Multilevel Modeling with Continuous and Categorical Latent Variables

- Multilevel Regression
- Multilevel CFA, SEM Multilevel Growth Modeling
- Multilevel discrete-time survival analysis
- Multilevel regression mixture analysis (CACE)
- Multilevel latent class analysis
- Multilevel growth mixture modeling

EXAMPLE 10.1: TWO-LEVEL MIXTURE REGRESSION FOR A CONTINUOUS DEPENDENT VARIABLE

TITLE:	this is an example of a two-level mixture
	regression for a continuous dependent
	variable
DATA:	FILE IS ex10.1.dat;
VARIABLE:	NAMES ARE y x1 x2 w c clus;
	USEVARIABLES = y x1 x2 w;
	CLASSES = c (2);
	WITHIN = $x1 x2;$
	BETWEEN = w ;
	CLUSTER = clus;
ANALYSIS:	TYPE = TWOLEVEL MIXTURE;
	STARTS = $0;$
MODEL:	
	%WITHIN%
	%OVERALL%
	y ON x1 x2;
	c#1 ON x1;
	8c#18
	v ON x2;
	V:
	%BETWEEN%
	SOVERALLS
	V ON W:
	$c \pm 1$ ON w .
	c#1 th w,
	C#1 .
	°∪#⊥° [+2].
OUTPUT:	TECHI TECHO;

EXAMPLE 10.2: TWO-LEVEL CFA MIXTURE MODEL WITH CONTINUOUS FACTOR INDICATORS

TITLE: this is an example of a two-level CFA	
indicators	
DATA: FILE IS ex10 2 dat:	
VARIABLE: NAMES ARE V1-V5 c clus:	
USEVARIABLES = $v1-v5$:	
CLASSES = C(2):	
CLUSTER = clus;	
ANALYSIS: TYPE = TWOLEVEL MIXTURE;	
STARTS = 0;	
MODEL:	
%WITHIN%	
%OVERALL%	
fw BY y1	
y2 (1)	
y3 (2)	
y4 (3)	
y5 (4);	
%BETWEEN%	
%OVERALL%	
tb BY yl	
$\frac{y^2}{(1)}$	
$y_3(z)$	
y^{4} (3)	
yJ (4), c#1*1•	
Cπ1 1, 2 α # 1 2	
[fb*2]:	

Between

EXAMPLE 10.3: TWO-LEVEL LCA WITH CATEGORICAL LATENT CLASS INDICATORS WITH COVARIATES

TITLE:	this is an example of a two-level LCA with categorical latent class indicators with covariates
DATA:	FILE IS ex10.3.dat;
VARIABLE:	NAMES ARE ul-u6 x w c clus;
	USEVARIABLES = ul-u6 x w;
	CATEGORICAL = u1-u6;
	CLASSES = c (3);
	WITHIN = x;
	BETWEEN = w;
	CLUSTER = clus;
ANALYSIS:	TYPE = TWOLEVEL MIXTURE;
MODEL:	
	%WITHIN%
	%OVERALL%
	c#1 c#2 ON x;
	%BETWEEN%
	%OVERALL%
	f BY c#1 c#2;
	f ON w;
OUTPUT:	TECH1 TECH8;

EXAMPLE 10.4: TWO-LEVEL GMM FOR A CONTINUOUS OUTCOME (THREE-LEVEL ANALYSIS)

```
TITLE: this is an example of a two-level GMM for
          a continuous outcome (three-level
          analysis)
DATA:
       FILE IS ex10.4.dat;
VARIABLE: NAMES ARE y1-y4 x w c clus;
          USEVARIABLES = y1-y4 x w;
          CLASSES = c (2);
          WITHIN = x;
          BETWEEN = w;
          CLUSTER = clus;
ANALYSIS: TYPE = TWOLEVEL MIXTURE;
          STARTS = 0;
MODEL:
          %WITHIN%
          %OVERALL%
          iw sw | y100 y201 y302 y403;
          iw sw ON x;
          c#1 ON x;
          %BETWEEN%
          %OVERALL%
          ib sb | y100 y201 y302 y403;
          y1-y4@0;
          ib sb ON w;
          sb@0;
          c#1 ON w;
          c#1*1;
          8c#18
          [ib sb];
          %c#2%
          [ib*3 sb*1];
OUTPUT:
         TECH1 TECH8;
```


Within

Between

_

