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Abstract

Latent growth curve methodology was used to model systolic blood pressure reactivity and recovery from the cold
pressor test. A piecewise regression approach permitted the separate but simultaneous modeling of the two components
~reactivity and recovery! of the stress process. Data came from a study of 99 participants classified on the basis of
gender, ethnicity, and family history of hypertension. Their systolic blood pressure was assessed at rest, during the cold
pressor test, and during a task recovery period. A measure of task appraisal and readings from ambulatory blood pressure
monitoring during a workday were also examined. The article illustrates a step-by-step approach to modeling reactivity
and recovery. Results indicated that both reactivity and recovery were associated with subsequent systolic blood
pressure at work.

Descriptors: Cardiovascular reactivity, Recovery, Latent growth modeling, Piecewise regression, Cold pressor,
Blood pressure

Recent advances in applications of structural equation modeling to
the measurement of change over time may be used to reframe the
quantification of reactivity and recovery from stress. Specifically,
latent growth curve~LGC! modeling provides a tool for addressing
multiple issues raised in the reactivity literature but to our knowl-
edge, has not been applied in such a context. Our objective is to
illustrate the potential of LGC methodology by modeling systolic
blood pressure~SBP! reactivity and recovery from the cold pressor
test in the context of a complex model of disease risk. In doing so,
important questions about predictors of reactivity and recovery,
about the similarity or uniqueness of these constructs, and about
their potential for predicting disease risk may be addressed.

Sympathetically mediated hyperreactivity to stressors is postu-
lated to be a marker for subsequent hypertension~Manuck &
Krantz, 1986!. Accumulating evidence also suggests that poststress
recovery may predict subsequent hypertension~Borghi, Costa,
Boschi, Mussi, & Ambrosioni, 1986!. Like hyperreactivity, pro-
longed recovery may indicate altered cardiovascular functioning
~Gerin & Pickering, 1995; Hocking Schuler & O’Brien, 1997! and
may provide additional information on the role of behavioral
factors in the development of hypertension~Gerin & Pickering,
1995; Gerin, Pieper, & Pickering, 1994!. The primary value of

estimating parameters of reactivity and recovery lies in their po-
tential for clarifying the underlying mechanisms of disease and
their utility in predicting subsequent measures of disease risk or
disease itself. It is also important to identify individual character-
istics such as demographic, health, or situational variables that
contribute to the specific pattern of reactivity and recovery exhib-
ited by an individual. Likewise, it is useful to compare different
populations exhibiting different risk profiles for disease. In this
manner, comprehensive models of disease risk may be examined
that more accurately reflect the role of reactivity and recovery in
the stress–disease relation.

Past research has relied on the simple change score or delta as
the common way of quantifying reactivity primarily because of its
simplicity ~Llabre, Spitzer, Saab, Ironson, & Schneiderman, 1991!,
although concerns about reliability have been raised. There seems
to be less agreement as to the most appropriate way to quantify
recovery. Several alternatives have been proposed and used by
researchers, including calculating delta from baseline, delta from
task, or the time it takes to reach some criteria of recovery~Haynes,
Gannon, Orimoto, O’Brien, & Brandt, 1991!. Baseline and task
levels have not been controlled in a consistent manner. And al-
though recovery studies make repeated assessments that are linked
to time, many operational definitions have used arbitrary times or
ignored time altogether. Any quantification method of recovery
that does not take time into account is missing critical information.

Conventional analytic methods present limitations when study-
ing reactivity and recovery in the context of more complex models.
Such methods do not correct for measurement error, lose informa-
tion by averaging or using arbitrary times, and examine only one
parameter at a time. LGC modeling provides a means for attending
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to measurement error, incorporating appropriate controls for base-
line and task, and using all of the available information in one
comprehensive analysis. In using this model, improved relations
with external criteria may be detected.

Growth modeling is applicable to data where individuals are
measured repeatedly over a period of time. The questions of
interest focus on the trajectory or pattern of the change~or growth!.
Parameters of the trajectory, such as the slope, can then be related
to other participant characteristics. In growth models there are two
levels of analysis. At Level 1, the unit of analysis is the repeated
observations within a subject. The Level 2 units are the partici-
pants themselves. In LGC methodology, a structural equation mod-
eling ~SEM! approach is used to estimate the parameters of the
growth model. This approach capitalizes on the measurement model
aspect of SEM to specify the Level 1 model, and on the structural
model aspect of SEM to specify the Level 2 models. Growth
models may also be analyzed within the context of hierarchical or
multilevel models~e.g., Bryk & Raudenbush, 1992; Goldstein,
1995!, or mixed linear models~Jenrich & Sluchter, 1986; Laird &
Ware, 1982; Lindstrom & Bates, 1988; Rao, 1958! as is done in
PROC MIXED in SAS ~Littell, Milliken, Stroup, & Wolfinger,
1996!. Each approach has certain advantages and limitations. One
key distinction is that the values for the time variable are part of
the data set when using a multilevel program such as HLM~Bryk
& Raudenbush, 1992! or when using PROC MIXED in SAS. Thus
the values of time need not be constant across participants. How-
ever, the time values become the fixed loadings in the measure-
ment model for the latent slope when analyzing the data using
SEM software such as LISREL~Joreskog & Sorbom, 1993!. There-
fore, time of measurement must be constant across participants
when using many SEM programs for latent growth modeling. This
may be a limitation of the SEM approach for situations where the
design of the study does not permit manipulation of the time
variable. The problem may be circumvented with software such as
Mplus ~Muthen & Muthen, 1998! with missing data capabilities.
On the other hand, the SEM framework allows the testing of
structural models where the latent growth parameters may be
embedded in more complex structures such as mediation models.
Thus with the SEM approach, the latent growth parameters may
function as predictors, outcomes, or both.@For a more compre-
hensive explanation of the SEM approach see Willett and Sayer
~1994! and earlier work by Meredith and Tisak~1990!. Numerous
applications and extensions have been published by McArdle and
colleagues and Muthen~e.g., McArdle & Epstein, 1987; Muthen,
1997, 1998!. Duncan & Duncan~1995! provide a nice introduction.#

Our application of LGC modeling used cold pressor test data
from a study of blood pressure~BP! regulation in adult men and
women~see Saab et al., 1997!. We limited our focus to the cold
pressor test and, therefore, describe only certain aspects of the
protocol. We first modeled the reactivity and recovery periods
separately, then combined them using a piecewise regression ap-
proach. We then tested a model using gender, ethnicity, family
history of hypertension, and task appraisal as predictors of SBP
baseline, reactivity and recovery, and subsequent work SBP as a
marker of cardiovascular disease risk. We included work ambula-
tory BP as a marker of risk, because ambulatory BP levels have
been related to several cardiovascular outcomes, including left
ventricular hypertrophy~Devereux et al., 1983; Prisant & Carr,
1990!, measures of target organ damage~Parati, Pomidossi, Albini,
Malaspina, & Mancia, 1987!, and risk of future morbidity and
mortality ~Mann, Millar, & Raftery, 1985; Perloff, Sokolow, &
Cowan, 1983!.

The cold pressor test has been used in cardiovascular research
for over 60 years~e.g., Hines & Brown, 1936!. Our decision to
examine SBP reactivity to the cold pressor test was based on
evidence supporting a prospective relationship with the develop-
ment of hypertension~Menkes et al., 1989!. Research in the past
15 years has shown that responses to the cold pressor test are
useful in detecting differences in cardiovascular reactivity between
Black and White Americans~Anderson, Lane, Muranaka, Wil-
liams, & Houseworth, 1988; McAdoo, Weinberger, Miller, Fineberg,
& Grim, 1990; Saab et al., 1992, 2000; Tischenkel et al., 1989;
Treiber et al., 1990!, as well as groups with differential risk of
hypertension~Fredrickson & Matthews, 1990!.

Models that link laboratory reactivity to hypertension~Manuck
& Krantz, 1986! should predict associations between laboratory
responses and BP assessments in naturalistic settings. However,
Turner et al.~1994! documented a mixed pattern of results across
studies. A critical review of the literature relevant to the reactivity–
hypertension relation led Pickering and Gerin~1990! to recom-
mend the examination of reactivity in the context of more complex
models of hypertension with the inclusion of relevant controls,
such as family history of hypertension and attention to reliability.
It has been suggested that both reactivity and recovery require
evaluation because they may each provide unique information
about mechanisms involved in BP regulation~Haynes et al., 1991!.
Thus, omitting recovery from reactivity protocols presents an in-
complete picture, one that is inconsistent with early models of
stress~Linden, Earle, Gerin, & Christenfeld, 1997!. LGC model-
ing allows examination of these more complex models that incor-
porate additional risk factors and controls, in the simultaneous and
parsimonious evaluation of reactivity, recovery, and their predic-
tion of BP in natural settings.

Methods

Participants
Participants were 99 healthy adults, 25–54 years of age. Their
resting BP levels wereM 5 118073, SD 5 15.9011.1. The BP
levels ranged from 90 to 155 and 54 to 98 for SBP and diastolic
BP, respectively. No participant was on antihypertensive medica-
tion. They were deemed healthy based upon medical history, phys-
ical examination, fasting blood chemistry analysis, and 12-lead
ECG. Participants were recruited through local newspaper adver-
tising and were paid for their participation. The sample included
21 Blacks and 78 Whites, 48 men and 51 women, and 58 with
positive and 41 with negative family history of hypertension.

Procedures
Laboratory. The present study utilized a 6-day protocol. Psycho-
logical and preliminary physical assessments were made on the
first 2 days. Participants were instructed to eat a light meal prior to
the third day’s session, but were reminded to refrain from smoking
~for 2 hr!, and were instructed not to consume coffee~for 18 hr!,
tea, cocoa, or caffeinated soft drinks~for 6 hr! prior to their
appointment.

On Day 3 of the protocol, BP was recorded while participants
were at rest and while engaged in the cold pressor test. BP was
obtained using a Critikon Dinamap~model 1846SX! Adult0
Pediatric Vital Signs Monitor. The Dinamap monitor measures BP
using the oscillometric method. Three baseline measurements were
assessed at 2-min intervals at the conclusion of a 15-min rest
period. Upon instruction, participants then placed their left foot
into a bucket of ice water~half ice, half water, with temperature
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about 48C! for 90 s. Participants were instructed to keep their foot
in the water until they were told to remove it. BP was assessed
approximately at 0.75 and 1.5 min into the task. Upon instruction
again, participants removed their feet from the water and rested.
Three recovery readings were assessed at 1.5, 3.75, and 5.75 min
after the task. Thus the sampling of BP across baseline, reactivity,
and recovery periods occurred at approximately the following
times in minutes for all participants:

0 0.75 1.5 3.0 5.25 7.25

time in minutes

Upon completion of the cold pressor task, participants re-
sponded to a questionnaire. The task appraisal questionnaire con-
sisted of six items designed to assess the participant’s appraisal of
the “stressfulness” of the task. The items used a 5-point Likert type
scale and included questions on task difficulty, challenge, pain,
frustration, effort, and mood. A lower score on the questionnaire is
associated with greater appraisal of stress.

Ambulatory.Ambulatory BP assessments were made on Days
4 and 5 of the protocol. Participants were fitted with an Accu-
tracker II~Suntech Medical Instruments, Raleigh, NC! ambulatory
BP monitor. The monitor was programmed to make assessments
every 15 min. Participants were instructed to wear it until bedtime
and to return to the lab with the monitor the next day. All partici-
pants in this study were fitted with the monitor around 9:00 a.m.
and wore it until approximately 11:00 p.m. The participants were
given a set of 50 diary cards and instructed to complete a diary
card following each deflation of the cuff. Participants then re-
corded the time and indicated the place~such as work! on the card.
They then left the laboratory and went about their normal daily
activities. A work BP reading was then calculated for each partici-
pant by computing the mean of all the readings taken at work.

Plots. Prior to modeling the data, it is instructive to examine
the plots of the outcome variable as a function of time. Figure 1
presents plots for 10 participants selected at random from our

sample ofn 5 99. Although there are obvious individual differ-
ences across the 10 participants, the plots reveal a general pattern
of increase in SBP from the baseline to the task and a subsequent
decrease with an eventual plateau at the end of the recovery period.
The plots guide the choice of the appropriate mathematical func-
tion, in this case a linear function for the reactivity period and
possibly a curvilinear function for recovery. Other functional forms
are possible to accommodate the pattern suggested by other stressors.

Modeling Reactivity
At Level 1, BP for each individual is expressed as a function of the
time period. For reactivity, we expected that this Level 1 model
would take the form of a line; there would be a steady increase in
BP from baseline to the end of the task. The corresponding linear
model may be specified as

Yij 5 p0j 1 p1j tij 1 rij , ~1!

whereYij represents the BP measure for personj at time i. p0j is
the intercept for the BP trajectory for participantj or the predicted
BP value at baseline, where time5 0 represents the baseline.p1j

is the slope of the trajectory for participantj, or the true change
from baseline to stress level per minute change in time.tij is the
time, i , corresponding to each measurement for personj. And rij

represents the random error or unexplained deviations from the
line for personj. This stochastic or error term contains measure-
ment error combined with any time-specific error. Thus the inter-
cept and slope parameters are estimated separately from the
measurement error and are free from such error. Having one such
equation for each person, we can then treat the true intercept~p0j !
and slope~p1j ! parameters as random variables that may be mod-
eled at Level 2. A simple level 2 model may be

p0j 5 b0 1 u0j

p1j 5 b1 1 u1j ,

whereb0 represents the mean intercept andb1 represents the mean
slope. These are fixed parameters in the Level 2 model.u0j andu1j

are random and represent the residual difference between the mean
of all participants and each person’s intercept or slope, respec-
tively. Estimates of the variance associated with each random
variable may be obtained as well as their covariance. Examination
of the magnitude of the variance components in this simple model
can serve as a guide in determining whether there is sufficient
individual variability to warrant the inclusion of additional predic-
tors at Level 2.

Although typically multiple baseline values are collected at
specific time intervals during a baseline period, the assumption is
that the baseline values will be stable during that period. If so,
there is nothing to be gained by treating them as if they were
different, or by taking the time of their measurement into account.
In fact, this is the assumption underlying the practice of calculating
an average baseline value. Thus all baseline readings were as-
signed the same time value of 0. This is analogous to averaging the
baseline values, as is typically done, but improves on that by
accounting for measurement error around that mean value.1

1It is only when multiple measurements are available for a given time
that random measurement error may be estimated separately from time-
specific error. When only one measurement is available at each time,
measurement and time specific errors are confounded.

Figure 1. Systolic blood pressures during baseline, cold pressor task, and
recovery for 10 randomly selected subjects.
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Figure 2 shows a path diagram of the LGC model of reactivity.
Factor loadings are shown in the arrows pointing from the latent
~ovals! to the observed~boxes! variables. Unlike the typical ap-
plication of SEM where the parameters to be estimated include the
loadings, in LGC modeling, the loadings are fixed to values that
convey information about the nature of the latent variable. The
mean and variance~and covariance! of the latent variables are the
parameters estimated in LGC. In the reactivity model, the latent
variables are the intercept and slope of the model defined in
Equation~1!. As shown in Figure 2, the loading for each latent
intercept is 1, indicating the constant coefficient for the intercept in
the model. The loadings for the latent slope are the corresponding
times when the BP measures were taken.

Any SEM software may be used to obtain estimates of the
model parameters and their standard errors, as well as a test of
model fit. Common estimation methods assume multivariate nor-
mality, and we found the assumption to be tenable for these data.
Mplus was used for all model estimation and testing. Table 1
shows the values, standard errors, andt-values for the fixed pa-
rameters and the variance and covariance components of the ran-
dom parameters for SBP. The results indicate the predicted mean
SBP was 118 mmHg at baseline. During cold pressor reactivity,
there was an average increase of 12.6 mmHg in SBP per minute
into the task. There was also significant variability in baseline

values and reactivity across participants. This means that, although
a pattern characterized by the mean values was consistent with the
data, there were individual differences in both baseline and reac-
tivity worthy of further investigation at Level 2. Also the correla-
tion ~standardized covariance! between baseline and reactivity was
.30 and significant. The linear model provided adequate fit to the
data withx2~13! 5 10.73,p 5 .63 for SBP. The root mean square
error of approximation~RMSEA! value was .001.2 We should note
that the model fit was assessed when constraining the measure-
ment error variances for the baseline measures to be equal to each
other and the measurement error variances for the reactivity mea-
sures also to be equal to each other.3 Measurement errors were
uncorrelated across measures. One advantage of the SEM ap-
proach is the flexibility and ease in specifying these error variance-
covariance structures. Error variances and covariances may be
estimated freely or specified to conform to a predetermined pat-
tern, such as is done in traditional repeated measures analysis of
variance where sphericity is assumed.

Modeling Recovery
For recovery, we expected an initial decline that stabilized over the
recovery period. In this fashion, we may wish to model a quadratic
polynomial as shown below:

Yij 5 p0j 1 p1j tij 1 p2j tij
2 1 rij .

If we code the last time during the cold pressor as time5 0, then
p0j , the intercept for the blood pressure trajectory for participant
j, represents the predicted blood pressure value at the last task
reading.p1j is the linear coefficient of the trajectory for participant
j, or the instantaneous slope at time5 0. The change in meaning
for the slope parameter results from fitting a quadratic function
~parabola!, where the slope changes as a function of time.p2j is
the quadratic coefficient, reflecting the direction and degree of
curvature of the parabola, and contributing to the conditional slope
as described in the results below.tij is the timei corresponding to
each measurement for personj. And rij contains random measure-
ment error or the residual deviation from the curve for personj.

At Level 2, there are now three parameters that may be mod-
eled. For example,

p0j 5 b0 1 u0j

p1j 5 b1 1 u1j

p2j 5 b2 1 u2j .

Each parameter may be modeled by a fixed component expressing
the mean across all participants, and a random component repre-
senting individuals’ deviations from the mean. For the random
variables,uij , variance and covariance components may be esti-
mated. Figure 3 shows the path diagram for recovery, which

2Nonsignificantx2 values indicate consistency between the model and
the data. RMSEA values below .06 are also indicative of close model fit.
For more information about these and other fit indices and relevant criteria
see Hu and Bentler, 1999.

3The conventional hierarchical linear model approach assumes all the
error variances to be equal. In our situation, that assumption was not
consistent with the data. Because within the baseline and the reactivity
periods all procedures are constant, it made logical sense to assume equal
measurement errors within periods, but different between periods.

Figure 2. Latent growth curve model of reactivity.

Table 1. Fixed and Random Parameter Estimates for SBP
Reactivity Model

Estimate
~mmHg! SE t

Fixed parameters
Baseline 117.773 1.586 74.235
Reactivity 12.648 1.022 12.31

Random parameters
Variances

Baseline 241.560 35.425 6.819
Reactivity 77.240 15.044 5.134

Covariances
Baseline0reactivity 40.597 16.518 2.458

t-values. 2 are significant,p , .05.
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includes three latent variables. An added feature of this diagram is
the set of coefficients for the loadings of the quadratic latent
variable. These coefficients are the squares of the times in the
design.

Table 2 shows the results of the parameter estimates for SBP
recovery. As shown in the table, the predicted mean SBP at the end
of the cold pressor test was 137 mmHg. Upon completion of the
task, SBP instantaneously declined by an average of 8.2 mmHg
and this decline is reduced by an average of 1.68 mmHg per
minute~23 0.84, or the coefficient in the first derivative!. The first
derivative of the quadratic polynomial of SBP as a function of time
gives us an equation of the conditional slope~conditional on time!.
The equation is28.21 1.68t. Thus the estimation of the slope in
the context of a quadratic function takes into account both the
linear and the quadratic parameters, as well as the specific time
where the changing slope is calculated. Setting the conditional
slope equation equal to 0 yields the average time associated with
the end of the decline. This may be considered the time when full
recovery has taken place. For our data, this time is 4.85 min into
the recovery period.

Estimates of the variance components showed significant vari-
ability in all three parameters, but the magnitude of the qua-

dratic variance~0.58! was small relative to the variance component
for the task level~552.92! and the linear parameter~34.35!. This
indicates limited variability in curvature, and therefore seeking
external predictors of the quadratic parameter in subsequent equa-
tions may not be productive. There was also significant and
substantial covariation among all three parameter estimates,
particularly between the linear and quadratic components. A test
of model fit indicated that the quadratic polynomial provided
good fit for the SBP cold pressor recovery datax2~3! 5 1.44,
p 5 .70, RMSEA5 .001.4

Piecewise Regression of Reactivity and Recovery
Ideally we should model the reactivity and recovery data jointly, in
order to assess their interrelation. Rather than using a single func-
tion to model the responses across both periods, it is optimal to
model each period separately but simultaneously using a piecewise
regression approach. The piecewise approach is more appropriate
than using a single function for at least two reasons. An obvious
one is that the design characteristics are different between the two
periods. For the reactivity period, the stressor is introduced, whereas
for recovery, the stressor is removed. More importantly, the pa-
rameters of interest~i.e., the slope! for each period are lost when
modeling the combined data, if we assume that time is the only
changing factor.

Piecewise regression may be used for both continuous and
discontinuous functions. Our two functions are continuous because
they share a common time at the last task reading. The reactivity
period began with the baseline values and ended with the last task
reading. The recovery period began with the last task reading and
ended at the last reading taken. The time variable may be centered
at that common point, making that the point of the intercept. Times
associated with the reactivity period will then have the appropriate
negative values, and recovery times will be positive. Alternatively,
time may be more meaningfully kept centered at baseline. Because
we expect baseline values to remain stable during the baseline
period, and modeling the baseline period is not of interest, all of
the baseline values were assigned the same values for time.

Our approach is a modification of the coding described by
Neter, Kutner, Nachtsheim, and Wasserman~1996! for piecewise
regression. In their model, they included time and the interaction
of time by a dummy coded vector. They also centered time at the
common point, meaning that at the common point, time5 0.
Willett, Singer, and Martin~1998! described the potential applica-
tion of piecewise regression to multilevel models using the same
coding approach and a linear function. The approach is to first
compute the interaction of a dummy vector and time. The dummy
vector is coded such that

dummy5 0, if time # 0

dummy5 1, if time . 0,
where 0 is the common point
~i.e., time is centered at the
common point!.

The resulting equation isY 5 b0 1 b1 time1 b2 time * dummy.
Thus, for the initial period, where time# 0, the third term disap-

4An alternative approach may be used to capture the nonlinearity in the
data. Rather than specifying a quadratic component, the last two times
during the recovery period are not assigned fixed time values, but are
allowed to be estimated so as to maximize fit by the program. This
approach fits a linear spline to the data. The final decision should be based
on the optimal model fit for a given application.

Figure 3. Latent growth curve model of recovery.

Table 2. Fixed and Random Parameter Estimates for SBP
Recovery Model

Estimate
~mmHg! SE t

Fixed parameters
Task 137.015 2.459 55.721
Recovery 28.151 0.739 211.036
Recovery2 .836 0.102 8.204

Random parameters
Variances

Task 552.915 85.365 6.477
Recovery 34.346 8.671 3.961
Recovery2 .580 0.191 3.035

Covariances
Task0recovery 2100.436 22.186 24.527
Task0recovery2 9.998 2.828 3.536
Recovery0recovery2 24.195 1.237 23.392

t-values. 2 are significant,p , .05.
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pears andb1 provides an estimate of the slope for that period. The
difference between the slope for the first period and the slope for
the second period is indicated byb2.

To estimate the two slopes, one for each period, rather than one
slope and the difference between the two slopes, we included two
dummy vectors and omitted the original time variable. Once we
centered the time variable at the common point, we then multiplied
it by two dummy coded vectors,D1 andD2.

D1 5 0, if time $ 0

D1 5 1, if time , 0

D2 5 0, if time # 0

D2 5 1, if time . 0.

Centering at the common point, which is the last reactivity value,
yields the following time values:

21.5 2.75 0 1.5 3.75 5.75

time

Multiplying time by D1 andD2 will yield

REACT5 D1 * time:21.5 2.75 0 0 0 0

RECOV5 D2 * time: 0 0 0 1.5 3.75 5.75

The two resulting interaction vectors, REACT and RECOV, con-
tain information about the times for a specific period and the
constant 0, for the other period. The common point has a value of
0 for both vectors; that is where time is centered. The centering
may later be changed to coincide with any time where the value of
0 may be meaningful. In our application, it was meaningful to
consider the baseline value as the point where time should equal 0.
To effect this change we simply added 1.5 to each value in
REACT. The recentered vectors are:

REACT: 0, .75, 1.5, 1.5, 1.5, 1.5

RECOV: 0, 0, 0, 1.5, 3.75, 5.755

The equation is

Yij 5 p0j 1 p1j REACTij 1 p2j RECOVij 1 rij .

When time5 0, both REACT and RECOV are 0, and the response
value represents the intercept. The intercept is the value associated
with the predicted average baseline reading. During the reactivity
period, REACT contains information about the times for that
period, but holds constant the times for the recovery period. Con-

versely, during the recovery period, RECOV contains information
about the times for the recovery period, but holds constant the
times for the reactivity period. Taken together, the two vectors,
REACT and RECOV, convey information about the common in-
tercept, as well as their respective time values. Note that the time
variable was left out of the equation. Including it would have
resulted in an overparameterized model. We then included a qua-
dratic term for the recovery period only, by adding a squared term
for RECOV to the equation.

Results of the piecewise regression model are shown in Table 3.
Model fit indices for the piecewise model of SBP, with a linear
term for the reactivity period and a quadratic term for the recovery
period, suggest a good fit to the data,x2~27! 5 34.53,p 5 .151,
RMSEA5 .053.6 Consistent with the separate models previously
shown, the significant fixed parameters indicate that participants
started at a predicted SBP baseline level of 118 mmHg and in-
creased by an average of 12.6 mmHg per minute during the cold
pressor task. Upon completion of the cold pressor task, partici-
pants’ SBP initially declined by an average of 8.0 mmHg, but the
decline was gradually reduced by an average of 1.68 mmHg per
minute. Minor differences in parameter estimates when models
were fitted separately result from the nature of the iterative esti-
mation algorithm. We consider these differences to be negligible.
There was significant individual variability in all parameters but,
relative to the others, the quadratic variance component was small.
Correlations among parameter estimates showed that baseline was
significantly related to both reactivity~.31! and recovery~2.35!,
with higher baseline values generally associated with increased
reactivity and steeper recovery. There was also considerable cor-
relation between reactivity and recovery~2.82!, raising the ques-
tion of the uniqueness of these two related constructs. The quadratic

5An alternative way to think about the coding is to specify two coded
vectors, REACT and RECOV, each with appropriately varying intervals for
the period it measures, and constant values for the period it does not
measure. So for instance, to code the reactivity period we specify the
values 0, 0.75, 1.5 for the three times during the reactivity period. The
recovery times are then maintained at the constant 1.5. To code the recov-
ery period we begin with the constant 0 and then assign the appropriate
interval, 1.5, to the first recovery time because there was an interval of 1.5
between the last reactivity time and the first recovery time. Likewise the
other recovery times will be assigned 3.75 and 5.75 representing the
difference between the last reactivity time and each recovery time.

6Piecewise LGC models may require the specification of starting
values for convergence. This is particularly true for the random variance
components. Fitting the pieces individually as a first step provides esti-
mates that may then be used as starting values in the more complex model.

Table 3. Fixed and Random Parameter Estimates for Piecewise
Model of Reactivity and Recovery

Estimate
~mmHg! SE t

Fixed parameters
Baseline 117.778 1.592 73.961
Reactivity 12.645 0.998 12.671
Recovery 28.014 0.726 211.038
Recovery2 0.820 0.102 8.058

Random parameters
Variances

Baseline 243.464 35.691 6.821
Reactivity 74.807 14.162 5.282
Recovery 35.125 8.376 4.193
Recovery2 0.647 0.192 3.368

Covariances
Baseline0reactivity 42.084 16.235 2.592
Baseline0recovery 232.632 11.944 22.732
Baseline0recovery2 3.242 1.643 1.973
Reactivity0recovery 242.227 9.319 24.531
Reactivity0recovery2 4.312 1.190 3.624
Recovery0recovery2 24.489 1.221 23.678

t-values. 2 are significant,p , .05.
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component was correlated with reactivity~.62! and recovery~2.94!
as expected, but not with baseline~.26!.

This piecewise LGC model was restated to incorporate our
view of the directionality of effects among the latent parameters
and thereby illustrates this unique capability of LGC modeling. As
shown in Figure 4, baseline levels had a direct effect on both
reactivity and the linear component of recovery. Reactivity also
directly influenced both aspects of recovery. The two components
of recovery were correlated. This path model differs from the
previous piecewise model~reported in Table 3 but not shown in a
figure! in that no effect is presumed between baseline and the
quadratic component of recovery, and therefore is nested in the
previous model. The difference inx2 ~1! 5 0.402 was not signif-
icant, indicating that the more restricted model was not worse. The
fit of this restated model was quite goodx2~28! 5 34.93,p 5 .17,
RMSEA5 .05. Whether relations between variables are specified
as direct effects or simply correlated cannot be distinguished on
statistical grounds, but rather depends on our conceptualization of
the stress process.

Introducing Level 2 Variables
Predictors of the Level 1 model parameters may be introduced at
Level 2. Initially, gender, ethnicity, and family history of hyper-
tension were used to predict baseline SBP levels, and together with
task appraisal, predict reactivity and recovery. In addition, all four
exogenous variables together with baseline, reactivity, and recov-
ery were used to predict work SBP. The structural aspect of this
model is close to being saturated in that most effect parameters are
estimated freely. It was used as a starting point against which other
nested models could be compared. This model fit the data well,
x2~49! 5 57.50,p 5 .165, RMSEA5 .042. An inspection of the
effect parameter estimates indicated several nonsignificant param-
eters that could potentially be considered equal to zero without loss
of fit. This information, together with previous findings in the
literature, was used to revise the model with certain parameters set
to zero. The revised model is presented in Figure 5. Modifications
to the model were done in three steps, although intermediate
results are not presented. First, the paths from the exogenous
variables to the latent parameters were revised. Then, the paths
from the exogenous variables to work SBP were revised. Finally,
the paths from the latent variables to work SBP were systemati-
cally revised and interpreted.

At the first modification step, gender differences in reactivity
and recovery were set to zero, as were the effects of the exogenous
variables on the quadratic component of recovery. All these pa-
rameters were nonsignificant. Also, gender differences in SBP
have not been observed for the cold pressor test~Saab, 1989!
unless gender relevant instructions are given~Lash, Gillespie,
Eisler, & Southard, 1991!, which was not the case in the present
study. With respect to the quadratic component, we initially noted
very little variability in this parameter, and anticipated difficulty
detecting its predictors. The resulting model showed good fit to the
data,x2~55! 5 66.25,p 5 .14, RMSEA5 .045. The fit did not
diminish relative to the more saturated model,Dx2~6! 5 8.75,p .
.10. An examination of the parameter estimates for the effects of
exogenous variables~gender, ethnicity, family history, and task
appraisal! on work SBP revealed that only gender retained a
significant direct effect.

Direct effects from ethnicity, family history, and task appraisal
to work SBP were then set to zero. It is important to note that these
variables retained their indirect effects to work SBP through base-
line, reactivity, and recovery. Again, there was good model fit,
x2~58! 5 67.64, p 5 .18, RMSEA5 .041. Examination of the
direct effects from baseline, reactivity, and recovery to work SBP
revealed that, when all direct effects were specified, the partial
effects of reactivity and recovery were nonsignificant, but the
baseline effect was significant. Because of the shared variability
between reactivity and recovery, it may be the case that their
relation to work SBP was not unique. Therefore, we restated the
model, specifying the effect to work SBP from the recovery pa-
rameters only, with the reactivity effect as indirect. The parameters
of this model, which showed good fit to the data,x2~59! 5 67.69,
p 5 .20, RMSEA5 .039, are the ones shown in Table 4 and
interpreted below. We should mention that an alternative model
with the direct effect to work SBP stemming from reactivity was
also tested and found to fit well,x2~58! 5 68.99, p 5 .15,
RMSEA5 .044. The parameter estimates from both of these last
two models were almost identical, with the exception, of course, of
the effects from reactivity or recovery to work SBP.

The results shown in Table 4 indicate that most direct effects in
the model were statistically significant. However, ethnic differ-
ences were not detected for baseline or reactivity, only in the linear
component of recovery. Family history of hypertension predicted

Figure 4. Piecewise structural model of reactivity and recovery with direct
effects.

Figure 5. Piecewise structural model of reactivity and recovery with
gender, ethnicity, family history of hypertension, and task appraisal as
predictors and work SBP as outcome.
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recovery but not reactivity, whereas appraisal of the task predicted
reactivity, but not recovery. This model explained 19% of the
variance in baseline values, 29% of the variance in reactivity, and
69% and 40% of the variances in the linear and quadratic compo-
nents of recovery, respectively. The model explained 65% of the
variance in work SBP.

Close examination of the partial effect parameters indicated
that, after controlling for the other exogenous variables, the aver-
age baseline SBP of the men was 11.5 mmHg higher than that of
the women. The average SBP of the Blacks was about 6 mmHg
higher than that of the Whites, although this study did not have
sufficient power to detect this effect as significant. Also, the
average SBP of participants with a positive family history of
hypertension was 7.8 mmHg higher than that of those without such
family history.

Baseline SBP levels related to reactivity such that every
1.0 mmHg increase in baseline level was associated with a
0.2 mmHg increase in reactivity. Also, the appraisal of the cold
pressor test as stressful, painful, or difficult was associated with
increases in reactivity, after controlling for baseline level. Every
unit increase in appraisal of stressfulness of the task was associated
with more than 0.5 mmHg in reactivity~low scores represent high
stress appraisal!.

When controlling for other predictors including baseline, reac-
tivity, family history, and task appraisal, the instantaneous decline
in SBP after the cold pressor test was steeper for Whites than for
Blacks by about 0.5 mmHg. With similar controls including eth-
nicity, participants with a positive family history of hypertension
had steeper declines~20.605! in their instantaneous slope than
those without a positive family history. Also, although both base-
line and reactivity directly influenced recovery in the same direc-
tion, the partial effect of reactivity~20.558! was greater than that
of baseline~20.016!. The quadratic component of recovery was
also influenced by reactivity, such that every millimeter of mercury
increase in reactivity was associated with 0.057 rate of change in
recovery. Because the recovery slope was initially negative, the
positive rate of change implies a lessening of the negative slope.

The linear and quadratic components of recovery retained a sig-
nificant correlation~2.42!, even when controlling for other vari-
ables in the model.

With respect to work SBP, the average for men was 7.5 mmHg
higher than for women. As one would expect, higher baseline
values were also associated with higher work values. Both com-
ponents of recovery influenced work SBP such that higher values
at work are associated with steeper instantaneous slopes and smaller
changes in slope, a pattern consistent with higher reactivity. The
magnitude of the unstandardized partial coefficients cannot be
compared between the linear and quadratic components of recov-
ery because they occur in different units, essentially representing
different variables~analogous to velocity and acceleration!.

Discussion

LGC modeling provided a powerful method for testing a complex
model of SBP reactivity and recovery from the cold pressor test.
Unlike more conventional approaches, such as regression, LGC
modeling controlled for measurement error in reactivity and re-
covery, permitted their simultaneous analysis, used all individual
data points, and allowed reactivity and recovery to function as both
predictors and outcomes of other variables.

The model included common predictors of BP identified in the
literature: gender, ethnicity, and family history of hypertension, as
well as a measure of appraisal of the stressfulness of the task. In
addition, work SBP was used as an outcome variable: a marker of
disease risk. A stepwise approach was used to develop and test the
model. This approach is recommended because it facilitates the
identification of problems common to SEM model fitting. Infor-
mation from prior literature, assumptions about the stress process,
and the data, all contributed to the final model. The results showed
good fit of the model to the data.

Consistent with prior literature, family history of hypertension
was a significant predictor of baseline SBP and the initial recovery
from the cold pressor test, but not reactivity. The importance of
including family history as a control variable in reactivity studies
has been underscored by Pickering and Gerin~1990!, based on the
number of studies reporting their association~see Fredrickson &
Matthews, 1990; Matthews & Rakacsky, 1986 for reviews!. Two
factors may explain the lack of direct association in the present
study. One possible explanation is that in the model studied,
baseline BP was included as a mediator in the family history–
reactivity relation. Family history may influence reactivity because
it influences initial BP levels. This possibility points to what is
already commonly mentioned but not practiced in the literature:
that reactivity studies control for baseline levels. A second possi-
bility lies in the choice of cardiovascular parameter for the present
study. SBP was chosen because of its emergence in a prospective
study of cold pressor reactivity and subsequent hypertension~Men-
kes et al., 1989!. However, the family history influence on reac-
tivity may be more easily detected on measures of peripheral
resistance. Multivariate models of cardiovascular reactivity may
illuminate this possibility.

Gender differences in SBP, commonly reported in the literature
~Saab, 1989! were evident in this study. The differences were
observed in baseline levels and in levels at work, but not in
reactivity or recovery. It seems that gender differences in reactivity
are specific to the task used, and that the cold pressor test is not one
to evoke them. Lash et al.~1991! suggested that part of the
reactivity gender effect is a function of cognitive appraisal of a
stressor as gender specific. They, in fact, detected gender differ-

Table 4. Effect Parameters of Final Model

Criterion Predictor
Estimate
~mmHg! SE t

Baseline Male gender 11.496 2.908 3.953
Black ethnicity 5.924 3.568 1.661
Positive family Hx 7.759 2.901 2.675

Reactivity Black ethnicity 1.467 2.218 0.662
Positive family Hx 22.224 1.904 21.168
Task appraisal 20.578 0.147 23.920
Baseline 0.207 0.061 3.375

Recovery Black ethnicity 0.505 0.231 2.218
Positive family Hx 20.605 0.201 23.009
Task appraisal 20.003 0.018 20.155
Baseline 20.016 0.007 22.132
Reactivity 20.558 0.058 29.602

Recovery2 Reactivity 0.057 0.011 5.410
Recovery 21.994a 0.743 22.683

Work SBP Male gender 7.546 1.775 4.251
Baseline 0.476 0.068 7.042
Recovery 21.638 0.573 22.856
Recovery2 210.119 4.318 22.344

aValue represents the covariance.
t-values. 2 are significant,p , .05.
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ences in SBP reactivity to the cold pressor test when “masculine”
rather that gender-neutral instructions were provided. The standard
administration of the cold pressor test, however, is not gender
specific. As a result, gender differences in reactivity to the cold
pressor have not been widely reported~Saab, 1989!.

Ethnic differences in baseline and reactivity SBP were not strong
enough to be detected in the present study with a small number of
Black participants, and emerged only with respect to the linear com-
ponent of recovery. The difference in recovery slopes was small in
magnitude, once baseline, reactivity, and family history were con-
trolled. Given the greater prevalence of hypertension in Blacks when
compared to Whites, stronger ethnic effects were anticipated. How-
ever, ethnic differences in BP levels, reactivity, or the mechanism
by which recovery from stress operates may be more evident in
DBP. In their meta-analysis of hypertension risk factors and recov-
ery from stress, Hocking Schuler & O’Brien~1997! noted hetero-
geneity across studies in the effect of ethnicity on SBP recovery,
with some studies reporting “more complete recovery” for Blacks
when compared to Whites. We recognize that the small number of
Black participants in our data may have prevented us from more
fully understanding the ethnicity effect.

The predictor that had the strongest effect on reactivity was task
appraisal. This measure included an item on the respondent’s
perception of pain from the cold pressor. Studies from our labo-
ratory documented the role of pain perception on reactivity to the
cold pressor test~Peckerman et al., 1991, 1994, 1998!. Peckerman
et al. ~1994! provided evidence that large magnitude increases in
BP reactivity to the cold pressor test are strongly related to the
magnitude of perceived pain~r 5 .79!. Furthermore, the pain and
nonpain-related increases in BP were analyzed as residual effects
of concurrent changes in cardiac output and peripheral resistance.
The partial effect associated with pain included positive changes in
both cardiac output and peripheral resistance, whereas the nonpain
effect was specifically related to peripheral resistance only. Peck-
erman et al.~1994! concluded that elevated BP reactivity to this
test is closely related to its psychological properties. The results of
the present study support that conclusion.

SBP at work was used as a marker of disease risk. Ideally our
model would have included a more direct measure such as left
ventricular hypertrophy. The results showed an effect from either
reactivity or recovery on this marker. When both components were
included together, their shared variation did not allow the detection
of their effect. But in the context of a path model, the effect was
seen when the reactivity effect was mediated by recovery. It was
clear from our results that both reactivity and recovery influence
work SBP, even after controlling for baseline levels. Although the

inferences that may be drawn from this study pertain to disease
risk rather than disease per se, the potential for the methodology to
uncover important relations that may underlie disease is quite
clear. Future applications of LGC methodology, which include
better disease markers, will go a long way toward unraveling the
role of reactivity in the pathogenesis of hypertension.

Are reactivity and recovery different processes? The strong
inverse relation between them would suggest that they reflect
opposite processes. However, there are a few distinct features
detected in this study that would suggest the need to differentiate
them. At a basic level, they are modeled by different functions,
linear for reactivity and quadratic for recovery. And although the
quadratic component of recovery did not display a lot of individual
variability in this sample, it was a significant predictor of work
SBP, suggesting that both aspects may indeed be important for
predicting disease. Another distinction between reactivity and re-
covery was in their predictors with direct effects. Beyond what is
explained by baseline levels, reactivity was predicted by appraisal
of the task, whereas the linear component of recovery was influ-
enced by ethnicity and by family history of hypertension. But
although some differentiation was evident with the cold pressor
test, other stressors might differentiate them further. A single
stressor may not identify all of the uniqueness of reactivity and
recovery. In fact, although the cold pressor has been shown to have
a psychological component, pain~Peckerman et al., 1994!, this
may not be the psychological mechanism associated with delayed
recovery.

Using LGC methodology raised sampling considerations in
these kinds of studies. How frequently and when should we sample
the outcome? The number of measurements determines the shape
of the curve that can be modeled. The spacing of the measurements
determines the change that may be captured. Frequent sampling
should coincide with the time period when the greatest change is
taking place. The expected trajectory may be used to guide sam-
pling decisions. If change from baseline is expected right away,
more frequent sampling should occur early. Certainly, more fre-
quent sampling will allow the estimation of more complex curves
and better separation between the latent variables and error. The
issue of how many measurements are sufficient to estimate the
different parameters with precision is beyond the scope of this
paper, but worthy of further investigation with LGC methodology.

Despite the limitations of the study in terms of the measure of
disease risk, the use of a single stressor, and the univariate nature
of the cardiovascular parameter, LGC methodology proved a pow-
erful tool for studying the processes of BP reactivity and recovery
from stress and the prediction of BP at work.
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