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Overview

¢ Intervention effects: variation in impact, interactions
¢ [ongitudinal data: more than two time points

¢ Hierarchical data: individuals within groups
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Example 1. Baltimore reading
treatment-baseline interaction
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*Source: lalongo LN, Werthamer S, Kellam SK, Brown CH, Wang S, Lin Y (1999). Proximal Impact of Two First Grade
Preventive Interventions on the Early Risk Behaviors for Later Substance Abuse, Depression and Antisocial Behavior.
American Journal of Community Psychology, 27, Vol, 5, 599-641.
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Aggression in Fifth Grade

Example 1B: Baltimore aggression
treatment-baseline interaction

Baseline is Observed Score
Fall of Grade 1

Baseline is Estimated
Growth Model Initial Status
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*Source: Khoo, S.T. (2001). Assessing program effects in the presence of treatment-baseline interactions: A latent

curve approach. Psychological Methods, 6, 234-257.
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Weaknesses of pretest-posttest analysis
(GAM — Generalized Additive Modeling
ANCOVA — Analysis of Covariance)

¢ Posttest at a single time point does not show the
Initiation and duration of impact

+ Pretest is a fallible baseline measure due to time-
specific variation and measurement error

» Avoid weaknesses by collecting longitudinal data
(more than 2 time points) and using growth modeling
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Example 1B: Aggression development
control and treatment groups
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Example 1B: Aggression development
control group sorted by trajectories
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Example 1B: Aggression development trajector
classes for control and intervention groups
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Example 1B: Aggression development trajector

classes for control and

TOCA-R
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Example 1B: Aggression development trajectory
classes for control and intervention groups

o] | - - High Aggressive, 15% BIC=3394
----------- Medium Aggressive, 44%
——- Late Starter, 22% Entropy=0.80
—— Low Aggressive, 19%
O Control
JAN Intervention
LD —]
L O ______________ GRS
./'/O./ = =0 -
. >
04 = == o e
O Soe,
= Ao
™ T
............................................... A\\§
03t R e @:::;;;;;;; @:::::::::i::2=!==:”=“” /2 e é:: """"""""""""""" % ................................ 0
Qe o
///-O//
A e
O A el A A————— A—— A
BN e Ly =
- = RTT AT
A @\@\g\o 46
H —]
\ \ \ \ \ \ \ \ \
1F 1S 2F 2S 3S 4S 5S 6S 7S
Grades 1-7 =

Muthen: Analyses



TOCA-R

Example 1B: Aggression development
trajectory classes for
control and intervention groups
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Math Achievement

Example 2: LSAY math achievement in
Seventh through Tenth Grade and high school dropout
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Example 2: LSAY math achievement
trajectory classes predicting
high school dropout
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Example 3: The New York School Choice Study*

¢ Setting:

¢ Treatment:

¢ Sample:

+ Design:
¢ Design variable:

+ Measures:

Lottery for 20,000 applicants from low-income
families attending First through Fifth Grade in NY
public schools

$1,400 dollar annual scholarships for 3 years in
private schools

1,960 families (controls and treatment; balanced)

Propensity matched pairs design and randomized
block

low/high applicant school (test scores
below/above city-wide median)

Spring 1987 pretest, Spring 1988 posttest; reading
and math (ITBS)

*Source: Barnard, J., Frangakis, C.E., Hill, J., Rubin, D.B. (in press). A principal stratification approach to broken randomized
experiments: A case study of school choice vouchers in New York City. Forthcoming in J. of the Am. Stat. Assoc.
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Example 3 Continued: The New York
School Choice Study

Results

¢ Effect of private school
attendance (CACE):
5 percentile points for
math in low schools

¢ Effect of winning the
lottery (ITT): 3 percentile
points for math in low

schools

Complications

+ Adherence classes: 20-25%
of those who won declined
scholarship, 6-10% of
those who did not win sent
their children to private
schools nevertheless

+ Missing data: on covariates
and on posttest as a
function of adherence
classes
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New analytical tools

¢ Growth mixture modeling — see Slides 165, 166

¢ Multilevel modeling — see Slides 167, 168

+ Missing data modeling — see Slide 169

¢ Adherence class modeling — see Slide 170

¢ Structural equation modeling — see Slide 171

¢ Software and Literature — see Slide 172
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Growth and growth mixture modeling

¢ Captures intervention impact on trajectories in
an efficient and flexible way

¢ Captures intervention effects that vary across
Individuals
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Outcome

Weaknesses of pretest-posttest ANCOVA as
compared to growth mixture modeling
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Multilevel modeling

¢ Children In different classrooms (different teachers)
and schools may benefit differently from an
Intervention (Aggression, LSAY, New York examples)

¢ |Individual-level relationships can vary across
classrooms/schools

¢ Variation can be explained by classroom- and
school-level variables
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Cross-level interactions
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Missing data modeling

¢ Attrition in longitudinal studies

¢ Designed selection of children into treatment:
cross-sectional and longitudinal screens
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Latent adherence class modeling
(CACE Analysis)

Adherers and non-adherers are often quite different

Latent class modeling where adherence is observed

In INntervention group and unobserved in control
group
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L 4

Structural equation modeling
latent variable modeling

Mediational modeling — for example, “path analysis”
IN a pretest-posttest design where intervention effect

on outcome Is mediated by implementation

General latent variable modeling — for example,
longitudinal analysis where class size influences
achievement development, which influences high
school dropout (Tennessee STAR study)
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Software and literature

Multilevel modeling including growth modeling
(with missing data): GLLAMM, HLM, MIXOR, MLWIN,
Mplus, SAS PROC MIXED

Growth mixture modeling: Mplus, SAS PROC TRAJ
Latent (adherence) class (CACE) modeling: Mplus
Structural equation modeling: Amos, EQS, LISREL, Mplus, Mx

Latent variable modeling: Mplus

» Mplus-related references can be downloaded from
www.statmodel.com (see home page, References, Randomized
Trials)

= Overview in Muthén (2002) Behaviormetrika
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http://www.statmodel.com/

Key Points

¢ Collect rich pre-intervention information to enable
thorough investigation of treatment-baseline
Interactions

¢ Collect longitudinal data at more than one post-
Intervention time point to enable investigation of
Intervention impact on trajectories

¢ Use growth mixture modeling and multilevel
modeling to find variation in impact
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