Further Practical Issues

Specifying Time Scores For Quadratic Growth Models

Quadratic growth model

$$
y_{t i}=\eta_{0 i}+\eta_{1 i} x_{t}+\eta_{2 i} x_{t}^{2}+\varepsilon_{t i}
$$

- Need three latent variables to describe a quadratic growth model: Intercept, linear slope, quadratic slope

- Linear slope time scores: 0123
- Quadratic slope time scores: $0 \quad 1 \quad 4 \quad 9$

Specifying Time Scores For Non-Linear Growth Models With Fixed Time Scores

Non-Linear Growth Models with Fixed Time scores

- Need two latent variables to describe a non-linear growth model: Intercept and slope

Growth model with a logarithmic growth curve-- $\ln (\mathrm{t})$

Time scores: $\begin{array}{lllll}0 & 0.69 & 1.10 & 1.39\end{array}$

Specifying Time Scores For Non-Linear

Growth Models With Fixed Time Scores (Continued)

Growth model with an exponential growth curve-
$\exp (t-1)-1$

Time scores: $\quad \begin{array}{lllll}0 & 1.72 & 6.39 & 19.09\end{array}$

Piecewise Growth Modeling

Piecewise Growth Modeling

- Can be used to represent different phases of development
- Can be used to capture non-linear growth
- Each piece has its own growth factor(s)
- Each piece can have its own coefficients for covariates

One intercept growth factor, two slope growth factors
$\begin{array}{lllllll}0 & 1 & 2 & 2 & 2 & 2 & \text { Time scores piece } 1\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 & 2 & 3\end{array}$ Time scores piece 2

Piecewise Growth Modeling (Continued)

Two intercept growth factors, two slope growth factors

0	1	2	Time scores piece 1

$\begin{array}{lll}0 & 1 & 2\end{array}$ Time scores piece 2

Input For LSAY Piecewise Growth Model With Covariates

MODEL: i s1 | math7@0 math8@1 math9@1 math10@2;
i s2 | math7@0 math8@0 math9@1 math10@1;
i s1 s2 ON mothed homeres;

Alternative language:

MODEL: i BY math7-math10@1;
s1 BY math7@0 math8@1 math9@1 math10@2;
s2 BY math7@0 math8@0 math9@1 math10@1;
[math7-math10@0];
[i s1 s2];
i s1 s2 ON mothed homeres;

Output Excerpts LSAY Piecewise Growth Model With Covariates

$$
\mathrm{n}=935
$$

Tests of Model Fit

```
CHI-SQUARE TEST OF MODEL FIT
    Value 11.721
    Degrees of Freedom 3
    P-Value . }008
RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)
    Estimate . }05
    90 Percent C.I. . }02
    Probability RMSEA <= . }05\mathrm{ . }33
```


Output Excerpts LSAY Piecewise Growth Model With Covariates (Continued)

Selected Estimates

Estimates	S.E.	Est./S.E. Std	StdYX	
2.127	.284	7.488	.266	.256
1.389	.185	7.524	.174	.257
-.126	.147	-.858	-.113	-.109
.091	.096	.950	.081	.120
.436	.191	2.285	.185	.178
.289	.124	2.329	.123	.181

Growth Model With Individually-Varying Times Of Observation And Random Slopes

For Time-Varying Covariates

Growth Modeling In Multilevel Terms

Time point t, individual i (two-level modeling, no clustering):
$y_{t i}$: repeated measures of the outcome, e.g. math achievement
$a_{1 t i}$: time-related variable; e.g. grade 7-10
$a_{2 t i}$: time-varying covariate, e.g. math course taking
x_{i} : time-invariant covariate, e.g. grade 7 expectations
Two-level analysis with individually-varying times of observation and random slopes for time-varying covariates:

$$
\begin{align*}
& \text { Level 1: } y_{t i}=\pi_{0 i}+\pi_{1 i} a_{1 t i}+\pi_{2 t i} a_{2 t i}+e_{t i}, \tag{55}\\
& \text { Level 2: }\left\{\begin{array}{l}
\pi_{0 i}=\beta_{00}+\beta_{01} x_{\mathrm{i}}+r_{0 \mathrm{i}}, \\
\pi_{1 i}=\beta_{10}+\beta_{11} x_{i}+r_{1 i}, \\
\pi_{2 i}=\beta_{20}+\beta_{21} x_{i}+r_{2 i} .
\end{array}\right. \tag{56}
\end{align*}
$$

Growth Modeling In Multilevel Terms (Continued)

Time scores $a_{1 i i}$ read in as data (not loading parameters).

- $\pi_{2 t i}$ possible with time-varying random slope variances
- Flexible correlation structure for $V(e)=\Theta(T \times T)$
- Regressions among random coefficients possible, e.g.

$$
\begin{align*}
& \pi_{1 i}=\beta_{10}+\gamma_{1} \pi_{0 i}+\beta_{11} x_{i}+r_{1 i}, \tag{57}\\
& \pi_{2 i}=\beta_{20}+\gamma_{2} \pi_{0 i}+\beta_{21} x_{i}+r_{2 i} . \tag{58}
\end{align*}
$$

Input For Growth Model With Individually Varying Times Of Observation

TITLE: Growth model with individually varying times of observation and random slopes
DATA: FILE IS lsaynew.dat;
FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;
VARIABLE: NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9
crs10 female mothed homeres a7-a10;
! crs7-crs10 $=$ highest math course taken during each
! grade (0=no course, 1=low, basic, 2=average, 3=high.
! 4=pre-algebra, 5=algebra I, 6=geometry,
! 7=algebra II, 8=pre-calc, 9=calculus)
MISSING ARE ALL (9999);
CENTER = GRANDMEAN (crs7-crs10 mothed homeres);
TSCORES = a7-a10;

Input For Growth Model With Individually Varying Times Of Observation (Continued)

```
DEFINE: math7 = math7/10;
math8 = math8/10;
math9 = math9/10;
math10 = math10/10;
ANALYSIS: TYPE = RANDOM MISSING;
ESTIMATOR = ML;
MCONVERGENCE = .001;
MODEL: i s | math7-math10 AT a7-a10;
    stvc | math7 ON crs7;
    stvc | math8 ON crs8;
    stvc | math9 ON crs9;
    stvc | math10 ON crs10;
    i ON female mothed homeres;
    s ON female mothed homeres;
    stvc ON female mothed homeres;
    i WITH s;
    stvc WITH i;
    stvc WITH s;
OUTPUT: TECH8;
```

Output Excerpts For Growth Model With
Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates

$$
n=2271
$$

Tests of Model Fit
Loglikelihood
H0 Value -8199.311
Information Criteria

Number of Free Parameters	22
Akaike (AIC)	16442.623
Bayesian (BIC)	16568.638
Sample-Size Adjusted BIC	16498.740
$\quad\left(n^{*}=(n+2) / 24\right)$	

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued)

Model Results		Estimates	S.E.	Est./S.E.	
I	ON				
FEMALE		0.187	0.036	5.247	
MOTHED		0.187	0.018	10.231	
HOMERES		0.159	0.011	14.194	
S	ON				
FEMALE		-0.025	0.012	-2.017	
MOTHED		0.015	0.006	2.429	
HOMERES		0.019	0.004	4.835	
STVC	ON				
FEMALE		-0.008	0.013	-0.590	
MOTHED		0.003	0.007	0.429	
HOMERES		0.009	0.004	2.167	
I	WITH				
S		0.038	0.006	6.445	
STVC W	WITH				
I		0.011	0.005	2.087	
S		0.004	0.002	2.033	19

Output Excerpts For Growth Model With Individually
 Varying Times Of Observation And Random Slopes
 For Time-Varying Covariates (Continued)

Intercepts

MATH7	0.000	0.000	0.000
MATH8	0.000	0.000	0.000
MATH9	0.000	0.000	0.000
MATH10	0.000	0.000	0.000
I	4.992	0.025	198.456
S	0.417	0.009	47.275
STVC	0.113	0.010	11.416
idual Variances	0.185	0.011	
MATH7	0.178	0.008	16.464
MATH8	0.156	0.008	22.232
MATH9	0.169	0.014	18.497
MATH10	0.570	0.023	12.500
I	0.036	0.003	25.087
S	0.012	0.002	12.064
STVC			5.055

Random Slopes

- In single-level modeling random slopes β_{i} describe variation across individuals i,

$$
\begin{array}{r}
y_{i}=\alpha_{i}+\beta_{i} x_{i}+\varepsilon_{i}, \\
\alpha_{i}=\alpha+\zeta_{0 i}, \\
\beta_{i}=\beta+\zeta_{1 i}, \tag{102}
\end{array}
$$

Resulting in heteroscedastic residual variances

$$
\begin{equation*}
V\left(y_{i} \mid x_{i}\right)=V\left(\beta_{i}\right) x_{i}^{2}+\theta \tag{103}
\end{equation*}
$$

- In two-level modeling random slopes β_{j} describe variation across clusters j

$$
\begin{array}{r}
y_{i j}=a_{j}+\beta_{j} x_{i j}+\varepsilon_{i j}, \\
a_{j}=a+\zeta_{0 j}, \\
\beta_{j}=\beta+\zeta_{1 j} . \tag{106}
\end{array}
$$

A small variance for a random slope typically leads to slow convergence of the ML-EM iterations. This suggests respecifying the slope as fixed.

Mplus allows random slopes for predictors that are

- Observed covariates
- Observed dependent variables
- Continuous latent variables

Computational Issues For Growth Models

- Decreasing variances of the observed variables over time may make the modeling more difficult
- Scale of observed variables - keep on a similar scale
- Convergence - often related to starting values or the type of model being estimated
- Program stops because maximum number of iterations has been reached
- If no negative residual variances, either increase the number of iterations or use the preliminary parameter estimates as starting values
- If there are large negative residual variances, try better starting values
- Program stops before the maximum number of iterations has been reached
- Check if variables are on a similar scale
- Try new starting values
- Starting values - the most important parameters to give starting values to are residual variances and the intercept growth factor mean
- Convergence for models using the | symbol
- Non-convergence may be caused by zero random slope variances which indicates that the slopes should be fixed rather than random

