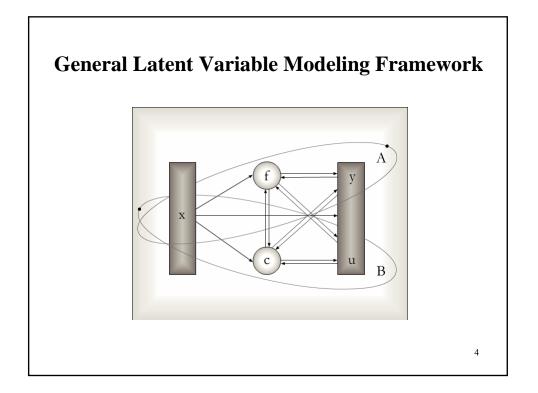
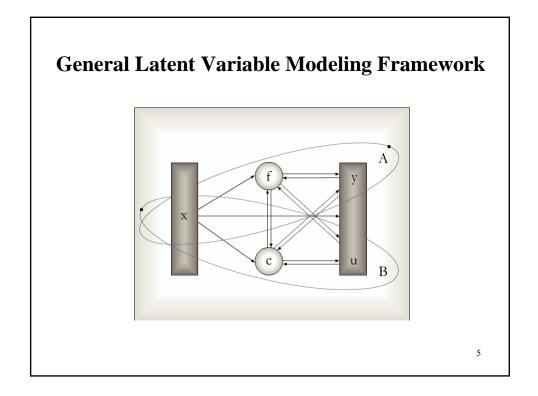
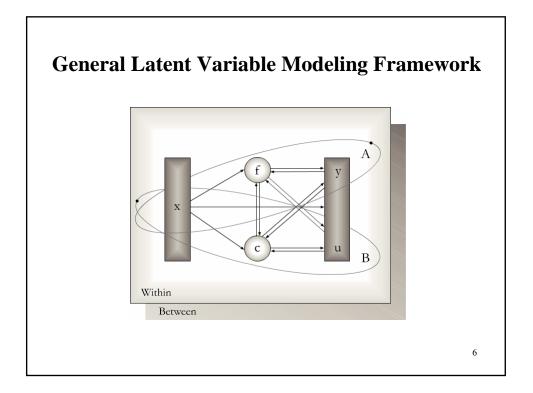
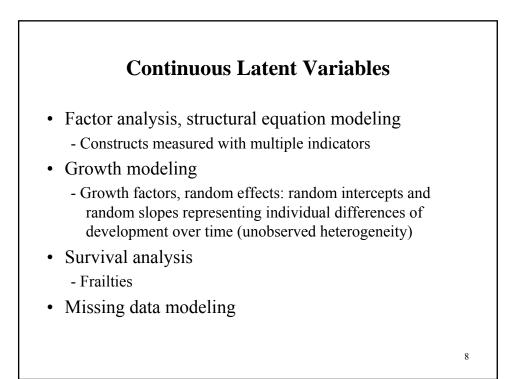

General Latent Variable Modeling Using Mplus Version 3 Block 1: Structural Equation Modeling

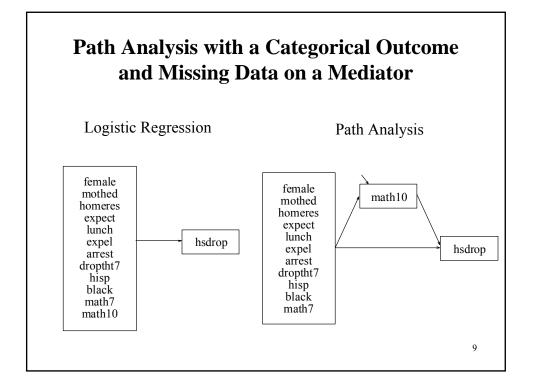

Bengt Muthén bmuthen@ucla.edu

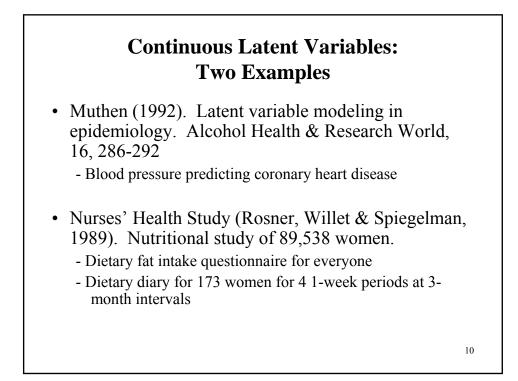

Mplus: www.statmodel.com

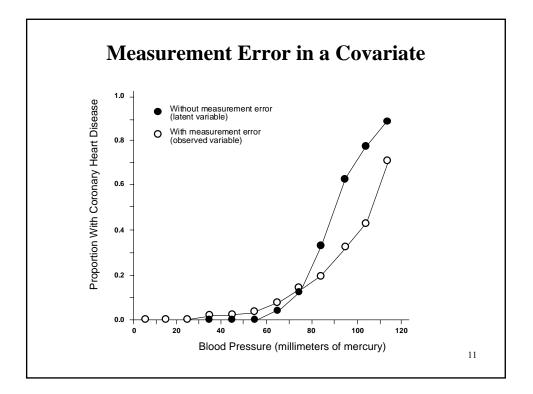

1

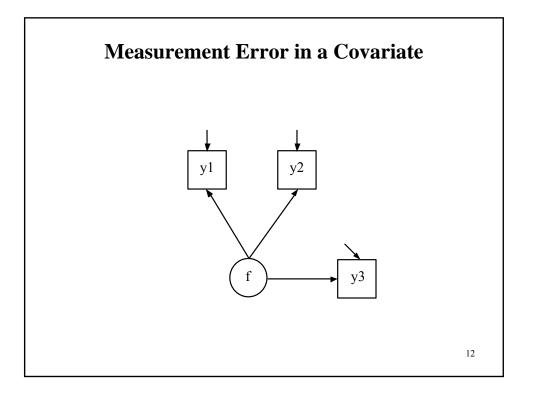
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

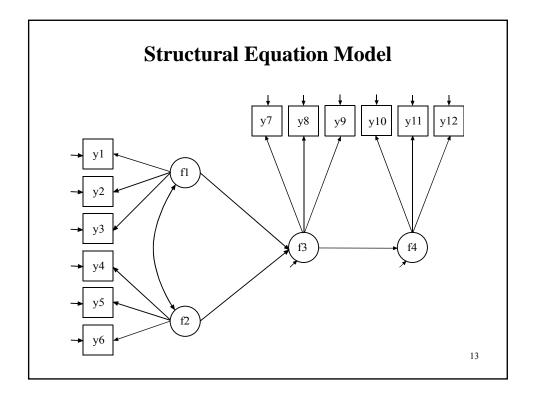


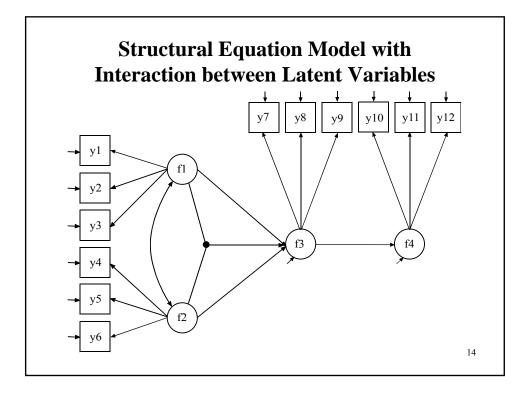


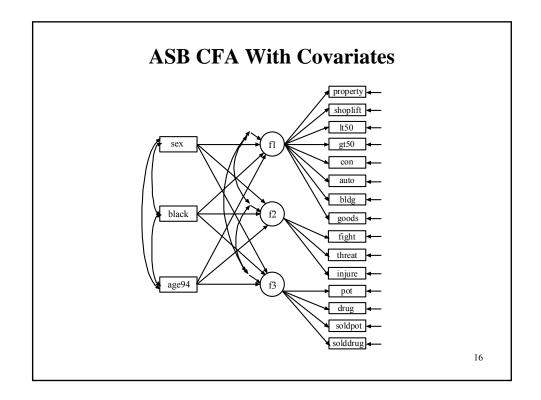



General Latent Variable Modeling Framework


- Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81-117
- Asparouhov & Muthen (2004). Maximum-likelihood estimation in general latent variable modeling
- Muthen & Muthen (1998-2004). Mplus Version 3
- Mplus team: Linda Muthen, Bengt Muthen, Tihomir Asparouhov, Thuy Nguyen, Michelle Conn (see www.statmodel.com)






Antisocial Behavior (ASB) Data

The antisocial Behavior (ASB) data were taken from the National Longitudinal Survey of Youth (NLSY) that is sponsored by the Bureau of Labor Statistics. These data are made available to the public by Ohio State University. The data were obtained as a multistage probability sample with oversampling of blacks, Hispanics, and economically disadvantaged non-blacks and non-Hispanics.

Data for the analysis include 15 of the 17 antisocial behavior items that were collected in 1980 when respondents were between the ages of 16 and 23 and the background variables of age, gender, and ethnicity. The ASB items assessed the frequency of various behaviors during the past year. A sample of 7,326 respondents has complete data on the antisocial behavior items and the background variables of age, gender, and ethnicity. Following is a list of the 15 items:

Damaged property Fighting Shoplifting Stole < \$50 Stole > \$50 Seriously threaten Intent to injure Use marijuana Use other drugs Sold marijuana Sold hard drugs "Con" someone Take auto Broken into building Held stolen goods

These items were dichotomized 0/1 with 0 representing never in the last year. An EFA suggested three factors: property offense, person offense, and drug offense.

Input For CFA With Covariates With Categorical Outcomes For 15 ASB Items

TITLE:	CFA with covariates with categorical outcomes using 15 antisocial behavior items and 3 covariates	
DATA:	FILE IS asb.dat; FORMAT IS 34X 54F2.0;	
VARIABLE:	<pre>NAMES ARE property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsml-dsm22 sex black hisp single divorce dropout college onset fhist1 fhist2 fhist3 age94 cohort dep abuse; USEV ARE property-gt50 threat-goods sex black age94 CATEGORICAL ARE property-goods;</pre>	
	17	

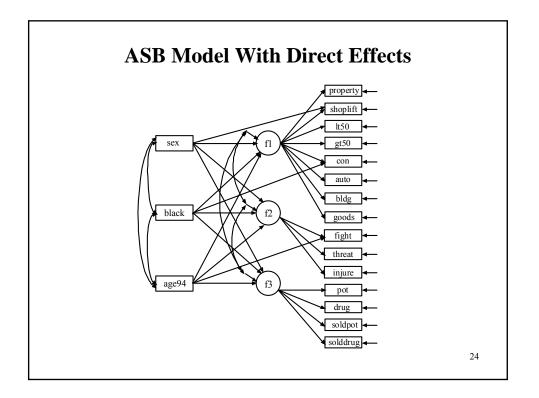
Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items

Est	imates	S.E.	Est./S.E.	Std	StdYX
F1 BY					
PROPERTY	1.000	.000	.000	.791	.760
SHOPLIFT	.974	.023	42.738	.771	.742
LT50	.915	.023	39.143	.724	.700
GT50	1.055	.031	33.658	.835	.799
CON	.752	.024	31.637	.595	.581
AUTO	.796	.030	26.462	.629	.613
BLDG	1.084	.030	35.991	.858	.818
GOODS	1.071	.025	42.697	.847	.809

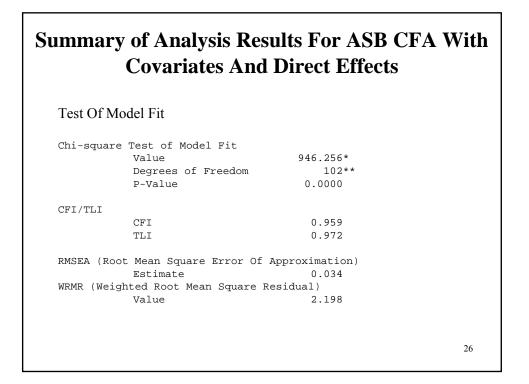
Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)

F	2	BY					
	FIGHT		1.000	.000	.000	.773	.734
	THREAT		1.096	.035	31.382	.847	.797
	INJURE		1.082	.037	28.888	.836	.787
F	3	BY					
	POT		1.000	.000	.000	.866	.851
	DRUG		1.031	.023	45.818	.893	.876
	SOLDPOT		1.046	.023	45.844	.905	.888
	SOLDDRU	G	.923	.036	25.684	.799	.787

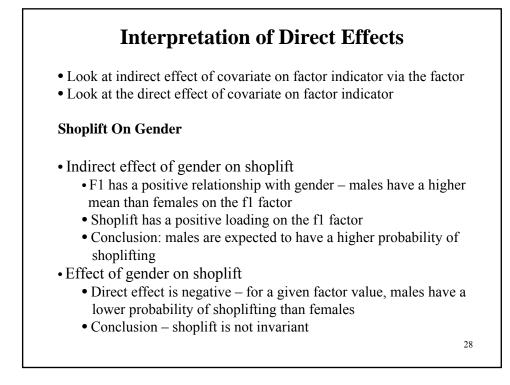
Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)

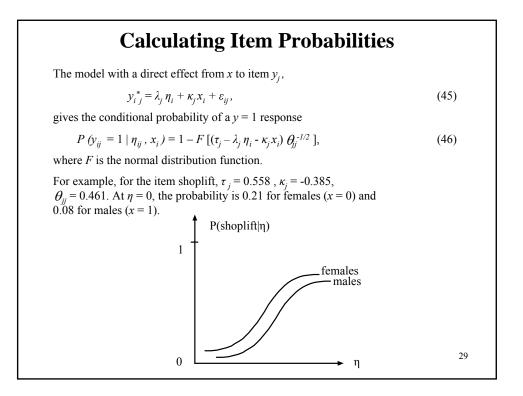

Fl	ON						
SEX		.516	.024	21.206	.653	.326	
BLACK		080	.025	-3.168	102	047	
AGE94		054	.006	-9.856	069	150	
F2	ON						
SEX		.561	.026	21.715	.726	.363	
BLACK		.174	.025	7.087	.225	.103	
AGE94		068	.006	-12.286	087	191	
F3	ON						
SEX		.229	.026	8.760	.265	.132	
BLACK		272	.029	-9.384	315	144	
AGE94		.039	.006	6.481	.045	.099	
						21	

Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)

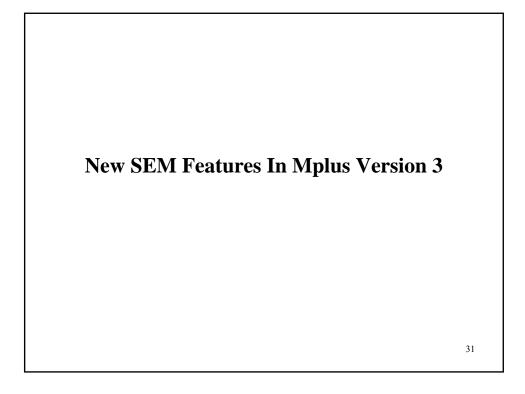

Tests Of Model Fit

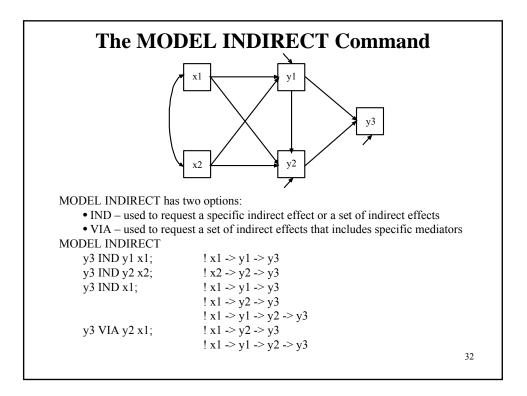
Chi-square Test of Model Fit	
Value	1225.266*
Degrees of Freedom	105**
P-Value	0.0000
CFI / TLI	
CFI	0.945
TLI	0.964
RMSEA (Root Mean Square Error Of	Approximation)
Estimate	0.038
WRMR (Weighted Root Mean Square R	Residual)
Value	2.498


	Vith Respect To G	BLACK	AGE94	
F1	.000	.000	.000	
F2	.000	.000	.000	
F3	.000	.000	.000	
PROPERTY	019	.006	.072	
FIGHT	023	015	.109	
SHOPLIFT	.039	.001	.003	
LT50	001	.014	072	
GT50	007	008	026	
THREAT	.009	.015	026	
ONJURE	.012	001	074	
POT	.011	010	058	
DRUG	.012	.016	016	
SOLDPOT	019	003	.060	
SOLDDRUG	003	004	.013	
CON	.020	030	.051	
AUTO	.002	.003	.020	
BLDG	012	.005	003	
GOODS	013	.003	030	



Summary	y of Analysis Results For ASB CFA V Covariates And Direct Effects	Vith
MODEL:	<pre>f1 BY property shoplift-gt50 con-goods; f2 BY fight threat injure; f3 BY pot-solddrug; f1-f3 ON sex black age94; shoplift ON sex; con ON black; fight ON age94;</pre>	
		25




Cova	riates And	Direct	Effects ((Continu	ied)
	Estimates	S.E.	Est./S.E.	Std	StdYX
F1 BY SHOPLIFT	1.002	.024	42.183	.805	.793
F1 ON SEX	.596	.026	22.958	.742	.371
SHOPLIFT ON SEX CON ON	385	.033	-11.594	385	190
BLACK FIGHT ON	.305	.034	8.929	.305	.136
AGE94	068	.008	-8.467	068	138
Thresholds					
SHOPLIFT\$	1.558	.033	17.015	.558	.558
R-SQUARE					
Observed Variable		R-Square			
SHOPLIFT	.461	.552			

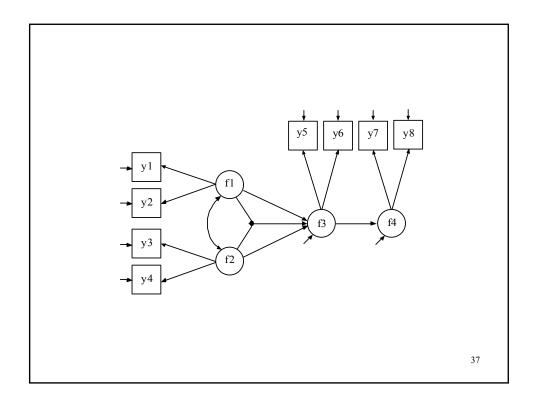
Calculating Item Probabilities Cont'd Consider $P(y_{ij} = 1 | \eta_{ij}, x_i) = 1 - F[(\tau_j - \lambda_j \eta_i - \kappa_j x_i) \theta_{jj}]^{-1/2}],$ (47)Using $\tau_j = 0.558$, $\kappa_j = -0.385$, $\theta_{jj} = 0.461$, and $\eta = 0$. Here, $\theta_{jj}^{-1/2} = \frac{1}{\sqrt{\theta_{jj}}} = \frac{1}{\sqrt{0.461}} = 1.473$. For females (x = 0): 2. $(\tau_i - \lambda_i \eta_i - \kappa_i x_i) \theta_{ii}^{-1/2} = 0.558 \text{ x } 1.473 = 0.822.$ 3. F[0.822] = 0.794 using a z table 4. 1 - 0.794 = 0.206. For males (x = 1): 1. $(\tau_j - \lambda_j \eta_i - \kappa_j x_i) = 0.558 - 1.002 \ge 0 - (-0.385) \ge 1 = 0.943.$ 2. $(\tau_j - \lambda_j \eta_i - \kappa_j x_i) \theta_{jj}^{-1/2} = 0.943 \text{ x } 1.473 = 1.389.$ 3. F[1.389] = 0.918 using a z table. 4. 1 - 0.918 = 0.082. 30

DESTIMATE: The STANDARDIZED option of the OUTPUT command can be used to obtain standardized indirect effects. The STANDARDIZED option of the ANALYSIS command can be used to obtain standardized indirect effects. The BOOTSTRAP option of the ANALYSIS command can be used to obtain bootstrap standard errors for the indirect effects. The CINTERVAL option of the OUTPUT command can be used to obtain confidence intervals for the indirect effects and the standardized indirect effects. Three types of 95% and 99% confidence intervals can be obtained: symmetric, bootstrap, or bias-corrected bootstrap confidence intervals. The bootstrap ped distribution of each parameter estimate is used to determine the bootstrap and bias-corrected bootstrap confidence intervals. These intervals take non-normality of the parameter estimate distribution into account. As a result, they are not necessarily symmetric around the parameter estimate.

33

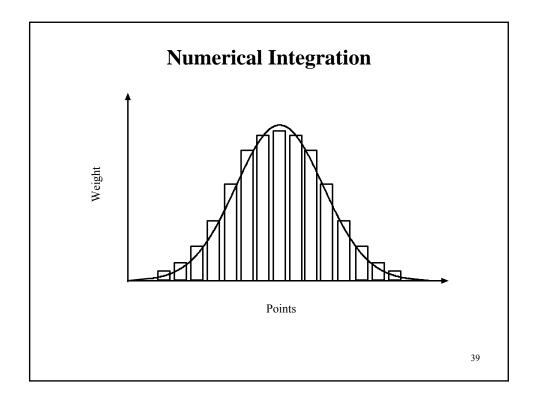
The MODEL CONSTRAINT Command

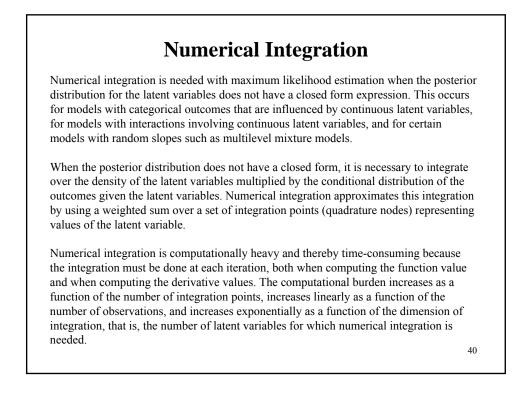
MODEL CONSTRAINT is used to define linear and non-linear constraints on the parameters in the model. All functions available in the DEFINE command are available for linear and non-linear constraints. Parameters in the model are given labels by placing a name in parentheses after the parameter.


MODEL: y ON x1 (p1) x2 (p2) x3 (p3);

Types of Variables	Interaction Option
observed continuous with observed continuous	DEFINE
observed categorical with observed continuous	DEFINE Multiple Group
observed continuous with continuous latent	XWITH
observed categorical with continuous latent	XWITH Multiple Group
observed continuous with categorical latent	MIXTURE
observed categorical with categorical latent	MIXTURE KNOWNCLASS
continuous latent with continuous latent	XWITH
continuous latent with categorical latent	MIXTURE
categorical latent with categorical latent	MIXTURE

The XWITH Option Of The MODEL Command


The XWITH option is used with TYPE=RANDOM to define interactions between continuous latent variables or between continuous latent variables and observed variables. XWITH is short for multiplied with. It is used in conjunction with the | symbol to name and define interaction variables in a model. Following is an example of how to use XWITH and the | symbol to name and define an interaction:


f1f2 | f1 XWITH f2; f1y | f1 XWITH y;

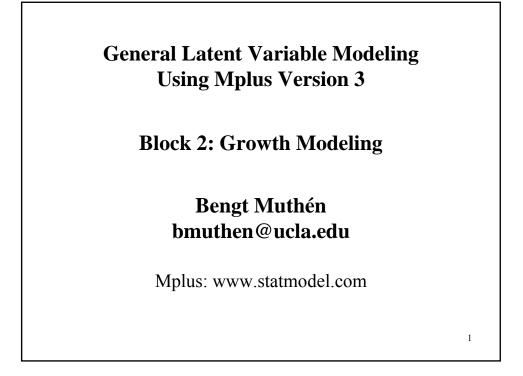
Input For An SEM Model With An Interaction Between Two Latent Variables

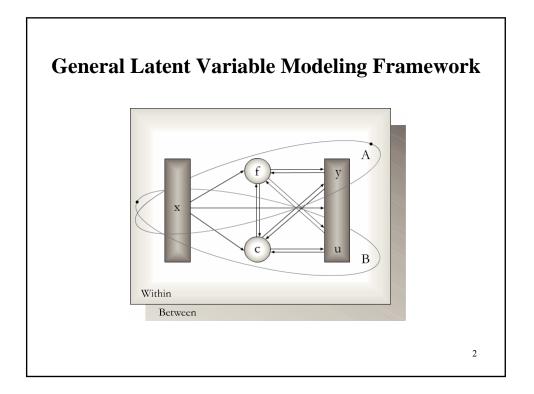
TITLE:	this an example of a structural equation model with an interaction between two latent variables	
DATA:	<pre>FILE = firstSEMInter.dat;</pre>	
VARIABLE:	NAMES = y1-y8;	
ANALYSIS:	TYPE = RANDOM; ALGORITH = INTEGRATION;	
MODEL:	fl BY yl y2; f2 BY y3 y4; f3 BY y5 y6; f4 BY y7 y8;	
	f4 ON f3; f3 ON f1 f2;	
	f1f2 f1 XWITH f2;	
OUTPUT:	f3 on f1f2; TECH8;	38

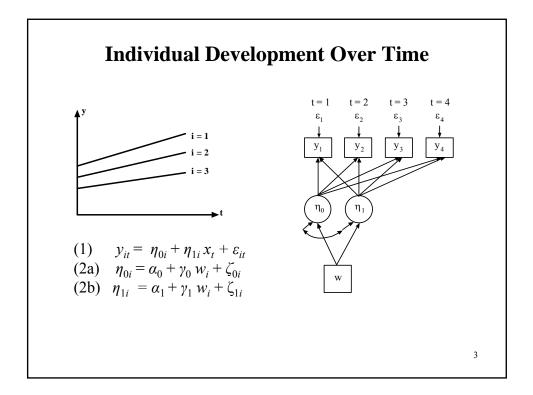
Practical Aspects of Numerical Integration

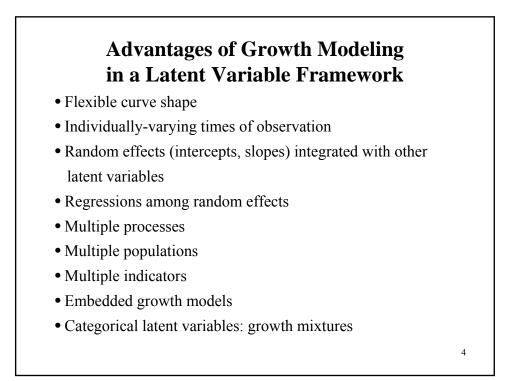
• Types of numerical integration available in Mplus with or without adaptive quadrature

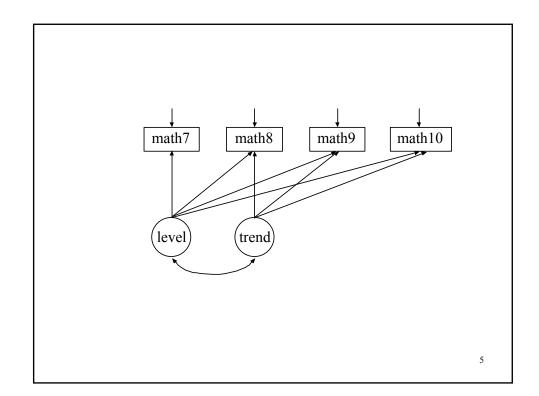
- Standard (rectangular, trapezoid) default with 15 integration points per dimension
 - Gauss-Hermite
 - Monte Carlo

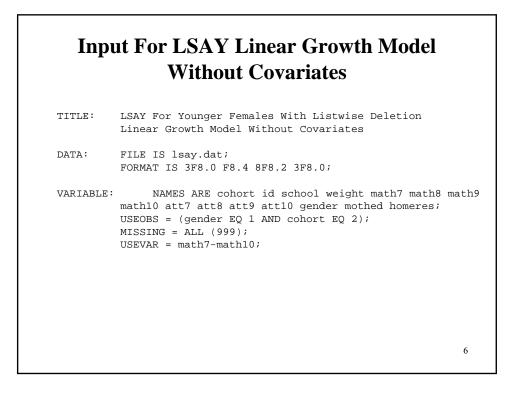

• Computational burden for latent variables that need numerical integration


- One or two latent variables Light
- Three to five latent variables Heavy
- Over five latent variables Very Heavy


Suggestions for using numerical integration


- Start with a model with a small number of random effects and add more one at a time
- Start with an analysis with TECH8 and MITERATIONS=1 to obtain information from the screen printing on the dimensions of integration and the time required for one iteration and with TECH1 to check model specifications
- With more than 3 dimensions, reduce the number of integration points to 10 or use Monte Carlo integration with the default of 500 integration points
- If the TECH8 output shows large negative values in the column labeled ABS CHANGE, increase the number of integration points to improve the precision of the numerical integration and resolve convergence problems.


Numerical Integration Theorem	ry
Maximum likelihood estimation using the EM algorithm computes in e posterior distribution for normally distributed latent variables <i>f</i> ,	each iteration the
[f y] = [f] [y f] / [y],	(97)
where the marginal density for $[y]$ is expressed by integration	
$[y] = \int [f] [y f] df.$	(98)
 Numerical integration is not needed: Normally distributed y – the distribution is normal Numerical integration is needed: Categorical outcomes u influenced by continuous latent var has no closed form Latent variable interactions f x x, f x y, f₁ x f₂, where [y] for example [y] = ∫ [f₁, f₂] [y f₁, f₂, f₁f₂] df₁ df₂ Random slopes, e.g. with two-level mixture modeling 	tiables f , because $[u]$
Numerical integration approximates the integral by a sum $[y] = \int [f] [y f] df = \sum_{k=1}^{K} w_k [y f_k]$	(100) 42



Input For LSAY Linear Growth Model Without Covariates (Continued)

MODEL:	TYPE = MEANSTRUCTURE; level BY math7-math10@1; trend BY math7@0 math8@1 math9@2 math10@3;
	[math7-math10@0]; [level trend];
OUTPUT:	SAMPSTAT STANDARDIZED MODINDICES (3.84);
	sion 3 Language For Growth Models Level trend math7@0 math8@1 math9@2 math10@3

Output Excerpts LSAY Linear Growth Model Without Covariates

7

8

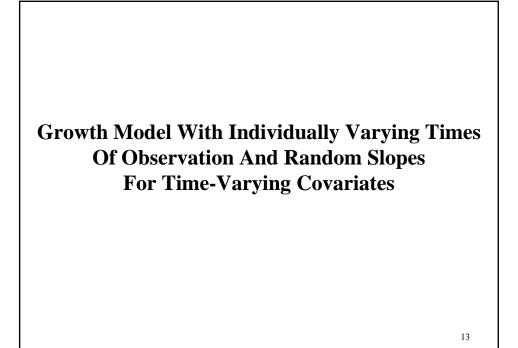
Tests of Model Fit

	Value Degrees of Freedom	22.664 5	
	P-Value	0.0004	
CFI/TLI			
	CFI	0.995	
	TLI	0.994	
RMSEA (Ro	ot Mean Square Error Of App	proximati	on)
	Estimate	0.060	
	90 Percent C.I.	0.036	0.086
	Probability RMSEA <= .05	0.223	
SRMR (Sta	ndardized Root Mean Square	Residual)
	Value	0.025	

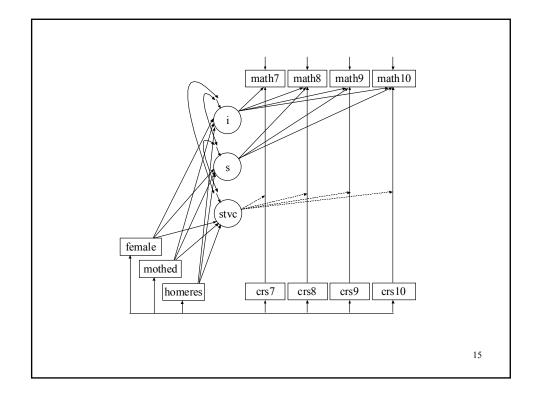
Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Modification Indices							
		M.I.	E.P.C.	Std.E.P.C.	StdYX E.P.C.		
TREND	BY MATH7	6.793	0.185	0.254	0.029		
TREND	BY MATH8	14.694	-0.169	-0.233	-0.025		
TREND	BY MATH9	9.766	0.155	0.213	0.021		

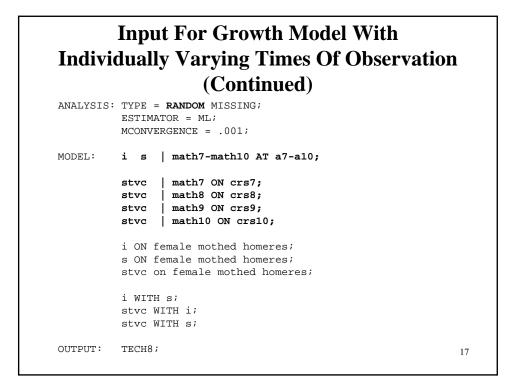
Output Excerpts LSAY Linear Growth Model Without Covariates

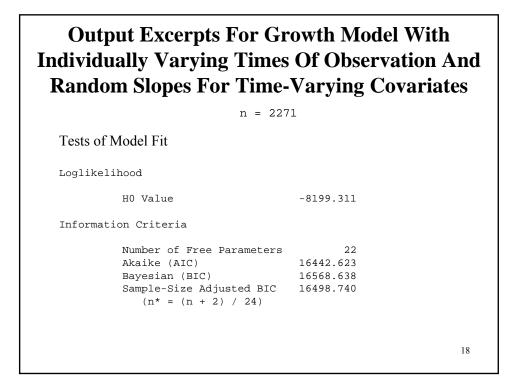

Model Results				a. 1	a. 1
	Estimates	S.E.	Est./S.E.	Std	StdYX
LEVEL BY					
MATH7	1.000	.000	.000	8.029	.906
MATH8	1.000	.000	.000	8.029	.861
MATH9	1.000	.000	.000	8.029	.800
MATH10	1.000	.000	.000	8.029	.708
TREND BY					
MATH7	.000	.000	.000	.000	.000
MATH8	1.000	.000	.000	1.377	.148
MATH9	2.000	.000	.000	2.753	.274
MATH10	3.000	.000	.000	4.130	.364

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)


3.491 14.105 13.525	.730 1.253	4.780 11.259	.316	.316
	1.253	11 250		
	1.253	11 250		
13.525		11.209	14.105	.180
	.866	15.610	13.525	.156
14.726	.989	14.897	14.726	.146
25.989	1.870	13.898	25.989	.202
64.469	3.428	18.809	1.000	1.000
1.895	.322	5.894	1.000	1.000
	25.989 64.469	25.989 1.870 64.469 3.428	25.989 1.870 13.898 64.469 3.428 18.809	25.989 1.870 13.898 25.989 64.469 3.428 18.809 1.000

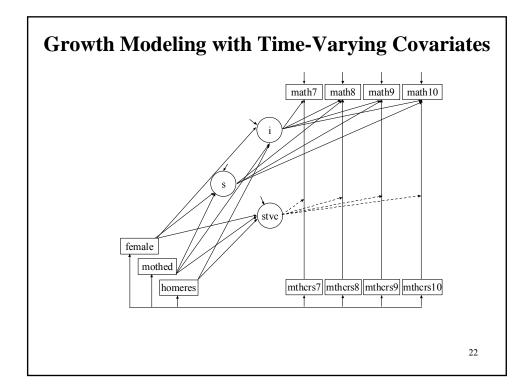
Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

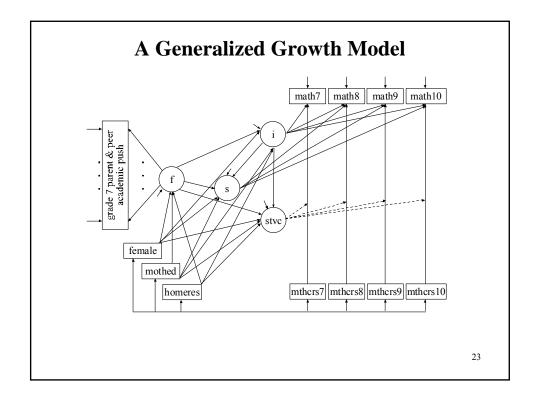

Means						
LEVEL	52.623	.275	191.076	6.554	6.554	
TREND	3.105	.075	41.210	2.255	2.255	
Intercepts						
MATH7	.000	.000	.000	.000	.000	
MATH8	.000	.000	.000	.000	.000	
MATH9	.000	.000	.000	.000	.000	
MATH10	.000	.000	.000	.000	.000	
R-Square						
Observed						
Variable	R-Square					
MATH7	0.820					
MATH8	0.844					
MATH9	0.854					
MATH10	0.798					
						12

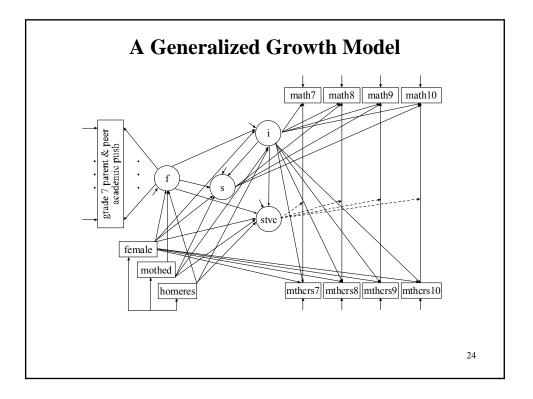


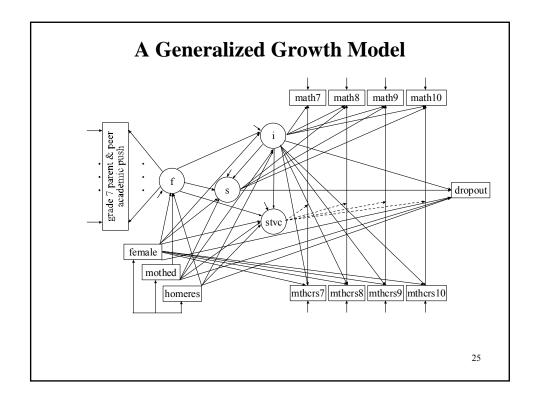
Growth Modeling In Multilevel Terms Time point *t*, individual *i* (two-level modeling, no clustering): repeated measures on the outcome, e.g. math achievement y_{ti} : a_{1ti} : time-related variable (time scores); e.g. grade 7-10 a_{2ti} : time-varying covariate, e.g. math course taking time-invariant covariate, e.g. grade 7 expectations X_i : Two-level analysis with individually-varying times of observation and random slopes for time-varying covariates: Level 1: $y_{ti} = \pi_{0i} + \pi_{1i} a_{1ti} + \pi_{2ti} a_{2ti} + e_{ti}$, (55) Level 2: $\pi_{0i} = \beta_{00} + \beta_{01} x_i + r_{0i}, \\ \pi_{1i} = \beta_{10} + \beta_{11} x_i + r_{1i}, \\ \pi_{2i} = \beta_{20} + \beta_{21} x_i + r_{2i}.$ Time scores a_{1ti} read in as data (not loading parameters). (56) • $\pi_{2_{ti}}$ possible with time-varying random slope variances • Flexible correlation structure for $V(e) = \Theta(T \times T)$ • Regressions among random coefficients possible, e.g. (57) $\pi_{1i} = \beta_{10} + \gamma_1 \ \pi_{0i} + \beta_{11} \ x_i + r_{1i},$ $\pi_{2i} = \beta_{20} + \gamma_2 \pi_{0i} + \beta_{21} x_i + r_{2i}.$ $(58)_{14}$

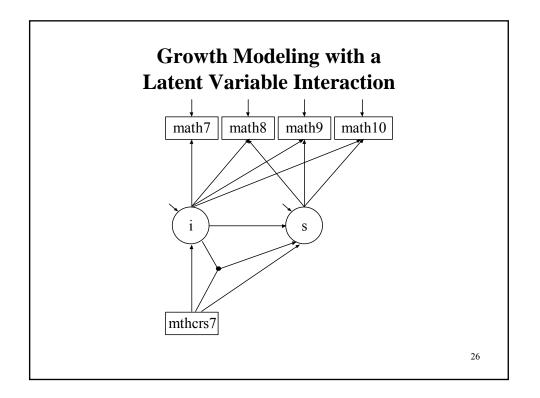
Input For Growth Model With Individually Varying Times Of Observation growth model with individually varying times of TITLE: observation and random slopes DATA: FILE IS lsaynew.dat; VARIABLE: NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9 crs10 female mothed homeres a7-a10; ! crs7-crs10 = highest math course taken during each ! grade (0-no course, 1=low,basic, 2=average, 3=high, ! 4=pre-algebra, 5=algebra I, 6=geometry, ! 7=algebra II, 8=pre-calc, 9=calculus) MISSING ARE ALL(9999); CENTER = GRANDMEAN(crs7-crs10 mothed homeres); TSCORES = a7-a10; DEFINE: math7 = math7/10;math8 = math8/10;math9 = math9/10;math10 = math10/10;16

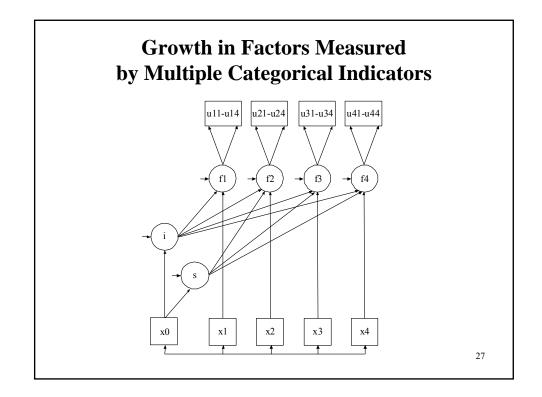


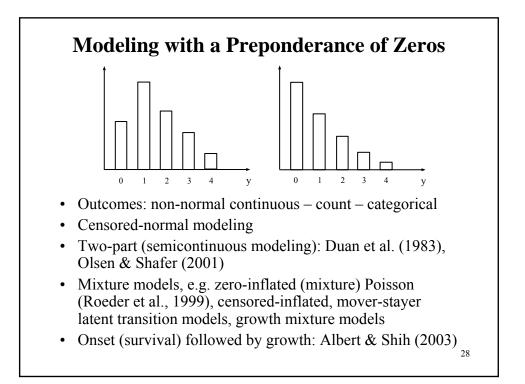


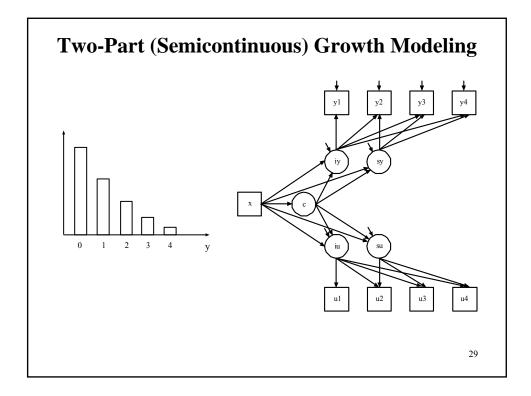

I	ON	Estimates	S.E.	Est./S.E.
FEM	ALE	0.187	0.036	5.247
MOT	HED	0.187	0.018	10.231
HOM	ERES	0.159	0.011	14.194
S	ON			
FEM	ALE	-0.025	0.012	-2.017
MOT	HED	0.015	0.006	2.429
HOM	ERES	0.019	0.004	4.835
STVC	ON			
FEM	ALE	-0.008	0.013	-0.590
MOT	HED	0.003	0.007	0.429
HOM	ERES	0.009	0.004	2.167
I	WITH			
S		0.038	0.006	6.445
STVC	WITH			
I		0.011	0.005	2.087
S		0.004	0.002	2.033

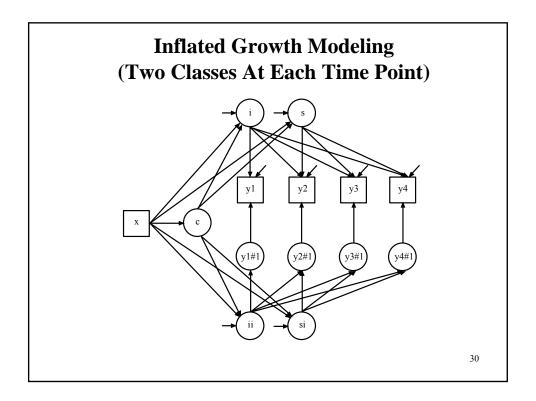

			variates (Continu
Intercepts			
MTH7	0.000	0.000	0.000
MTH8	0.000	0.000	0.000
MTH9	0.000	0.000	0.000
MTH10	0.000	0.000	0.000
I	4.992	0.025	198.456
S	0.417	0.009	47.275
STVC	0.113	0.010	11.416
Residual Varianc	es		
MTH7	0.185	0.011	16.464
MTH8	0.178	0.008	22.232
MTH9	0.156	0.008	18.497
MTH10	0.169	0.014	12.500
I	0.570	0.023	25.087
S	0.036	0.003	12.064
STVC	0.012	0.002	5.055

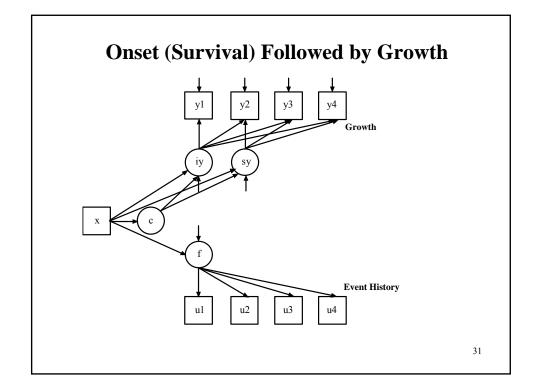

Random Slopes	
• In single-level modeling random slopes β_i describe variation across	
individuals <i>i</i> ,	
$y_i = \alpha_i + \beta_i x_i + \varepsilon_i$,	(100)
$lpha_i=lpha+\zeta_{0i}$,	(101)
$eta_i=eta+ar{\zeta_{1i}}$,	(102)
Resulting in heteroscedastic residual variances	
$V(y_i x_i) = V(\beta_i) x_i^2 + \theta$	(103)
• In two-level modeling random slopes β_i describe variation across	
clusters j	
$y_{ii} = a_i + \beta_i x_{ii} + \varepsilon_{ii}$	(104)
$a_i = a + \zeta_{0i}$,	(105)
$\dot{\beta_i} = \beta + \zeta_{1i}$	(106)
A small variance for a random slope typically leads to slow convergen ML-EM iterations. This suggests respecifying the slope as fixed.	ce of the
Mplus allows random slopes for predictors that are • Observed covariates	
• Observed dependent variables (Version 3)	
• Continuous latent variables (Version 3)	
	21

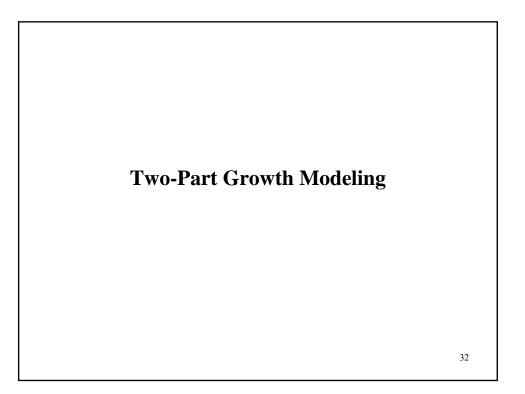


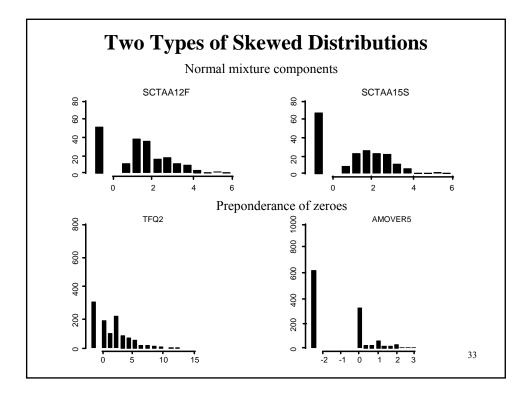


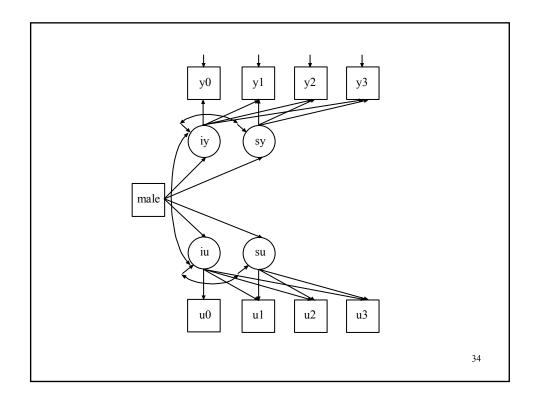


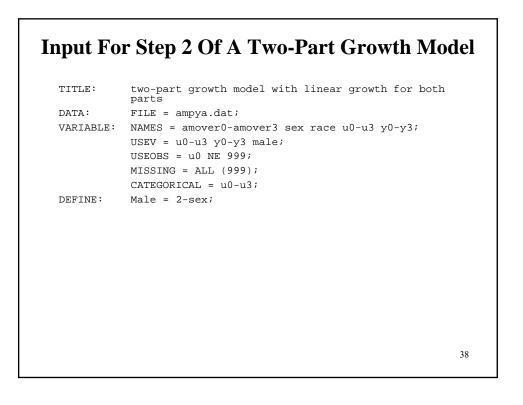












TITLE:	step 1 of a two-part growth model
	Amover u y
	>0 1 >0
	0 0 999
	999 999 999
DATA:	FILE = amp.dat;
VARIABLE:	NAMES ARE caseid
	amover0 ovrdrnk0 illdrnk0 vrydrn0
	amover1 ovrdrnk1 illdrnk1 vrydrn1
	amover2 ovrdrnk2 illdrnk2 vrydrn2
	amover3 ovrdrnk3 illdrnk3 vrydrn3
	amover4 ovrdrnk4 illdrnk4 vrydrn4
	amover5 ovrdrnk5 illdrnk5 vrydrn5
	amover6 ovrdrnk6 illdrnk6 vrydrn6
	tfq0-tfq6 v2 sex race livewith
	agedrnk0-agedrnk6 grades0-grades6;
	USEV = amover0 amover1 amover2 amover3
	sex race u0-u3 y0-y3;
	!MISSING = ALL (999);

Input Fo	r Step 1 Of A Two-Part Growth Model (Continued)	
DEFINE:	u0 = 1; !binary part of variable IF(amover0 eq 0) THEN u0 = 0;	
	IF(amover0 eq 999) THEN u0 = 999; y0 = amover0; !continuous part of variable IF (amover0 eq 0) THEN y0 = 999;	
	ul = 1; IF(amoverl eq 0) THEN ul = 0; IF(amoverl eq 999) THEN ul = 999:	
	yl = amoverl; IF(amoverl eq 0) THEN yl = 999; u2 = 1;	
	IF(amover2 eq 0) THEN $u2 = 0;$ IF(amover2 eq 999) THEN $u2 = 999;$ y2 = amover2;	
	IF(amover2 eq 0) THEN y2 = 999; u3 = 1; IF(amover2 eq 0) THEN y2 = 0;	
	IF(amover3 eq 0) THEN u3 = 0; IF(amover3 eq 999) THEN u3 = 999; y3 = amover3;	
ANALYSIS: SAVEDATA:	36	

Order and f	ormat of varia	bles	
AMOVER0	F10.3		
AMOVER1	F10.3		
AMOVER2	F10.3		
AMOVER3	F10.3		
SEX	F10.3		
RACE	F10.3		
U0	F10.3		
U1	F10.3		
U2	F10.3		
U3	F10.3		
YO	F10.3		
Yl	F10.3		
¥2	F10.3		
¥3	F10.3		
Save file			
ampyu.	lat		
Save file f	ormat		
14F10.3	3		

Input For Step 2 Of A Two-Part Growth Model (Continued)

ANALYSIS:	TYPE = MISSING;
	ESTIMATOR = ML;
	ALGORITHM = INTEGRATION;
	COVERAGE = .09;
MODEL:	iu su u0@0 u1@0.5 u2@1.5 u3@2.5;
	iy sy y0@0 y1@0.5 y2@1.5 y3@2.5;
	iu-sy ON male;
	! estimate the residual covariances
	! iu with su, iy with sy, and iu with iy
	iu WITH sy@0;
	su WITH iy-sy@0;
OUTPUT:	PATTERNS SAMPSTAT STANDARDIZED TECH1 TECH4 TECH8;
PLOT:	TYPE = PLOT3;
	GROWTH = u0-u3(su) y0-y3(sy);

39

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Output Ex	-	-	Of A Tw ontinued		Growth
Model Res	ults				
	Estimates	S.E.	Est./S.E.	Std	StdYX
IU					
U0	1.000	0.000	0.000	2.839	0.843
U1	1.000	0.000	0.000	2.839	0.882
U2	1.000	0.000	0.000	2.839	0.926
U3	1.000	0.000	0.000	2.839	0.905
SU					
U0	0.000	0.000	0.000	0.000	0.000
U1	0.500	0.000	0.000	0.416	0.129
U2	1.500	0.000	0.000	1.249	0.407
U3	2.500	0.000	0.000	2.082	0.664
					41

Output Excerpts Step 2 Of A Two-Part Growth Model (Continued)

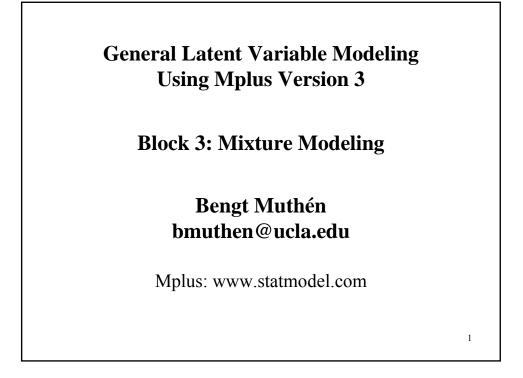
IY					
YO	1.000	0.000	0.000	0.534	0.787
Y1	1.000	0.000	0.000	0.534	0.738
Y2	1.000	0.000	0.000	0.534	0.740
¥3	1.000	0.000	0.000	0.534	0.644
SY					
Y0	0.000	0.000	0.000	0.000	0.000
Y1	0.500	0.000	0.000	0.117	0.162
Y2	1.500	0.000	0.000	0.351	0.487
¥3	2.500	0.000	0.000	0.586	0.707

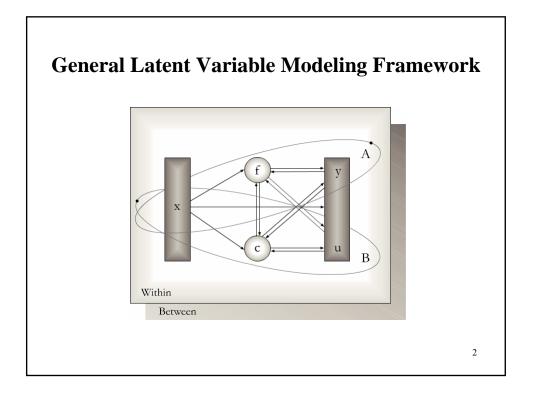
Output Exce	rpts Step Model			-Part	Growth
IU ON		0 004	0 422	0 200	0 100

	MALE		0.569	0.234	2.433	0.200	0.100	
S	U	ON						
	MALE		-0.181	0.119	-1.518	-0.218	-0.109	
I	Y	ON						
	MALE		0.149	0.061	2.456	0.279	0.139	
S	Y							
	MALE		-0.068	0.038	-1.790	-0.290	-0.145	
т	U	WITH						
-	SU		-1.144	0.326	-3.509	-0.484	-0.484	
	IY		1.193	0.134	8.897	0.788	0.788	
	SY		0.000	0.000	0.000	0.000	0.000	
I	Y	WITH						
	SY		-0.039	0.019	-2.109	-0.316	-0.316	
S	U	WITH						
	IY		0.000	0.000	0.000	0.000	0.000	
	SY		0.000	0.000	0.000	0.000	0.000	
								43

Output Excerpts Step 2 Of A Two-Part Growth Model (Continued)

Intercepts					
YO	0.000	0.000	0.000	0.000	0.000
Yl	0.000	0.000	0.000	0.000	0.000
¥2	0.000	0.000	0.000	0.000	0.000
¥3	0.000	0.000	0.000	0.000	0.000
IU	0.000	0.000	0.000	0.000	0.000
SU	0.855	0.098	8.716	1.027	1.027
IY	0.232	0.059	3.901	0.435	0.435
SY	0.240	0.031	7.830	1.025	1.025
Thresholds					
U0\$1	2.655	0.206	12.877		
U1\$1	2.655	0.206	12.877		
U2\$1	2.655	0.206	12.877		
U3\$1	2.655	0.206	12.877		
					44

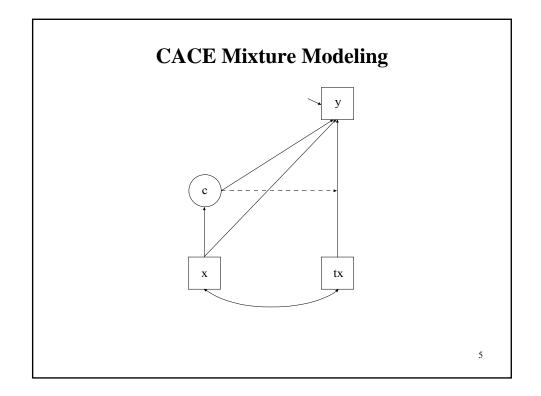

Output Exco	erpts Step Model			-Part (Growt
Residual Varia	nces				
YO	0.175	0.032	5.470	0.175	0.380
Yl	0.266	0.029	9.159	0.266	0.509
¥2	0.238	0.027	8.810	0.238	0.457
¥3	0.269	0.054	5.014	0.269	0.392
IU	7.982	1.086	7.351	0.990	0.990
SU	0.685	0.202	3.400	0.988	0.988
IY	0.279	0.040	7.019	0.981	0.981
SY	0.054	0.017	3.224	0.979	0.979
					4

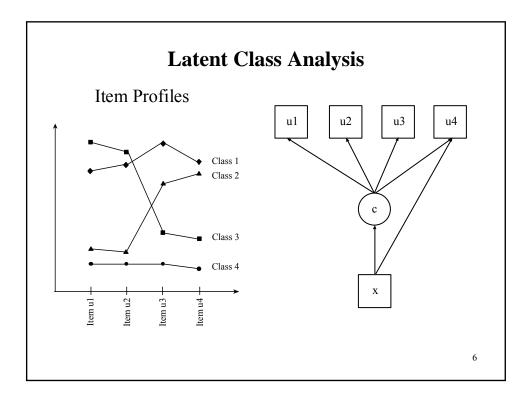

R-Square	Model (Continued)	
Observed		
Variable	R-Square	
UO	0.710	
U1	0.682	
U2	0.650	
U3	0.666	
YO	0.620	
Y1	0.491	
Y2	0.543	
¥3	0.608	
Latent		
Variable	R-Square	
IU	0.010	
SU	0.012	
IY	0.019	
SY	0.021	46

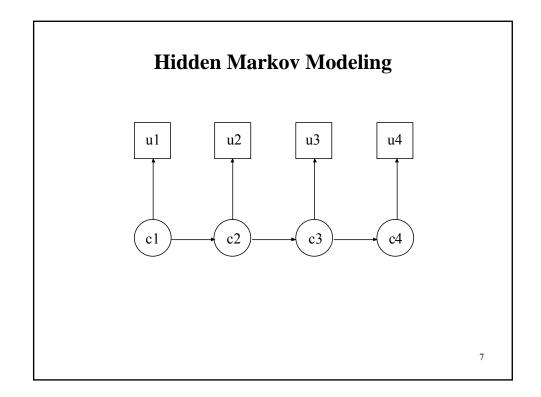
	nical 4 Output				
reem	•				
	ESTIMATED M IU	EANS FOR TH SU	E LATENT V IY	ARIABLES SY	MALE
1	10	50	Τĭ	51	MALE
T	0.305	0.758	0.312	0.204	0.536
IU	IU 8.062	SU	IY		MALE
SU	-1.170	0.694			
IY	1.214	-0.007	0.285		
SY	-0.010	0.003	-0.042	0.055	
	0.142	-0.045	0.037	-0.017	0.249

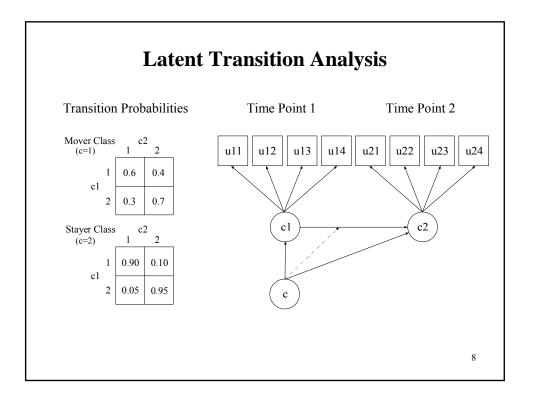
Output Excerpts Step 2 Of A Two-Part Growth Model (Continued)

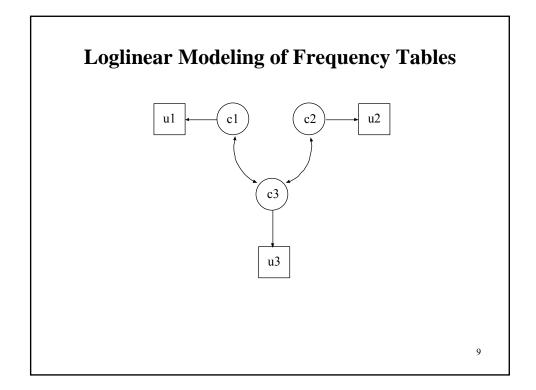
	ESTIMATED IU	CORRELATION SU	MATRIX FOR IY	THE LATEN SY	T VARIABLE MALE	ES
IU SU IY SY MALE	1.000 -0.495 0.801 -0.014 0.100	1.000 -0.015 0.016 -0.109	1.000 -0.336 0.139	1.000 -0.145	1.000	
	0.100	0.105	0.135	0.115	1.000	
						48

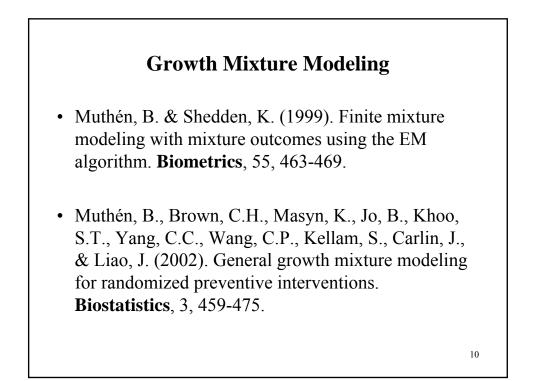


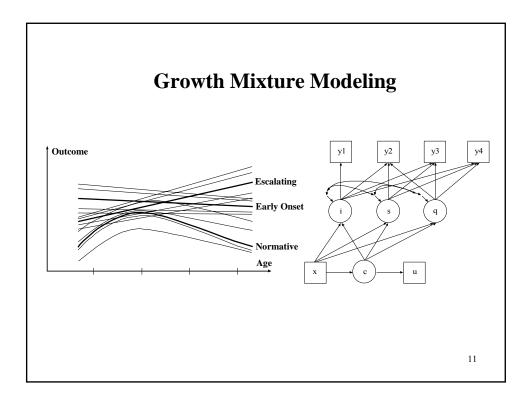


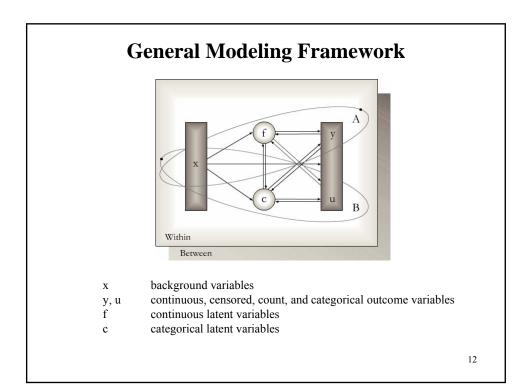

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

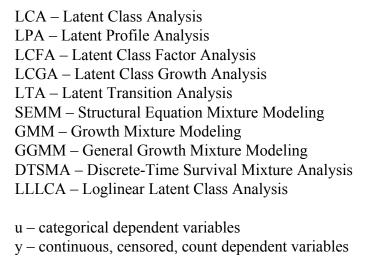

Randomized Preventive Interventions and Complier-Average Causal Effect Estimation (CACE)


- Angrist, Imbens & Rubin (1996)
- Yau & Little (1998, 2001)
- Jo (2002)
- Dunn et al. (2003)
- Compliance status observed for those invited for treatment
- Compliance status unobserved for controls









	Outcome/	Number of	Number of		-Class
	Indicator	Timepoints	Outcomes/		ation
	Scale		Timepoint	Standard	Mplus
LCA	u	Single	Multiple	No	Yes
LPA	у	Single	Multiple	No	Yes
LCFA	u, y	Single	Multiple	No	Yes
LCGA	u, y	Multiple	Single	No	Yes
			Multiple		(GMM
LTA	u, y	Multiple	Multiple	No	Yes

Summary Of Techniques Using Latent Classes (Continued)

	Outcome/	Number of	Number of	Within	-Class
	Indicator	Timepoints	Outcomes/	Varia	ation
	Scale		Timepoint	Standard	Mplus
SEMM	u, y	Single	Multiple	Yes	Yes
GMM	u, y	Multiple	Single Multiple	Yes	Yes
GGMM	u, y	Multiple	Single Multiple	Yes	Yes
DTSMA	u	Multiple	Single Multiple	No	Yes
LLLCA	u, y	Single Multiple	Single Multiple	NA	Yes

Summary Of Techniques Using Latent Classes (Continued)

15

<figure><figure><figure><figure><figure><figure>

Random Starts in Version 3

When TYPE=MIXTURE is used, random sets of starting values are generated as the default for all parameters in the model except variances and covariances. These random sets of starting values are random perturbations of either user-specified starting values or default starting values produced by the program. Maximum likelihood optimization is done in two stages. In the initial stage, 10 random sets of starting values are generated. An optimization is carried out for ten iterations using each of the 10 random sets of starting values. The ending values from the optimization with the highest loglikelihood are used as the starting values in the final stage of optimization which is carried out using the default optimization settings for TYPE=MIXTURE. Random starts can be turned off or done more thoroughly.

17

Recommendations for a more thorough investigation of multiple solutions:

STARTS = 100 10; or STARTS = 500 10; with STITERATIONS = 20;

Antisocial Behavior (ASB) Data The Antisocial Behavior (ASB) data were taken from the National Longitudinal Survey of Youth (NLSY) that is sponsored by the Bureau of Labor Statistics. These data are made available to the public by Ohio State University. The data were obtained as a multistage probability sample with oversampling of blacks, Hispanics, and economically disadvantaged non-blacks and non-Hispanics. Data for the analysis include 17 antisocial behavior items that were collected in 1980 when respondents were between the ages of 16 and 23 and the background variables of age, gender and ethnicity. The ASB items assessed the frequency of various behaviors during the past year. A sample of 7,326 respondents has complete data on the antisocial behavior items and the background variables of age, gender, and ethnicity. Following is a list of the 17 items: 18

Antisocial Behavior (ASB) Data (Continued)

Damaged property Fighting Shoplifting Stole < \$50 Stole > \$50 Use of force Seriously threaten Intent to injure Use marijuana Use other drugs Sold marijuana Sold hard drugs "Con" someone Take auto Broken into building Held stolen goods Gambling operation

19

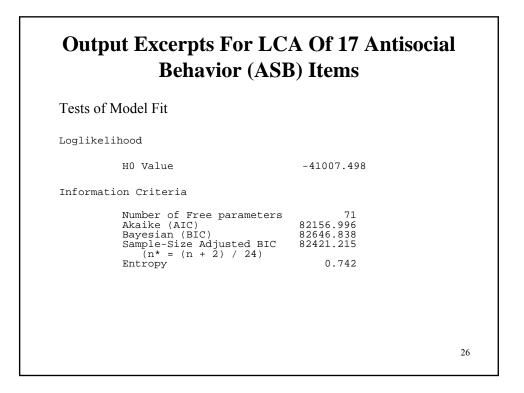
Input For LCA Of 17 Antisocial Behavior (ASB) Items With Random Starts

TITLE:	LCA of 17 ASB items	
DATA:	FILE IS asb.dat; FORMAT IS 34x 42f2;	
VARIABLE:	NAMES ARE property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsm1-dsm22 sex black hisp;	
	USEVARIABLES ARE property-gambling;	
	CLASSES = c(5);	
	CATEGORICAL ARE property-gambling;	
ANALYSIS:	TYPE = MIXTURE; STARTS = 500 10; STITERATIONS = 20;	
OUTPUT:	TECH8 TECH10 TECH11;	
SAVEDATA:	FILE IS asb.sav; SAVE IS CPROB;	
		20

Output Excerpts LCA Of 17 Antisocial Behavior (ASB) Items With Random Starts

Loglikelihood values at local maxima and seeds:

-40808.314	195353
-40808.406	783165
-40808.406	863691
-40815.960	939709
-40815.960	303634
-40815.960	85734
-40815.960	316165
-40815.960	458181
-40815.960	502532
-40816.006	605161


Number	Loglike-	#	BIC	AIC	Entropy	LRT
of Classes	lihood	par.	ыс	Ale	Entropy	p-value for k-1
1	-48,168.475	17	96,488	96,370	NA	NA
2	-42,625.653	35	85,563	85,321	.838	.0000
3	-41,713.142	53	83,898	83,532	.743	.0000
4	-41,007.498	71	82,647	82,157	.742	.0000
5	-40,808.314	89	82,409	81,795	.741	.0000
6	-40,604.231	107	82,161	81,422	.723	.0019

Four-Class				
		DRODORTIONS	∩ ਦਾ π∩ ሞ∧ τ	, SAMPLE SIZE BASED OF
	POSTERIOR PRO		OF IOTAL	SAMPLE SIZE BASED OF
Class 1	672.	41667	0.09178	High
Class 2	1354.	73100	0.18492	Drug
Class 3	1821.	71706	0.24866	Person Offense
Class 4	3477.	13527	0.47463	Normative (Pot)
TITNIAT OT AC		DDODODUTONO		
	S COUNTS AND POSTERIOR PRO		OF TOTAL	Comparison To
			OF TOTAL	
	POSTERIOR PRO		OF TOTAL	Four-Class Solution
ESTIMATED	POSTERIOR PRO)BABILITIES	0.01888	Comparison To Four-Class Solution
ESTIMATED Class 1	POSTERIOR PRO	DBABILITIES 06985 41897	0.01888	Comparison To Four-Class Solution High Property Offense
ESTIMATED Class 1 Class 2	POSTERIOR PRO 138. 860.	DBABILITIES 06985 41897 56652	0.01888 0.11771 0.17151	Comparison To Four-Class Solution High Property Offense

Input For LCA Of 17 Antisocial Behavior (ASB) Items

TITLE:	LCA of 17 ASB items	
DATA:	FILE IS asb.dat; FORMAT IS 34x 42f2;	
VARIABLE:	NAMES ARE property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsml-dsm22 sex black hisp;	
	USEVARIABLES ARE property-gambling;	
	CLASSES = c(4);	
	CATEGORICAL ARE property-gambling;	
		24
		24

Input	t For LCA Of 17 An (ASB) Items (Co		
ANALYSIS:	TYPE = MIXTURE;		
MODEL:	<pre>%OVERALL% %c#1% [property\$1-gambling\$1*0]; %c#2% [property\$1-gambling\$1*1]; %c#3% [property\$1-gambling\$1*2]; %c#4% [property\$1-gambling\$1*3];</pre>	<pre>!Not needed in Version 3 !Not needed in Version 3</pre>	
OUTPUT:	TECH8 TECH10 TECH11;		
SAVEDATA:	FILE IS asb.sav; SAVE IS CPROB;		
		2	25

Output Excerpts For LCA Of 17 Antisocial Behavior (ASB) Items (Continued) Chi-Square Test of Model Fit for the Latent Class Indicator Model Part** Pearson Chi-Square 20827.381 Value Degrees of freedom 130834 P-Value 1.0000 Likelihood Ratio Chi-Square 6426.411 Value Degrees of Freedom P-Value 130834 1.0000 **Of the 131072 cells in the latent class indicator table, 166 were deleted in the calculation of chi-square due to extreme values. 27

Output Excerpts LCA Of 17 Antisocial Behavior (ASB) Items (Continued) Classification Information FINAL CLASS COUNTS AND PROPORTIONS OF TOTAL SAMPLE SIZE Class 1 672.41594 0.09178 Class 2 1354.72999 0.18492 1821.73064 0.24867 Class 3 Class 4 3477.12344 0.47463 CLASSIFICATION OF INDIVIDUALS BASED ON THEIR MOST LIKELY CLASS MEMBERSHIP Class Counts and Proportions Class 1 0.09064 664 Class 2 1237 0.16885 Class 3 1772 0.24188 Class 4 3653 0.49863 Average Class Probabilities by Class 1 2 3 4 0.896 0.057 0.046 0.000 Class 1 Class 2 0.032 0.835 0.090 0.043 Class 3 0.021 0.072 0.803 0.104 28 Class 4 0.000 0.043 0.070 0.887

Output Excerpts LC It	CA Of 17 A tems (Con		l Behavior	(ASB
Number of Classes				
TECHNICAL 10				
UNIVARIATE MODEL FIT I	NFORMATION			
	Est	imated Prob	Dabilities	
Variable PROPERTY	Hl	Н0	Residual	
Category 1	0.815	0.815	0.000	
Category 2 FIGHT	0.185	0.185	0.000	
Category 1	0.719	0.719	0.000	
Category 2 SHOPLIFT	0.281	0.281	0.000	
Category 1	0.736	0.736	0.000	
Category 2	0.264	0.264	0.000	
				29

		Estimate	ed Probabi	lities
Variable	Variable	HI	Н0	Residual
PROPERTY	FIGHT			
Category 1	Category 1	0.635	0.631	0.004
Category 1	Category 2	0.180	0.184	-0.004
Category 2	Category 1	0.084	0.088	-0.004
Category 2	Category 2	0.101	0.097	0.004
PROPERTY	SHOPLIFT			
Category 1	Category 1	0.656	0.646	0.010
Category 1	Category 2	0.159	0.169	-0.010
Category 2	Category 1	0.080	0.090	-0.010
Category 2	Category 2	0.105	0.095	0.010

TECHNICAL 11- check that the H0 loglikelihood value is the same as the k-1 class H0 loglikelihood value to be certain a local solution has not been reached.

VUONG-LO-MENDELL-RUBIN LIKELIHOOD RATIO TEST FOR 3 (H0) VERSUS 4 CLASSES

19 -0.960 43.222 0.0000
 402.991 0.0000 31

-	-		Of 17 Anti s (Continu	
Class 1) Item		icu)
Thresholds				
	-1.267	0 142	-8.911	
FIGHT\$1	-1.047		-8.972	
SHOPLIFT\$1			-11.927	
LT50\$1	-0.839		-7.377	
GT50\$1	0.523	0.117	4.477	
FORCE\$1	1.027	0.113	9.113	
THREAT\$1	-1.495	0.125	-11.996	
INJURE\$1	0.394	0.096	4.125	
POT1	-2.220	0.193	-11.496	
DRUG\$1	-0.394	0.122	-3.234	
SOLDPOT\$1	-0.053	0.116	-0.455	
SOLDDRUG\$1	1.784	0.135	13.233	
CONS\$1	-0.585	0.109	-5.388	
AUTO\$1	0.591	0.102	5.796	
BLDG\$1	0.290	0.112	2.591	
GOODS\$1	-0.697	0.112	-5.699	
GAMBLING\$1	1.722	0.125	13.774	3

Behavio	or (ASB) Item	s (Contin	ued)
Class 2				
Thresholds				
PROPERTY\$1	1.533	0.113	13.550	
FIGHT\$1	1.403	0.118	11.857	
SHOPLIFT\$1	0.310	0.083	3.755	
LT50\$1	0.988	0.085	11.561	
GT50\$1	3.543	0.218	16.252	
FORCE\$1	4.058	0.319	12.718	
THREAT\$1	0.499	0.097	5.153	
INJURE\$1	2.462	0.165	14.881	
POT1	-3.232	0.311	-10.403	
DRUG\$1	-0.336	0.118	-2.853	
SOLDPOT\$1	1.033	0.109	9.457	
SOLDDRUG\$1	3.189	0.180	17.691	
CONS\$1	1.386	0.093	14.918	
AUTO\$1	2.473	0.144	17.195	
BLDG\$1	3.381	0.223	15.186	
GOODS\$1	2.167	0.148	14.632	

Class 3				
Thresholds				
PROPERTY\$1	0.962	0.104	9.267	
FIGHT\$1	-0.134	0.089	-1.508	
SHOPLIFT\$1	0.780	0.096	8.084	
LT50\$1	1.350	0.108	12.470	
GT50\$1	3.360	0.197	17.067	
FORCE\$1	2.456	0.116	21.213	
THREAT\$1	-0.747	0.105	-7.131	
INJURE\$1	1.465	0.102	14.420	
POT1	0.567	0.088	6.467	
DRUG\$1	3.649	0.298	12.258	
SOLDPOT\$1	5.393	0.737	7.320	
SOLDDRUG\$1	6.263	0.752	8.325	
CONS\$1	0.508	0.079	6.467	
AUTO\$1	2.121	0.102	20.809	
BLDG\$1	3.100	0.193	16.099	
GOODS\$1	1.969	0.130	15.122	
GAMBLING\$1	3.514	0.182	19.260	34
				54

Behavio	r (ASB) Items	s (Continue	ed)
Class 4				
Thresholds				
PROPERTY\$1	3.687	0.176	20.891	
FIGHT\$1	2.281	0.107	21.345	
SHOPLIFT\$1	2.609	0.114	22.923	
LT50\$1	3.046	0.119	25.566	
GT50\$1	5.796	0.403	14.386	
FORCE\$1	5.276	0.343	15.395	
THREAT\$1	2.171	0.136	15.985	
INJURE\$1	5.765	0.664	8.682	
POT1	1.290	0.065	19.888	
DRUG\$1	4.430	0.305	14.502	
SOLDPOT\$1	6.367	0.589	10.801	
SOLDDRUG\$1	6.499	0.573	11.342	
CONS\$1	2.525	0.106	23.928	
AUTO\$1	4.314	0.208	20.784	
BLDG\$1	6.741	0.739	9.120	
GOODS\$1	5.880	0.611	9.627	

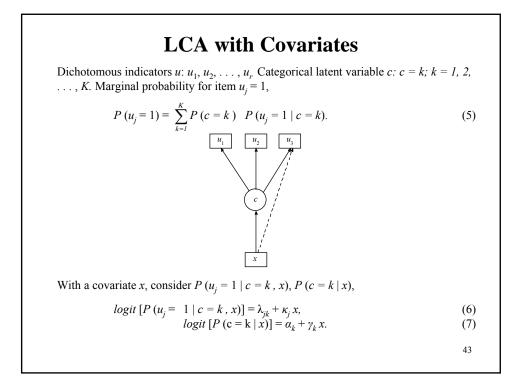
LATENT CLASS	INDICATOR	MODEL PART IN	N PROBABILITY	SCALE
Class 3				
PROPERTY				
Category	2	0.277	0.021	13.321
FIGHT				
Category	2	0.533	0.022	24.193
SHOPLIFT				
Category	2	0.314	0.021	15.120
LT50				
Category	2	0.206	0.018	11.635
GT50				
Category	2	0.034	0.006	5.256
FORCE				
Category	2	0.079	0.008	9.379
THREAT				
Category	2	0.678	0.023	29.703
INJURE				
Category	2	0.188	0.015	12.118

-	-		Of 17 Anti as (Continu	
POT				
Category 2 DRUG	2	0.362	0.020	17.887
Category 2 SOLDPOT	2	0.025	0.007	3.447
Category 2	2	0.005	0.003	1.364
SOLDDRUG Category 2	2	0.002	0.001	1.332
CON Category 2	2	0.376	0.018	20.388
AUTO Category 2	2	0.107	0.010	10.989
BLDG				
Category 2 GOODS	2	0.043	0.008	5.427
Category 2 GAMBLING	2	0.122	0.014	8.752
Category 2	2	0.029	0.005	5.645

Technical 8 Output				
E STEP ITER LOGLIKELIHOOD	ABS CHANGE	E REL CHANGE	CLASS CC	DUNTS
1 -0.50814249D+05	0.000000	0.0000000	888.234 2208.576	1659.562 2569.628
2 -0.41810482D+05	9003.7666995	0.1771898	831.905 2165.174	1722.366 2606.555
3 -0.41706620D+05	103.8616123	0.0024841	767.588 2146.235	1807.168 2605.009
4 -0.41657122D+05	49.4986699	0.0011868	714.379 2146.792	1867.660 2597.170
5 -0.41623995D+05	33.1269450	0.0007952	671.621 2162.382	1905.257 2586.740
				20
				38

96	-0.41007499D+05	0.0002095	0.0000000	673.025 1824.820	1354.398 3473.758
97	-0.41007499D+05	0.0001814	0.0000000	672.982 1824.606	1354.419 3473.993
98	-0.41007499D+05	0.0001572	0.0000000	672.943 1824.408	1354.439 3474.211
99	-0.41007499D+05	0.0001362	0.0000000	672.906 1824.222	1354.457 3474.414
100	-0.41007499D+05	0.0001180	0.0000000	672.872 1824.050	1354.475 3474.604

39


153	-0.41007498D+05	0.000001	0.0000000	672.424	1354.725
				1821.771	3477.081
154	-0.41007498D+05	0.000001	0.0000000	672.423	1354.726
				1821.767	3477.085
155	-0.41007498D+05	0.0000000	0.0000000	672.422	1354.726
				1821.764	3477.088
171	-0.41007498D+05	0.0000000	0.0000000	672,416	1354.730
111	0.1100,1900.05	0.0000000	0.0000000	1821.733	3477.121
172	-0.41007498D+05	0.0000000	0.000000	672.416	1354.730
1/2	-0.4100/4980/05	0.0000000	0.0000000	1821.732	3477.122
173	-0.41007498D+05	0.0000000	0.0000000	672.416	1354.730
1/3	-0.4100/498D+05	0.0000000	0.0000000		10011/00
				1821.731	3477.123
					40

Class Probability Excerpts LCA Of 17 Antisocial Behavior (ASB) Items

Saved Data And Posterior Class Probabilities

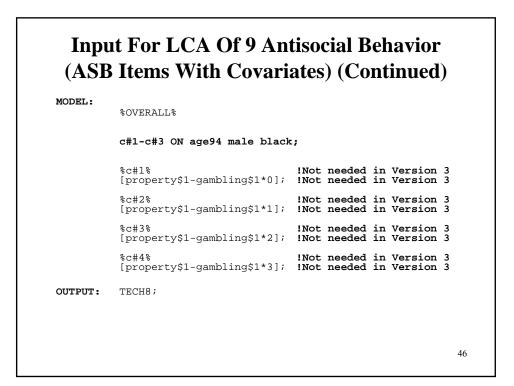
). 0. . 000			0. 01								0.		0.00	0.	0.
1. 0.											0			0	0
.005	0.		995						000		0.		000	0.	0.
J. 1.	0.	0.	0.	0.	1.	0.	Ο.	0.	0.	0.	1.	1.	0.	1.	0.
.003		.0	001		.9	96			000			3.0	000		
D. O.	0.	0.	Ο.	0.	1.	0.	0.	0.	0.	0.	Ο.	0.	0.	Ο.	0
.000		••	04		.1	91		•	805			4.0	000		
0. 1.	0.	Ο.	0.	0.	1.	0.	1.	0.	0.	0.	0.	0.	1.	0.	0.
.004		.1	21		.8	71		•	004			3.0	000		
															41

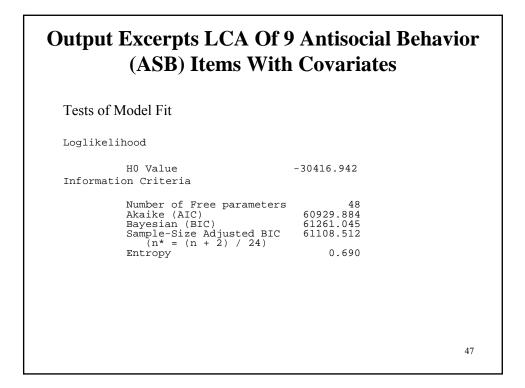
	_	CA So					FA Solutio	
		<u> </u>	l Facto		1		inuous Fa	
	C#1	C#2	C#3	C#4		Factor 1	Factor 2	Factor 3
Property	0.78	0.18	0.28	0.02		0.65	0.19	-0.04
Fighting	0.74	0.20	0.53	0.09		0.19	0.60	-0.13
Shoplifting	0.82	0.42	0.31	0.07		0.61	-0.03	0.18
Stole < \$50	0.70	0.27	0.21	0.05		0.85	-0.21	0.05
Stole > \$50	0.37	0.03	0.03	0.00		0.81	0.00	0.01
Use of force	0.26	0.02	0.08	0.01		0.34	0.37	-0.01
Seriously threaten	0.82	0.38	0.68	0.10		-0.11	0.89	0.03
Intent to injure	0.40	0.08	0.19	0.00		-0.11	0.83	0.08
Use marijuana	0.90	0.96	0.36	0.22		-0.02	0.00	0.88
Use other drugs	0.60	0.58	0.03	0.01		0.01	-0.02	0.88
Sold marijuana	0.51	0.26	0.01	0.00		0.15	0.07	0.74
Sold hard drugs	0.14	0.04	0.00	0.00		0.19	0.09	0.59
"Con" someone	0.64	0.20	0.38	0.07		0.43	0.25	-0.07
Take auto	0.36	0.08	0.11	0.01		0.45	0.15	0.07
Broken into bldg.	0.43	0.03	0.04	0.00		0.80	0.03	0.01
Held stolen goods	0.67	0.10	0.12	0.00		0.69	0.11	0.06
Gambling operation	0.15	0.02	0.03	0.00		0.28	0.36	0.08
					1			
Class Prob.	0.09	0.18	0.25	0.47				

Multinomial Logistic Regression Of c On x

The multinomial logistic regression model expresses the probability that individual i falls in class k of the latent class variable c as a function of the covariate x,

$$P(c_{i} = k | x_{i}) = \frac{e^{\alpha_{k} + \gamma_{k} x_{i}}}{\sum_{s=1}^{K} e^{\alpha_{s} + \gamma_{s} x_{i}}},$$
(87)


where $\alpha_{\kappa} = 0$, $\gamma_{\kappa} = 0$ so that $e^{\alpha_{\kappa} + \gamma_{\kappa} x_i} = 1$.


This implies that the log odds comparing class k to the last class K is

$$log[P(c_i = k \mid x) / P(c_i = K \mid x)] = \alpha_k + \gamma_k x_i$$
(88)

Input For LCA Of 9 Antisocial Behavior (ASB Items With Covariates)

TITLE:	LCA of 9 ASB items with three covariates	
DATA:	FILE IS asb.dat; FORMAT IS 34x 51f2;	
	NAMES ARE property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsml-dsm22 male black hisp	
single	divorce dropout college onset f1 f2 f3 age94;	
	USEVARIABLES ARE property fight shoplift lt50 threat pot drug con goods age94 male black;	
	CLASSES = c(4);	
	CATEGORICAL ARE property-goods;	
ANALYSIS:	TYPE = MIXTURE;	
		45

Output Excerpts LCA Of 9 Antisocial Behavior (ASB) Items With Covariates (Continued)

AGE94 285 .028 -10.045 MALE 2.578 .151 17.086 BLACK .158 .139 1.141 C#2 ON .069 .022 3.182 MALE .187 .110 1.702 BLACK 606 .139 -4.357 C#3 ON .028 -11.311 MALE 1.459 .101 14.431 BLACK .999 .117 8.513 Intercepts . . . C#1 -1.822 .174 -10.485 C#2 .748 .103 .7.258 C#3 324 .125 -2.600	C#1	ON			
BLACK .158 .139 1.141 C#2 ON .122 .182 AGE94 .069 .022 .182 MALE .187 .110 1.702 BLACK 606 .139 -4.357 C#3 ON .110 1.702 AGE94 317 .028 -11.311 MALE 1.459 .101 14.433 BLACK .999 .117 8.513 Intercepts .1822 .174 -10.485 C#2 748 .103 -7.258	AGE94		285	.028	-10.045
C#2 ON AGE94 .069 .022 3.182 MALE .187 .110 1.702 BLACK606 .139 -4.357 C#3 ON AGE94317 .028 -11.311 MALE 1.459 .101 14.431 BLACK .999 .117 8.513 Intercepts C#1 -1.822 .174 -10.485 C#2748 .103 -7.258	MALE		2.578	.151	17.086
AGE94 .069 .022 3.182 MALE .187 .110 1.702 BLACK 606 .139 -4.357 C#3 ON - - AGE94 317 .028 -11.311 MALE 1.459 .101 14.433 BLACK .999 .117 8.513 Intercepts - - - C#1 -1.822 .174 -10.485 C#2 748 .103 -7.258	BLACK		.158	.139	1.141
MALE .187 .110 1.702 BLACK 606 .139 -4.357 C#3 ON - - AGE94 317 .028 -11.311 MALE 1.459 .101 14.431 BLACK .999 .117 8.513 Intercepts -11.822 .174 -10.485 C#2 748 .103 -7.258	C#2	ON			
BLACK 606 .139 -4.357 C#3 ON - - - - - - - - 1.317 .028 - - 1.311 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.4 431 - 1.5 - 1.1 1.4 431 - 1.5 - 1.5 1.1 1.4 431 - 1.5 - 1.5 1.5 - 1.5 1.5 1.5 - 1.5 1.5 - 1.5 1.5 1.5 - 1.5 1.5 - 1.5 1.5 1.5 - 1.5 1.5 - 1.5 1.5 1.5 - 1.5 1.5 1.5 1.5 1.5 1.	AGE94		.069	.022	3.182
C#3 ON AGE94317 .028 -11.311 MALE 1.459 .101 14.431 BLACK .999 .117 8.513 Intercepts C#1 -1.822 .174 -10.485 C#2748 .103 -7.258	MALE		.187	.110	1.702
AGE94 317 .028 -11.311 MALE 1.459 .101 14.431 BLACK .999 .117 8.513 Intercepts . . . C#1 -1.822 .174 -10.485 C#2 748 .103 -7.258	BLACK		606	.139	-4.357
MALE 1.459 .101 14.431 BLACK .999 .117 8.513 Intercepts . . . C#1 -1.822 .174 -10.485 C#2 748 .103 -7.258	C#3	ON			
BLACK .999 .117 8.513 Intercepts C#1 -1.822 .174 -10.485 C#2748 .103 -7.258	AGE94		317	.028	-11.311
Intercepts C#1 -1.822 .174 -10.485 C#2748 .103 -7.258	MALE		1.459	.101	14.431
C#1 -1.822 .174 -10.485 C#2 748 .103 -7.258	BLACK		.999	.117	8.513
C#2748 .103 -7.258	Intercept	S			
	C#1		-1.822	.174	-10.485
C#3324 .125 -2.600	C#2		748	.103	-7.258
	C#3		324	.125	-2.600

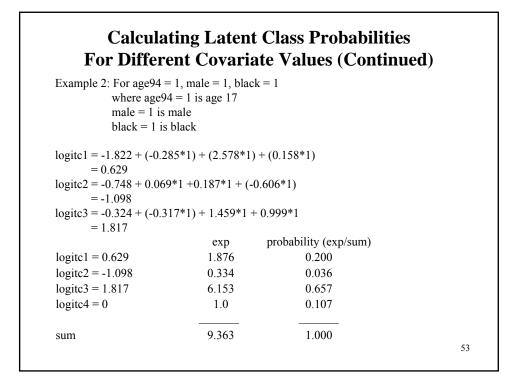
Output Excerpts LCA Of 9 Antisocial Behavior (ASB) Items With Covariates (Continued) Classification Information

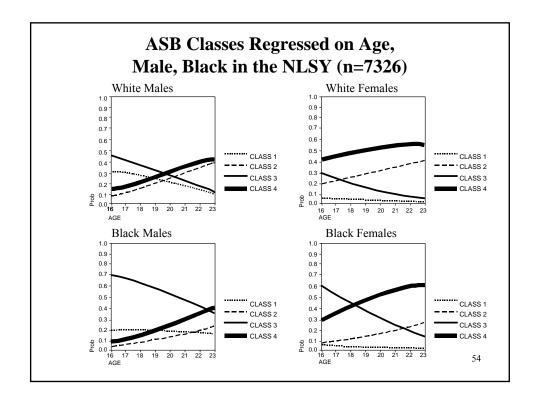
FINAL CLASS C	OUNTS AN	ND PROPO	RTIONS	OF TOTAL	SAMPLE	SIZE		
Class 1	92	8.40043		0.12673				
Class 2	149	9.08913		0.20463				
Class 3	224	9.50562		0.30706				
Class 4	264	9.00482		0.36159				
CLASSIFICATIO	N OF INI	DIVIDUAL	S BASED	ON THEI	R MOST	LIKELY	CLASS	
MEMBERSHIP								
Class Counts	and Prop	portions						
Class 1		920		0.12558				
Class 2		1433		0.19560				
Class 3		2154		0.29402				
Class 4		2819		0.38479				
Average Class	Probabi	ilities 1	by Clas	S				
	1	2	3	4				
Class 1	0.859	0.065	0.076	0.000				
Class 2	0.047	0.808	0.087	0.058				
Class 3	0.033	0.067	0.816	0.084				
Class 4	0.000	0.048	0.105	0.846				49

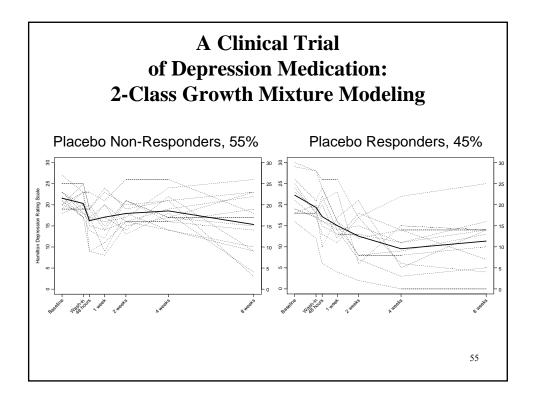
Output Excerpts LCA Of 9 Antisocial Behavior (ASB) Items With Covariates (Continued) LATENT CLASS INDICATOR MODEL PART Class 1 -1.185 0.133 -8.883 PROPERTY\$1 FIGHT\$1 -0.967 0.108 -8.958 SHOPLIFT\$1 -1.307 -10.078 0.130 -0.647 0.108 -5.998 LT50\$1 -1.383 0.108 -12.847 THREAT\$1 -1.656 POT\$1 0.151 -10.935 0.093 0.106 DRUG\$1 0.878 -0.384 CON\$1 0.091 -4.201 GOODS\$1 -0.299 0.106 -2.816 Class 2 1.834 PROPERTY\$1 0.126 14.583 1.700 FIGHT\$1 0.144 11.769 0.425 SHOPLIFT\$1 0.079 5.418 1.113 LT50\$1 0.082 13.504 THREAT\$1 0.549 0.095 5.782 POT\$1 -2.561 0.246 -10.415 DRUG\$1 -0.127 0.107 -1.185 CON\$1 1.346 0.092 14.595 50 GOODS\$1 2.272 0.137 16.592

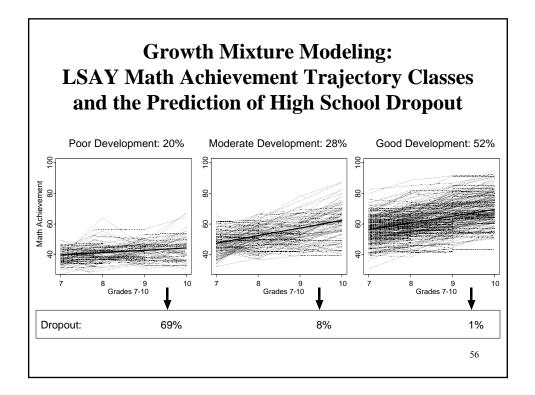
LATENT CLASS INDIC	CATOR MODEL PA	ART		
Class 3				
PROPERTY\$1	1.494	0.110	13.632	
FIGHT\$1	0.032	0.085	0.378	
SHOPLIFT\$1	1.312	0.100	13.083	
LT50\$1	1.929	0.122	15.858	
THREAT\$1	-0.184	0.090	-2.049	
POT\$1	0.916	0.097	9.484	
DRUG\$1	4.484	0.480	9.345	
CON\$1	0.937	0.074	12.626	
GOODS\$1	2.668	0.152	17.502	
Class 4				
PROPERTY\$1	4.699	0.433	10.840	
FIGHT\$1	3.988	0.512	7.787	
SHOPLIFT\$1	2.943	0.153	19.222	
LT50\$1	3.192	0.158	20.193	
THREAT\$1	2.929	0.219	13.360	
POT\$1	1.443	0.082	17.624	
DRUG\$1	5.236	0.637	8.225	
CON\$1	2.814	0.145	19.402	
GOODS\$1	7.307	1.901	3.844	

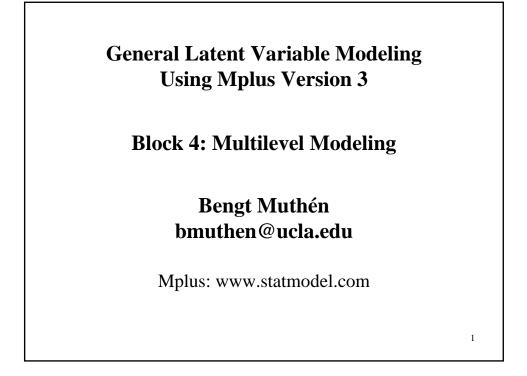
Calculating Latent Class Probabilities For Different Covariate Values

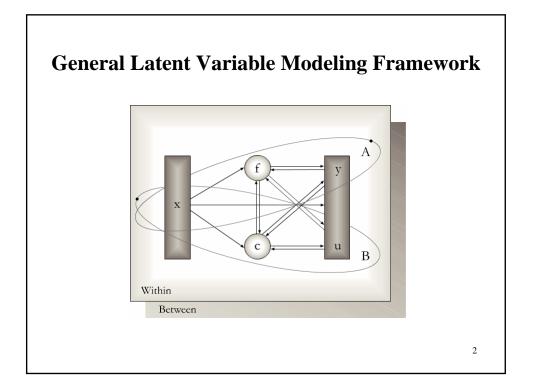

For a class,

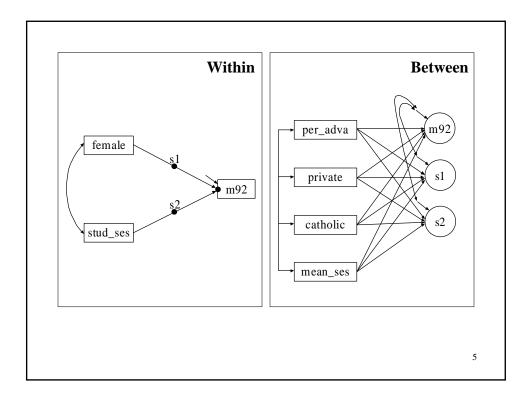

logit = intercept + b1*age94 + b2*male + b3*black


Example 1: For age94 = 0, male = 0, black = 0 where age94 = 0 is age 16


male = 1 is female black = 0 is not black


	exp	probability (exp/sum)
logitc1 = -1.822	0.162	0.069
logitc2 = -0.748	0.473	0.201
logitc3 = -0.324	0.723	0.307
logitc4 = 0	1.0	0.424
sum	2.358	1.001




Multilevel Modeling with Continuous and Categorical Latent Variables

- Multilevel regression
- Multilevel CFA, SEM
- Multilevel growth modeling
- Multilevel discrete-time survival analysis
- Multilevel regression mixture analysis (CACE)
- Multilevel latent class analysis
- Multilevel growth mixture modeling

Multilevel Regression Analysis With Random Intercepts And Random Slopes In Multilevel Terms

3

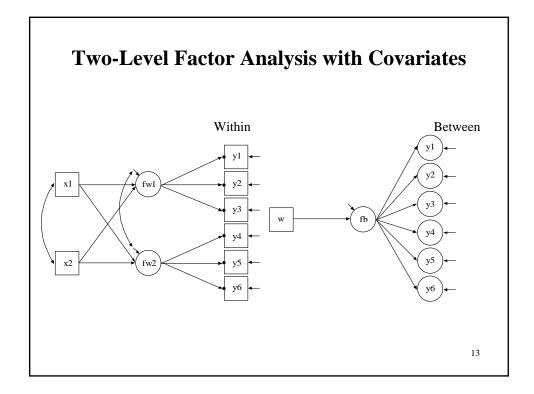
Two-level analysis (individual i in cluster j): y_{ii} : individual-level outcome variable x_{ij} : individual-level covariate w_i : cluster-level covariate Random intercepts, random slopes: Level 1 (Within) : $y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + r_{ij}$, (8)Level 2 (Between) : $\beta_{0j} = \gamma_{00} + \gamma_{01} w_{j} + u_{0j}$, (9) Level 2 (Between) : $\beta_{1j} = \gamma_{10} + \gamma_{11} w_j + u_{1jj}$, (10)• Mplus gives the same estimates as HLM/MLwiN ML (not REML): V(r)(residual variance for level 1), γ_{00} , γ_{01} , γ_{10} , γ_{11} , $V(u_0)$, $V(u_1)$, $Cov(u_0, u_1)$ • Centering of x: subtracting grand mean or group (cluster) mean • Model testing with varying covariance structure, marginal covariance matrix for y 4

Inpu	it For Multilevel Regression Model	
TITLE:	multilevel regression	
DATA:	<pre>FILE IS completev2.dat; ! National Education Longitudinal Study (NELS) FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2 f18.2 f8.0 4f8.2;</pre>	
VARIABLE:	NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp algebra retain aca_back female per_mino hw_time salary dis_fair clas_dis mean_col per_high unsafe num_frie teaqual par_invo ac_track urban size rural private mean_ses catholic stu_teac per_adva tea_exce tea_res;	
	<pre>USEV = m92 female stud_ses per_adva private catholic mean_ses;</pre>	
	<pre>!per_adva = percent teachers with an MA or higher</pre>	
	<pre>WITHIN = female stud_ses; BETWEEN = per_adva private catholic mean_ses; MISSING = school; CLUSTER = school; CENTERING = GRANDMEAN (stud_ses);</pre>	
		6

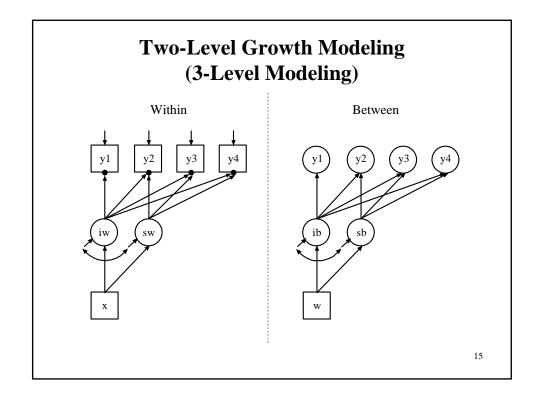
```
prime p
```

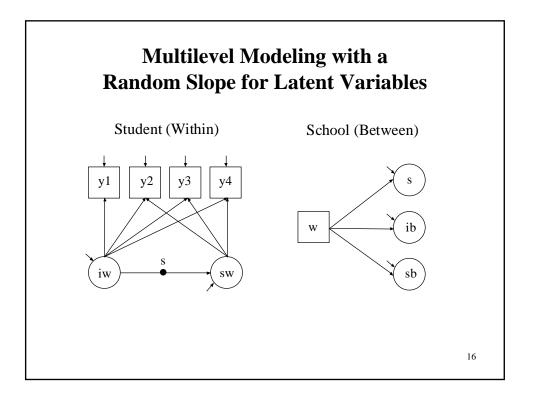
Output Excerpts For Multilevel Regression Model								
	N = 10,933							
Summary of Data								
Number	Number of clusters							
Size (s	Size (s) Cluster ID with Size s							
1	89863	75862	52654	1995	32661	89239	56214	
2	41743 4570	81263 27159	45025 11662	26790 87842	60281 38454	82860	56241	21474
3	65407 40402 66512	61407 93469	83048 98582	42640 68595	41412 11517	67708 17543	83085 75498	39685 81069
4	31646 5095 98461 9208	68153 10904 44395 93859	85508 93569 95317 35719	26234 38063 64112 67574	83390 86733 50880 20048	60835 66125 77381 34139	7400 51670 12835 25784	20770 10910 47555 80675
5	14464 9471	74791 83234	18219 68254	10468 68028	72193 70718	97616 3496	15773 6842	877 45854
								8

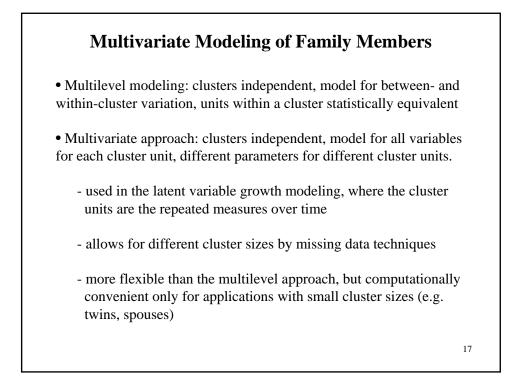
Output Excerpts For Multilevel Regression Model

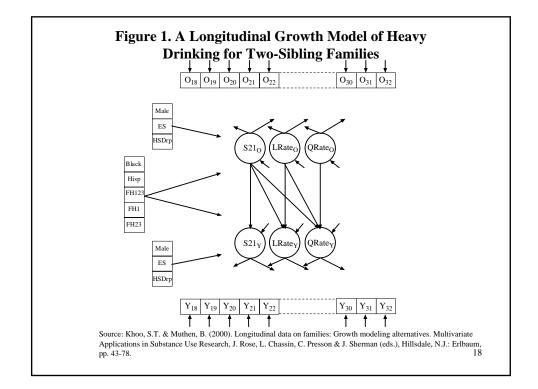

3459 917 58687 81919 37741 63302 63143 79570 15426 97947 93599 85125 10926 22 4603 23 6411 60328 70024 67835 24 36988 22874 50626 19091 25 56619 59710 34292 18826 62209 44586 67832 16515 26 27 82887 847 76909 28 30 36177 12786 53660 47120 94802 31 80553 32 34 53272 36 89842 31572 42 99516 43 75115 Average cluster size 12.187 Estimated Intraclass Correlations for the Y Variables Intraclass Variable Correlation M92 0.107

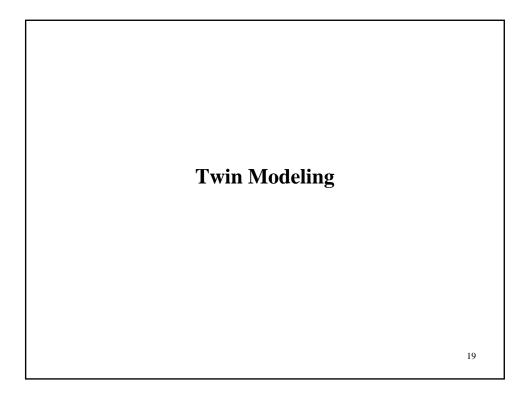
9


-	out Excerpt ression Mo			
Tests of Model Fit				
Akaike Bayesia: Sample-	- ria of Free parame (AIC)	ters 788 789 BIC 789	21 22.808 76.213 09.478	
	Estimates	S.E.	Est./S.E.	
Within Level Residual Variances M92	70.577	1.149	61.442	
Between Level				
S1 ON				
PER_ADVA	0.084	0.841	0.100	
PRIVATE	-0.134	0.844		
CATHOLIC	-0.736			10
MEAN_SES	-0.232	0.428	-0.542	10


Output	Excerpts F	or Multilevel	Regressi	on Model
s2	ON		~	
PER_A	DVA	1.348	0.521	2.587
PRIVA	TE	-1.890	0.706	-2.677
CATHO	LIC	-1.467	0.562	-2.612
MEAN_	SES	1.031	0.283	3.640
M92	ON			
PER_A	DVA	0.195	0.727	0.268
PRIVA	TE	1.505	1.108	1.358
CATHO	LIC	0.765	0.650	1.178
MEAN_	SES	3.912	0.399	9.814
Sl	WITH			
M92		-4.456	1.007	-4.427
S2	WITH			
M92		0.128	0.399	0.322
Intercep	ts			
M92		54.886	0.428	128.231
S1		-0.856	0.507	-1.688
S2		4.075	0.309	13.208
Residua	l Variances			
M92		8.679	1.003	8.649
S1		5.740	1.411	4.066
S2		0.307	0.527	0.583 1


Random Slopes	
• In single-level modeling random slopes β_i describe variation action individuals <i>i</i> .	COSS
$y_i = \alpha_i + \beta_i x_i + \varepsilon_i,$	(100)
$arphi_i = arphi_i + arphi_i^{\prime} + arphi_i^{\prime}, \ lpha_i = lpha + \zeta_{0i},$	(100)
$\beta_i = \beta + \zeta_{1i},$	(102)
Resulting in heteroscedastic residual variances	
$V(y_i \mid x_i) = V(\beta_i) x_i^2 + \theta.$	(103)
• In two-level modeling random slopes β_j describe variation acros clusters <i>j</i>	SS
$y_{ij} = a_i + \beta_j x_{ij} + \varepsilon_{ij},$	(104)
$a_i = a + \zeta_{0i}$	(105)
$\dot{\beta_j} = \beta + \zeta_{1j}$,	(106)
A small variance for a random slope typically leads to slow conver ML-EM iterations. This suggests respecifying the slope as fixed.	rgence of the
Mplus allows random slopes for predictors that are	
• Observed covariates	
• Observed dependent variables (Version 3)	
• Continuous latent variables (Version 3)	12
	12




Three-Level Modeling in Multilevel Terms					
Time point <i>t</i> , individual <i>i</i> , cluster <i>j</i> .					
y_{tij} : individual-level, outcome variable a_{1tij} : individual-level, time-related variable (age, grade) a_{2tij} : individual-level, time-varying covariate x_{ij} : individual-level, time-invariant covariate w_j : cluster-level covariate					
Three-level analysis (Mplus considers Within and Between)					
Level 1 (Within) : $y_{tij} = \pi_{0ij} + \pi_{1ij} a_{1tij} + \pi_{2tij} a_{2tij} + e_{tij}$,	(1)				
Level 2 (Within) : $ - \begin{pmatrix} \pi_{0ij} = \beta_{00j} + \beta_{01j} x_{ij} + r_{0ij}, \\ \pi_{1ij} = \beta_{10j} + \beta_{11j} x_{ij} + r_{1ij}, \\ \pi_{2ij} = \beta_{20ij} + \beta_{21ij} x_{ij} + r_{2tij}. \end{pmatrix} $	(2)				
Level 3 (Between) : $\beta_{00j} = \gamma_{000} + \gamma_{001} w_j + u_{00j}, \\ \beta_{10j} = \gamma_{100} + \gamma_{101} w_j + u_{10j}, \\ \beta_{20tj} = \gamma_{200t} + \gamma_{201t} w_j + u_{20tj}, \\ \beta_{01j} = \gamma_{010} + \gamma_{011} w_j + u_{01j}, \\ \beta_{11j} = \gamma_{110} + \gamma_{111} w_j + u_{11j}, \\ \beta_{21tj} = \gamma_{2t0} + \gamma_{2t1} w_j + u_{2tj}.$	(3)				

