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Further Practical Issues
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Specifying Time Scores For 
Quadratic Growth Models

Quadratic growth model

yti = η0i + η1i xt + η2i + εti

• Need three latent variables to describe a quadratic growth 
model: Intercept, linear slope, quadratic slope

• Linear slope time scores: 0  1  2  3
0 .1 .2 .3

• Quadratic slope time scores: 0     1     4     9
0  .01  .04  .09
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Specifying Time Scores For Non-Linear
Growth Models With Fixed Time Scores

Non-Linear Growth Models with Fixed Time scores
• Need two latent variables to describe a non-linear growth 

model: Intercept and slope

Growth model with a logarithmic growth curve--ln(t)

Time scores: 0   0.69   1.10   1.39
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Specifying Time Scores For Non-Linear
Growth Models With Fixed Time Scores (Continued)

Growth model with an exponential growth curve–
exp(t-1) - 1

Time scores: 0   1.72   6.39   19.09
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Piecewise Growth Modeling

6

Piecewise Growth Modeling

• Can be used to represent different phases of development
• Can be used to capture non-linear growth
• Each piece has its own growth factor(s)
• Each piece can have its own coefficients for covariates
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One intercept growth factor, two slope growth factors
0     1     2     2     2     2     Time scores piece 1
0     0     0     1     2     3     Time scores piece 2
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Piecewise Growth Modeling (Continued)
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Two intercept growth factors, two slope growth factors
0     1     2     Time scores piece 1

0     1     2     Time scores piece 2
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Input For LSAY Piecewise Growth Model
With Covariates

i s1 | math7@0 math8@1 math9@1 math10@2;
i s2 | math7@0 math8@0 math9@1 math10@1;
i s1 s2 ON mothed homeres;

MODEL:

i BY math7-math10@1;
s1 BY math7@0 math8@1 math9@1 math10@2;
s2 BY math7@0 math8@0 math9@1 math10@1;
[math7-math10@0];
[i s1 s2];
i s1 s2 ON mothed homeres;

MODEL:

Alternative language:

10

n = 935

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 11.721
Degrees of Freedom 3
P-Value .0083

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate .056
90 Percent C.I. .025 .091
Probability RMSEA <= .05 .331

Output Excerpts LSAY Piecewise Growth Model 
With Covariates
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.120.081.950.096.091HOMERES
-.109-.113-.858.147-.126MOTHED

S1       ON

.181.1232.329.124.289HOMERES

.178.1852.285.191.436MOTHED
S2       ON

.257.1747.524.1851.389HOMERES

.256.2667.488.2842.127MOTHED
I        ON

Estimates     S.E.  Est./S.E.  Std     StdYX

Selected Estimates

Output Excerpts LSAY Piecewise Growth Model 
With Covariates (Continued)
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Growth Model With Individually-Varying Times
Of Observation And Random Slopes

For Time-Varying Covariates
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Growth Modeling In Multilevel Terms

Time point t, individual i (two-level modeling, no clustering):

yti : repeated measures of the outcome, e.g. math achievement
a1ti : time-related variable; e.g. grade 7-10
a2ti : time-varying covariate, e.g. math course taking
xi : time-invariant covariate, e.g. grade 7 expectations

Two-level analysis with individually-varying times of observation and 
random slopes for time-varying covariates:

Level 1: yti = π0i + π1i a1ti + π2ti  a2ti + eti , (55)

π 0i = ß00 + ß01 xi + r0i ,
π 1i = ß10 + ß11 xi + r1i , (56)
π 2i = ß20 + ß21 xi + r2i .

Level 2:

14

Growth Modeling In
Multilevel Terms (Continued)

Time scores a1ti read in as data (not loading parameters). 

• π2ti possible with time-varying random slope variances
• Flexible correlation structure for V (e) = Θ (T x T)
• Regressions among random coefficients possible, e.g.

π1i = ß10 + γ1  π0i + ß11  xi + r1i , (57)
π2i = ß20 + γ2 π0i + ß21  xi + r2i . (58)
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NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9

crs10 female mothed homeres a7-a10; 

! crs7-crs10 = highest math course taken during each
! grade (0=no course, 1=low, basic, 2=average, 3=high.

! 4=pre-algebra, 5=algebra I, 6=geometry,

! 7=algebra II, 8=pre-calc, 9=calculus)

MISSING ARE ALL (9999);

CENTER = GRANDMEAN (crs7-crs10 mothed homeres);
TSCORES = a7-a10;

VARIABLE:

FILE IS lsaynew.dat; 
FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;

DATA: 

Growth model with individually varying times of 
observation and random slopes

TITLE:

Input For Growth Model With Individually 
Varying Times Of Observation
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i s | math7-math10 AT a7-a10;
stvc | math7 ON crs7;
stvc | math8 ON crs8;
stvc | math9 ON crs9;
stvc | math10 ON crs10;
i ON female mothed homeres;
s ON female mothed homeres;
stvc ON female mothed homeres;
i WITH s;
stvc WITH i;
stvc WITH s;

MODEL:

TYPE = RANDOM MISSING;
ESTIMATOR = ML;
MCONVERGENCE = .001;

ANALYSIS:

TECH8;OUTPUT:

math7 = math7/10;
math8 = math8/10;
math9 = math9/10;
math10 = math10/10;

DEFINE:

Input For Growth Model With Individually 
Varying Times Of Observation (Continued)
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Output Excerpts For Growth Model With
Individually Varying Times Of Observation

And Random Slopes For Time-Varying Covariates 

n = 2271

Tests of Model Fit

Loglikelihood

H0 Value -8199.311

Information Criteria

Number of Free Parameters          22
Akaike (AIC) 16442.623
Bayesian (BIC) 16568.638
Sample-Size Adjusted BIC    16498.740

(n* = (n + 2) / 24)
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192.0330.0020.004S
2.0870.0050.011I

STVC       WITH
6.4450.0060.038S

I          WITH
2.1670.0040.009HOMERES
0.4290.0070.003MOTHED

-0.5900.013-0.008FEMALE
STVC       ON

4.8350.0040.019HOMERES
2.4290.0060.015MOTHED

-2.0170.012-0.025FEMALE
S          ON

14.1940.0110.159HOMERES
10.2310.0180.187MOTHED
5.2470.0360.187FEMALE

I          ON

Output Excerpts For Growth Model With Individually 
Varying Times Of Observation And Random Slopes 

For Time-Varying Covariates (Continued)
Model Results Est./S.E.S.E.Estimates

205.0550.0020.012STVC
12.0640.0030.036S
25.0870.0230.570I
12.5000.0140.169MATH10
18.4970.0080.156MATH9
22.2320.0080.178MATH8
16.4640.0110.185MATH7

Residual Variances

11.4160.0100.113STVC
47.2750.0090.417S
198.4560.0254.992I
0.0000.0000.000MATH10
0.0000.0000.000MATH9
0.0000.0000.000MATH8
0.0000.0000.000 MATH7

Intercepts

Output Excerpts For Growth Model With Individually 
Varying Times Of Observation And Random Slopes 

For Time-Varying Covariates (Continued)
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• In single-level modeling random slopes ßi describe variation across     
individuals i,

yi = αi + ßi xi + εi , (100)
αi = α + ζ0i , (101)
ßi = ß + ζ1i , (102)

Resulting in heteroscedastic residual variances
V (yi | xi) = V ( ßi )       + (103)

• In two-level modeling random slopes ßj describe variation across 
clusters j

yij = aj + ßj xij + εij , (104)
aj = a + ζ0j , (105)
ßj = ß + ζ1j . (106)

A small variance for a random slope typically leads to slow convergence of the 
ML-EM iterations. This suggests respecifying the slope as fixed.

Mplus allows random slopes for predictors that are
• Observed covariates
• Observed dependent variables 
• Continuous latent variables

2
ix θ

Random Slopes
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• Decreasing variances of the observed variables over time may make the 
modeling more difficult

• Scale of observed variables – keep on a similar scale
• Convergence – often related to starting values or the type of model being 

estimated
• Program stops because maximum number of iterations has been reached

• If no negative residual variances, either increase the number of
iterations or use the preliminary parameter estimates as starting values

• If there are large negative residual variances, try better starting values
• Program stops before the maximum number of iterations has been 

reached
• Check if variables are on a similar scale
• Try new starting values

• Starting values – the most important parameters to give starting values to are 
residual variances and the intercept growth factor mean

• Convergence for models using the | symbol
• Non-convergence may be caused by zero random slope variances which 

indicates that the slopes should be fixed rather than random

Computational Issues For Growth Models


