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Overview

Intervention effects: variation in impact, interactions

Longitudinal data: more than two time points

Hierarchical data: individuals within groups

Muthen: Analyses
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Example 1: Baltimore reading 
treatment-baseline interaction
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Fall of Grade 1 Reading Achievement (Normal Curve Equivalent)

*Source:  Ialongo LN, Werthamer S, Kellam SK, Brown CH, Wang S, Lin Y (1999). Proximal Impact of Two First Grade 
Preventive Interventions on the Early Risk Behaviors for Later Substance Abuse, Depression and Antisocial Behavior. 
American Journal of Community Psychology, 27, Vol, 5, 599-641.

Muthen: Analyses



4

Example 1B: Baltimore aggression
treatment-baseline interaction

*Source:  Khoo, S.T. (2001). Assessing program effects in the presence of treatment-baseline interactions: A latent 
curve approach. Psychological Methods, 6, 234-257.
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Weaknesses of pretest-posttest analysis 
(GAM – Generalized Additive Modeling

ANCOVA – Analysis of Covariance)

Posttest at a single time point does not show the 
initiation and duration of impact

Pretest is a fallible baseline measure due to time-
specific variation and measurement error

Avoid weaknesses by collecting longitudinal data
(more than 2 time points) and using growth modeling

Muthen: Analyses
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Example 1B: Aggression development 
control and treatment groups
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Example 1B: Aggression development
control group sorted by trajectories
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Example 1B: Aggression development trajectory 
classes for control and intervention groups
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Example 1B: Aggression development trajectory 
classes for control and intervention groups
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Example 1B: Aggression development  trajectory 
classes for control and intervention groups
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Example 1B: Aggression development
trajectory classes for

control and intervention groups
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Example 2: LSAY math achievement in
Seventh through Tenth Grade and high school dropout 

Dropouts
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Example 2: LSAY math achievement 
trajectory classes predicting

high school dropout
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Example 3: The New York School Choice Study*

Setting: Lottery for 20,000 applicants from low-income 
families attending First through Fifth Grade in NY 
public schools 

Treatment: $1,400 dollar annual scholarships for 3 years in 
private schools

Sample: 1,960 families (controls and treatment; balanced)

Design: Propensity matched pairs design and randomized 
block 

Design variable: low/high applicant school (test scores 
below/above city-wide median)

Measures: Spring 1987 pretest, Spring 1988 posttest;  reading 
and math (ITBS)

_____________________________________________________________________________________________________ 
*Source: Barnard, J., Frangakis, C.E., Hill, J., Rubin, D.B. (in press). A principal stratification approach to broken randomized 
experiments: A case study of school choice vouchers in New York City.  Forthcoming in J. of the Am. Stat. Assoc.

Muthen: Analyses
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Example 3 Continued: The New York 
School Choice Study

Complications

Adherence classes: 20-25% 
of those who won declined 
scholarship, 6-10% of 
those who did not win sent 
their children to private 
schools nevertheless 

Missing data: on covariates 
and on posttest as a 
function of adherence 
classes 

Results

Effect of private school 
attendance (CACE): 
5 percentile points for 
math in low schools

Effect of winning the 
lottery (ITT): 3 percentile 
points for math in low 
schools

Muthen: Analyses
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New analytical tools

Growth mixture modeling – see Slides 165, 166

Multilevel modeling – see Slides 167, 168

Missing data modeling – see Slide 169

Adherence class modeling – see Slide 170

Structural equation modeling – see Slide 171

Software and Literature – see Slide 172

Muthen: Analyses
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Growth and growth mixture modeling

Captures intervention impact on trajectories in 
an efficient and flexible way

Captures intervention effects that vary across 
individuals

Muthen: Analyses
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Weaknesses of pretest-posttest ANCOVA as 
compared to growth mixture modeling
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Multilevel modeling

Children in different classrooms (different teachers) 
and schools may benefit differently from an 
intervention (Aggression, LSAY, New York examples)

Individual-level relationships can vary across 
classrooms/schools

Variation can be explained by classroom- and 
school-level variables

Muthen: Analyses
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Cross-level interactions

Adobe Systems

Adobe Systems

Muthen: Analyses
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Missing data modeling

Attrition in longitudinal studies

Designed selection of children into treatment: 
cross-sectional and longitudinal screens

Muthen: Analyses
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Latent adherence class modeling
(CACE Analysis)

Adherers and non-adherers are often quite different

Latent class modeling where adherence is observed 
in intervention group and unobserved in control 
group

Muthen: Analyses
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Structural equation modeling
latent variable modeling

Mediational modeling – for example, “path analysis”
in a pretest-posttest design where intervention effect 
on outcome is mediated by implementation 

General latent variable modeling – for example,  
longitudinal analysis where class size influences 
achievement development, which influences high 
school dropout (Tennessee STAR study)

Muthen: Analyses
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Software and literature

Multilevel modeling including growth modeling 
(with missing data): GLLAMM, HLM, MIXOR, MLwiN, 
Mplus, SAS PROC MIXED

Growth mixture modeling: Mplus, SAS PROC TRAJ

Latent (adherence) class (CACE) modeling: Mplus

Structural equation modeling: Amos, EQS, LISREL, Mplus, Mx

Latent variable modeling: Mplus

Mplus-related references can be downloaded from 
www.statmodel.com (see home page, References, Randomized 
Trials)

Overview in Muthén (2002) Behaviormetrika

Muthen: AnalysesMuthen: Analyses

http://www.statmodel.com/
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Key Points

Collect rich pre-intervention information to enable 
thorough investigation of treatment-baseline 
interactions

Collect longitudinal data at more than one post-
intervention time point to enable investigation of 
intervention impact on trajectories

Use growth mixture modeling and multilevel 
modeling to find variation in impact

Muthen: Analyses
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