that has equal effect of the covariate and equal class variances.  The second model allows for class 
invariance in the intercept and outcome residuals in Class 2. The third model does not allow for class specific 
variance but allows for differences in the effect of the covariate in Class 2. 

 
The model that I selected to interpret for this assignment has class specific effects of the 
covariate. In other words, the effect of educational expectations is presumed to be different for 
Class 2 than for Class 1, 3 and 4. I hypothesize that because Class 2 seems to be the high growth 
group, despite low initial performance, that maybe educational aspirations for this group was 
particularly different or functioned in a way that might be different from the groups who were 
low achievers, or were already high achievers in Grade 7. 
 
The model that I selected to interpret for this assignment does not have class specific intercept 
variance or class specific residuals of mth7-mth12.  Without covariates, the model that allowed 
for class specific variance seemed to be the way to go. However, with the addition of the 
covariate, it seems as though some of this variation disappears and is not necessary to specify.  
The model that I have selected to interpret allows for the variances in the growth factors to be 
similar across the classes.  However, the impact of the covariate, educational expectations, is 
presumed to be different for Class 2.  Class 2 is considered special in that though they were low 
performers in Grade 7, as a group they should tremendous growth and high performance by the 
end of Grade 12.
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Interpreting the 4-class GMM with 1 covariate (specific effect of covariates in Class 2) 
 
Table 10 provides the proportions of the sample classified into each class based on the different 
methods. 
 

  est. posterior probabilities most likely latent class membership 
1 0.21328 0.20085 
2 0.04423 0.02907 
3 0.45614 0.49379 
4 0.28635 0.27629 

Table 9. Proportion of respondents classified into each of the 4 classes based on their estimated posterior 
probabilities and most likely class membership. 

 
Most of the respondents are classified in Class 3 (46%).  The proportion of respondents classified 
using each method seems roughly similar which is a good sign that respondents are consistently 
classified.  Another thing to consider is to look at the probability of the most likely class 
membership (row) by the latent class that the student was placed (column).  The diagonals are 
high and the off-diagonals are low which indicates that students were well classified in the most 
likely class and didn’t have as high probabilities of being placed in another class (Table 11). 
 
 1 2 3 4 

1 0.824 0.014 0.161 0.001 
2 0.001 0.751 0.150 0.098 
3 0.096 0.031 0.754 0.120 
4 0.002 0.016 0.171 0.812 

Table 10. Average latent class probabilities for the most likely latent class membership (row) by latent class 
(column). 
 
Figure 3 provides the estimated means of the 4 classes and the proportion of students in each 
class.  There is a group of students that starts of low but seems to grow at a high rate and catches 
up to the students who started off high.  Next, these mean trajectories will be explored further by 
looking at each class. 
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Figure 3. Estimated means for the 4 class GMM with 1 covariate (expect), effect of covariate different for 
Class 2. 

 
There are approximately 21% of the students classified in Class 1.  This class seems to start off 
low and not change very much in their math achievement scores from Grade 7 to Grade 12 
(Figure 3).  This group has an average start point of 38.189 and a 0.680 average rate of change.  
These estimates suggest consistent low performance and possibly disengagement or disinterest in 
school.  I would suspect that this class might have a higher number of students who dropout of 
high school.  For these low achievers, educational expectations is not significantly related to 
growth but is significantly related to initial starting point.  It is somewhat promising to note that 
low educational aspirations is significantly related to Grade 7 performance but not necessarily 
related to change from Grade 7 through Grade 12.  But this lack of relationship between growth 
and educational expectation might have something to do with there being so little growth to 
model. 
 

 
Figure 4. Estimated mean and observed individual trajectories for Class 1 (21% of respondents). 

 
There are approximately 5% of the students classified in Class 2 (Figure 5). These students start 
off low but have a large rate of change.  On average, students in this group have a Grade 7 math 
achievement score of 39.559.  These students are just slightly higher than the low achievers in 
Class 1.  However, these students are different from Class 1 in that they have a high average rate 
of change (8.357).  These students might have started low but for some reason were able to show 
great gains in performance as they progressed through high school.  This is interesting to note 
and might be worth figuring out what sorts of classes these students took or what sorts of 
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teachers or curriculum that they were engaged in that made their growth much higher than the 
students who started off at the similar levels but did not grow as much.  The impact of 
educational expectations varied for this particular group of students.  For this particular group of 
students, their educational expectations were not related to their initial starting point or their 
large change in achievement.  This is somewhat surprising because given the large growth 
displayed; I would suspect that educational expectations might have something to do with their 
growth.  Obviously, there are other factors that might be more related to this growth that are not 
included in the model –such as home resources or maybe the educational aspirations of friends.  
Another option is the educational expectation variable was not well developed and did not 
measure the concept accurately or well. 
 
 

 
Figure 5. Estimated mean and observed individual trajectories for Class 2 (5% of respondents). 

 
 
There are approximately 46% of the students classified in Class 3.  On average, these students 
start off higher (45.188) in Grade 7 than students in Class 2.  However, these students do not 
grow as much as students in Class 2 (3.628).  These students might be the average students who 
aren’t necessarily considered high risk for deviant behavior or persistent low performance but 
aren’t considered high achievers either.  As noted earlier, the impact of educational expectations 
was held constant for this particular class of students and it seems as though there is a significant 
impact of educational expectations on the intercept or average initial starting point but not a 
significant impact on growth or change over time. 
 

 
Figure 6. Estimated mean and observed individual trajectories for Class 3 (46% of respondents). 
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There are 28% of the students classified in Class 4.  I would consider this group of students to be 
consistent high achievers.  On average, this group of students start off higher than all other 
groups of students (56.010) and tend to grow at a moderate rate (4.553).  They don’t grow as 
much as Class 2 students but they start off higher than all other students.  On average, students in 
Class 2 “catch up” with these high achievers in Class 4.  Because these are high achievers, I 
would not expect there to be much high school dropouts in this class.  
 

 
Figure 7. Estimated mean and observed individual trajectories for Class 4 (28% of respondents). 

 
To determine whether class membership relates to high school dropout (lloctn=4), I ran the 
model using high school dropout as a distal outcome and looked at the frequencies of students 
within each class who were classified as a dropout. 
 
Class LLOCTN=4 

Dropped out of school 
Total 

1: started low, low growth 189 (31%) 615 
2: started low, high growth 7 (8%) 89 
3: started medium, moderate growth 218 (14%) 1512 
4: started high, moderate growth 30 (4%) 846 

Total 444 3062 
Table 11. Number of students who dropped out by 12th grade in each of the 4 classes. 

 
This variable seems to be predictive of membership in Class 1.  As suspected, students who were 
classified into Class 1 which is the low achieving and low growth class, had largest number (and 
percent) of students dropping out (Table 12).  There were 189 students (31% of those student 
classified in Class 1) who dropped out by the 12th grade.  There were low numbers of students 
who were classified in Class 2 and 4 who dropped out. This is not surprising given that Class 2 
started off low but had high growth and Class 4 started off high and had moderate growth.  The 
high achievers (even if they started off low) do not tend to drop out.  Students who started off 
moderately high and had moderate growth dropped out less than students in the low achieving or 
failing class but not quite as low as students who were classified in Class 2 or 4. 


