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Abstract

Modeling is described for the simultaneous analysis of two-level data in several
populations. A typical example is cluster sampling of students within schools,
where schools of different types are represented, e.g. public and private schools.
Multivariate measurements on each student are assumed to give rise to a latent
variable model. Of interest is to study across-population differences and similari-
ties with respect to the within- and between-group covariance matrices and with
respect to the mean vector. The methodology is illustrated by a comparative
analysis of achievement structures in Catholic and public schools.



1 Introduction

Latent variable modeling of multilevel data using existing structural equation model-
ing software has been described in Muthén (1989, 1990, 1994a) for covariance structure
models and in Muthén (1990, 1994b) for mean and covariance structure models. A typi-
cal example is cluster sampling in large-scale educational surveys with students sampled
within randomly sampled schools. In many cases, the clusters (e.g. schools) have quite
different characteristics and cannot be assumed to be sampled from a single common
population of clusters. It is therefore of interest to generalize the mean and covariance
structure modeling of multilevel data to the analysis of multiple populations. This pa-
per develops such a multiple population model and shows how to estimate and test the

model using existing structural equation modeling software.
2 Modeling

Consider the following data structure. Let y,.; denote a vector of variables for a randomly
sampled individual ¢ within a randomly sampled cluster ¢ for group (population) g.

Decompose y,.; into between- and within-cluster variation,

Ygci = YB,e + YW, (1)

where

E(ygci) = Uy, (2)



for all c and ¢ values. Consider the decomposition of the corresponding (total) covariance

matrix into a within- and between-cluster part,

Tr, = Zp, + Zw,. ‘ (3)

This paper will consider latent variable models with a conventional factor analytic
structure for both the between-cluster and within-cluster level. Assume for the moment
that no cluster-level variables are observed. As will be described in the software im-
plementation section, it is straightforward to include such cluster-level variables in the

modeling. For the between level we specify

YB,. = Vg + AB,"B,. T+ €B,. (4)

where v, is an intercept parameter vector, Ap is a between-level loading parameter
matrix, np is a latent between-level variable vector, and €p is a between-level residual

vector. Here,

E(ntc) = Qyg, (5)
V(ntc) = \PBg’ (6)
V(ea,.) = ©s,: ™

For the within-cluster level we specify

ngi = AWg nwgci + ewgci (8)
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where arrays are defined as for the between equation but where yw,, is defined as within-

cluster variation with mean zero so that the intercept vector is zero and

E(ntci) =0 ‘ ' (9)

The factor analysis structure can be extended to include a structural regression structure
on ¥Up and Uy using additional parameter arrays as in conventional structural equation

modeling.

The specification of the mean structure deserves special attention in the multiple-
population multilevel model. Note that we specify E(yw,,) = 0 while E(yp,.) = v, +
Ap, a4 so that the means appear on the between level only. This is in line with multiple-
population analysis in conventional single-level analysis. As in single-level analysis the
means are specified for the level of variation for which we have independent observations,
in this case the between level. It is in general not possible to also identify the within-level
factor mean and it is in general not necessary to let it deviate from zero in that such

across-population differences can be captured in v and ay.

As an example, assume that for students sampled within schools there is a set of
achievement measures which can be represented as a conventional one-factor model on

the student level,

Zw, = \w Yw, Ay + Ow, (10)

so that the factor loadings are invariant across the different school populations while



the factor variance and the residual variances differ across the school populations. The
difference in factor variance across school populations may correspond to different de-
grees of heterogeneity in student ability within school populations. Assume further that
the school-level variation for these achievement variables can also be described as a one-
factor model, where the factor may represent across-school variation due to selection of

students into schools of different quality,

E(15,.) = v+ A5 (11)

Sk, = As ¥, N5 + OB, (12)

Here we first note that \p is different from Aw because the former reflects school-level
selection and quality of instruction while the latter takes the conventional role of reflect-
ing the measurement characteristics of the achievement variables on the student level.
The across-population invariance assumption of Ay reflects the fact that the same mea-
sures are used in all schools. The across-population invariance assumption of v and Ap
is a base-line hypothesis and implies that for all school populations the same achieve-
ment variables are important in capturing the across-school variability. The result of
differences across school populations in quality of student intake and instruction is in
this model captured in ag and 9p,. A model with single factor on the between level
may not be sufficient in some applications. It may be the case that schools and school
populations differ with respect to more than one dimension. For example, across-school

variation with respect to reading achievement may be different than that of mathemat-
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ics and different school populations may show larger mean differences with respect to
one type of achievement than the other. The exploration of such issues has important
implications in terms of quality and equity of schooling. An illustration of this type will
be analyzed in the example section using achievement data from Catholic and public

schools.
3 Estimation

Assume random sampling of clusters independently within each of the G' populations.
In line with McDonald and Goldstein (1989) and Muthén (1989, 1990), assume that
within the sample from population g there are ¢ = 1,2,...,C, independently observed
clusters with 7 = 1,2,..., Ny, individual observations within cluster c. Let z represent
cluster-level variables. Arrange the data vector for which independent observations are

obtained as follows for the sample from group g.

. d;;c = (z_;c’ y/gcl’ y;c2’ te ’y_:]cNgc) (13)

where we note that the length of dy, varies across clusters. The mean vector and covari-

ance matrix are,

iu:igc = [u;g’ /IVgc ® ﬂ;g] (14)
z symmetric
Z — 2zg
e ( lNgc ® Zyzg IN9° ® ZWQ + lNgc ]'?Vgc ® ZBg ) (15)



Assuming multivariate normality of dg4, the ML estimator minimizes the function

G C
F = Z Z{log I ngc ' +(dgc - ﬂdgc)lz:;g];(dgc - :u'dgc)} (16)
g=1c=1
Written in this way, the parameter arrays are potentially of large size if there are many

individuals per cluster. An important simplification which makes the sizes not depend

on cluster size is given as (cf. McDonald & Goldstein, 1989; Muthén, 1989, 1990)

G g
F= Z(Z Cdg{ln | Ebdg | + tr[zgig (SBdg + ng(l—/dg - /ig)(l_’dg - ,U'g)/)]}

g=1 d4

+(Ng — Cg){ln i Ewg | + tT[E;VlgSpr]}) (17)

where

S = Nggk,., symmetric
Bag NggZy., Zw, + NygZp,

Cag _
_ Zdgk — 2d _
SB _:Ndcl (_g _9) de—zd,_ = /
dg 9“-'dg =\ Gagk — g [( g y) (ydgk ydg) ]

- 2 - Mz
Tag — g = (_dy_'u’g>
ydg “’yg

Cy Ngc

Spw, = ZZ Ygci — Yge) (Ygei — gy«:),

c=11=1
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Here, D, denotes the number of clusters of a distinct size in population g, d4 is an index
denoting a distinct cluster size category with cluster size Nyg, Cag denotes the number of
clusters of that size, Sp,, denotes a between-group sample covariance matrix, and Spw,

is the usual pooled-within sample covariance matrix.

In the single-population case (G = 1) Muthén (1989, 1990) pointed out that the
minimization of the ML fitting function defined by equation (17) can be carried out by
conventional structural equation modeling software, apart from a slight modification due
to the possibility of singular sample covariance matrices for groups with small Cy values.
A multiple-group analysis is carried out for D+1 groups, the first D groups having sample
size Cy and the last group having sample size N — C. Appropriate equality constraints
need to be imposed across the clusters for the elements of the parameter arrays. To
obtain the correct chi-square test of model fit, a separate H; analysis needs to be done
(see Muthén, 1990 for details). In the present multiple-population situation there are
D, + 1 groups for the gth population and the total number of groups is therefore much
larger. To capture invariance hypotheses across populatiqns, parameter constraints are

~ applied across the sets of groups that represent each population.

We note in (17) that the mean structure appears in the first line and not in the
second. This is in line with our model specification (4) - (9) where the means appear
on the between level while the within level means are zero. Equation (17) implies that
conventional structural equation modeling software should use zero sample means for

the within groups with zero parameter values for these groups.

Muthén (1989, 1990) also suggested an ad hoc estimator which considered only two



groups in the single-population case. With multiple populations this is generalized as

G
F' = Z Co{ln| Zp,, | + tr[Eg;g(SBg + Cg(Tg — 1g)(Fg — u)g)’)]}

g9=1

+(Ny = Co){In | Sw, | + tr[Z5 Sew, ]} (18)

where the definition of the terms simplifies relative to equation (17) due to ignoring the
variation in group size, dropping the d subscript, and for each g value using D = 1,
C,; = C, and Ny = ¢, where ¢ is the average group size (see Muthén, 1990 for details).
When data are balanced, i.e. the group size is constant for all clusters in the samples
from all populations, this gives the ML estimator. Experience with the ad hoc estimator
for single-population covariance structure models with unbalanced data indicates that
the estimates, and also the standard errors and chi-square test of model fit, are quite close
to those obtained by the true ML estimator. This observation has also been made for
cases where a mean structure is added to the covariance structure, see Muthén (1994b).
The ad hoc estimator, termed MUML in Muthén (1994a), will be used in the application

below.

The degrees of freedom in the model testing is calculated as follows. The overall
test considers a completely unrestricted model which hasAG p means, and G p(p+ 1)/2
elements each in the between and within covariance matrices, for a total of G (p+p(p+1))
parameters. Subtracting the number of parameters in the model of interest from the
number in the unrestricted model gives the degrees of freedom. Chi-square difference

tests are obtained as usual for nested models.



4 A two-population multilevel analysis

An example is chosen which represents a common analysis problem in large scale educa-
~ tion studies of achievement. Data are from the National Education Longitudinal Study
(NELS) which is a nationally representative achievement study that tested over 20,000
students. The survey was first administered in 1988 for eighth graders with follow-ui)
tests in the tenth and twelfth grades. In NELS, an average of about 20 students are
sampled within each of a set of schools. Our analysis considers data from eighth grade
with 1,044 students in 40 urban, Catholic schools and 4154 students in 195 urban, pub-
lic schools. Two populations of schools are therefore considered, urban Catholic and
urban public, and we view the schools as two random samples of schools from these two

populations.
4.1 Variables and measurement models

The NELS achievement test covers reading (21 items), math (40 items), science (25
items), and history/citizenship/geography (HCG; 30 items). The variables analyzed are
testlets created from these items in line with Rock et al. (1990) who considered five
reading variables (literature, science, poetry, biography, history), four math variables
(algebra, arithmetic, geometry, and probability), four science variables (earth, chemistry,

life, methods), and three HCG variables (geography, citizenship, and history).

For the 16 achievement variables, a latent variable model was formulated for both
the within-school (student) variation and the between-school variation. On the within

level, a general factor (Gw) was specified to underlie all 16 variables with three spe-
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cific residual factors (Math, Science, HCG) corresponding to math, science, and HCG
variables. Holzinger and Swineford (1939) applies the same model with each variable
being influenced by a general factor and a specific factor, which they called the bifactor
solution. This model will be referred here as a GS model (general factor, specific factor
model). Typically, the specific factors are uncorrelated among themselves and with the
general factor. If covariates are included in the model, then the factors can be correlated
as a function of their common dependence on the covariates. The different interpreta-
tions afforded by the higher order model where a common second-order factor influences
the first-order factors and the GS model have been discussed at length in Gustafsson

and Balke (1993) where the GS models are referred to as the nested factor models.

Preliminary investigations using conventional covariance structure analysis on the
pooled-within matrix found it necessary to let the methods testlet of science load also

on the math factor, presumably due to mathematics content in these items.

On the between level, a general factor was also specified. This general factor (Gp) is
thought to represent school-related phenomena having to do with selection of students,
neighborhood socio-economic status, and school quality. Preliminary multilevel analyses
pointed to the need for including a specific, residual math factor also on the between
level (Mathg) whereas there was no need to include specific factors for science or HCG
as they do not vary significantly across schools. For each factor one loading is fixed and
the remaining ones free. Figure 1 shows a path diagram of this two-level measurement

model with the general and specific factors at both levels.
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4.2 Hypotheses

It is of particular interest to study the differences across the two school populations in
the means and variances of the two between factors. One may ask if the common finding
Aof Catholic school performance advantage extends to a math perforrﬁance a,dvé,ntage for
given overall performance. The comparison of math performance without controlling for
the overall performance is very much confounded by student selection and educationél
environment. The difference in the mean of the residual math factor may give the
answer to this question. The general-specific factor measurement structure offers a way of
comparing the residual specific factors conditional on the general factor, for example, the
math performaﬁce can be compared conditional on the general performance. With this
measurement model, the comparison of math performance across the two populations is
not confounded as much by student selection issues. The presence of a math advantage
may then be related to the relative emphasis that Catholic and public schools put on
the math curriculum and the availability of advanced math classes in the two school
systems. A secondary goal is to study if, as is assumed as a base-line hypothesis, the
two school populations have the same student-level factor structure, and if the factor

variances are the same across populations for these student-level factors.

A sequence of tests can be made to study invariance across school populations. This
sequence is somewhat analogous to what is used for multi-population analysis in conven-
tional, single-level analysis. In the two-level analysis, the highest level of school plays the
role of the observational unit in conventional analysis. In addition to the usual choice

of degree of invariance across populations for the highest observational unit, what is
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new in the multilevel analysis is the addition of a simultaneous choice of the within
structure. First, it is of interest to see if the postulated latent variable model fits in
both populations. This can be studied by & separate analysis of each of the two samples.
: -Secorid,b it is of interest to see if the added hypothesis of measurement invariance of
between loadings and intercepts holds. In this case, the within measurement structure
can be allowed to vary across the populations in terms of within loadings and within
factor variances. Third, if the previous hypothesis is not rejected, it is of interest to
add invariance for the within structure. Irrespective of this outcome, and if the second
hypothesis is not rejected, we can study the across-population differences in the between

factor means and variances.

The study of measurement invariance across populations is first carried out with
the 16 achievement variables. Having established invariance at the between level, factor
means and variances are compared across populations. Finally, the model is extended by
including two individual covariates at the within level, gender and individual SES, and
two covariates at the between level school, school-level SES and ininority enrollment.

The effects of these predictors of achievements are compared across populations.

4.3 Measurement invariance across populations

Using the MUML estimator (Muthén, 1989, 1990), a series of four-group (public-between,
public-within, Catholic-between and Catholic-within) analyses were carried out to test
measurement invariance across the two school populations. These are shown as model

1 to model 4 in Table 1. The approximate MUML chi-square test would reject all these
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four models with chi-square values ranging from 832.6 to 1139.0 with 380 to 575 degrees

of freedom (p=0.000). This is to be expected with a large total sample size of 5,198.

Table 1

In model 1, all parameters are allowed to be different across ;;opulations with no
assumptions of equality for the within and between factor loadings, the between y-
intercepts, the factor means and variances. The chi-square value of 832.6 with 380
degrees of freedom indicates a reasonable overall fit of the measurement model in both
populations given the large sample size. In model 2, the factor loadings and the y-
intercepts at the between level are equated across populations to test measurement
invariance at the school level. This invariance is tested by comparing model 1 and
model 2. The chi-square difference is 80.6 with an increase of 35 degrees of freedom.
This does not indicate a significant difference in model fit, and therefore measurement
invariance at the between level is not rejected. This suggests that the 16 testlets are
behaving in a similar way in both populations in capturing the across-school variability
in the overall general performance and in the math performance. This invariance will
enable the comparisons of the general factor performance and the between residual math

factor performance across the two school populations.

Invariance of the within measurement structure is tested in model 3 by equating
the factor loadings at the within level across populations. The added restrictions of
model 3 relative to model 2 give 24 df and a chi-square increase of 46.0. Therefore, the
invariance across populations of the within measurement structure is élso not rejected.

This indicates that the measurement characteristics of the testlets are not different for
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the public school students and the Catholic school students.

These results suggest that there is measurement invariance across populations at both
the between and the within levels. The estimates for factor means and variances from
the analysis specifying across-population measurement invariance on both the between
and within level are shown in Table 2. The model has a chi-square value of 959.2 with
439 degrees of freedom (p=0.000) which shows acceptable fit for this large sample. We
note that all factor variance components are significantly different from zero as assessed
by MUML'’s approximate standard errors. The within structure factor variances are
similar across the two school populations. On the between level, the significantly higher
general factor (Gp) mean and the smaller variance for Catholic schools reflect a more
homogeneous, better performing student population than in public schools. The residual
math factor (Mathg) on the between level, however, has a significantly lower mean for
Catholic schools. This indicates that given the same overall performance, the public
schools actually perform better in mathematics. The Catholic schools general perfor-
mance advantage does not extend to the performance in mathematics after controlling
for overall performance.

4.4 Comparing effects of some predictors of achievements across
populations

The above measurement model was extended to include two individual covariates, gender

and individual SES, at the within level and two school covariates, minority enrollment

and school-level SES, at the between level. The individual SES is a variable with four

categories that reflect low to high socio-economic status of individual students while
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school SES is the between-level component of this variable. The minority enrollment
(MinorityC) is a school variable with eight categories that reflect from low to high the
proportion of minority student enrollment in the school.

Table 2

The means and standard deviations of average school SES are 2.23 and 0.59 in the
public school population and 2.90 and 0.30 in the Catholic school populations. Minor-
ityC in the public schools has a mean of 5.07 and a standard deviation of 1.76. The
corresponding values are 2.50 and 2.32 in the Catholic schools. This shows that, gener-

ally, the Catholic schools are of slightly higher SES and have lower minority enrollment.

It is interesting to see how the influences of these covariates on the performances in
the two school populations compare. The individual covariates were allowed to influence
the Gw, Math, Science and HCG at the within level, and the school variables were
allowed to influence the Gg and Mathg at the between level. This model corresponds
to model 4 of Table 1, the path diagram of which is shown on Figure 2. The chi-square
value is 1139.0 with 575 degrees of freedom. In the regressions of the achievement ,
factors, the regression coefficients were allowed to be different across populations. The
results are shown in Table 3. At the within level, the effect of SES is significant for the
general factor in both populations. The effect on Gy is positive and stronger in the
public school population (b=0.24) than in the Catholic scilool populations (b=0.14).
SES also has a positive and significant effect on the within residual math factor in the
public school population (b=0.04) but a weaker and non-significant effect in the Catholic

school population. This shows that, after controlling for the general performance, SES
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still has an effect on math performance for children in public schools but in the Catholic
school population, SES does not have an effect on the residual specific factors beyond
general performance. The Gender effects are strong and significant for all the within
~ factors, general and specific, in both school populations. Results show that the girls
generally do better than the boys on Gw, more so in the Catholic schools than in the
public schools. But given the same level of general performance, the boys perform
better in math, science and HCG in both school populations. The R-squares of the
regressions are very similar across the two populations except for the regression of the
within science factor, where the R-square is 42% for Catholic population and 23% for

the public populations. R-squares for the other factors range from 7% to 15%.
Table 3

At the between level, the regression intercepts of Gg and Mathp for the public school
population were set at zero while those for the Catholic population were estimated.
The R-squares are very high compared to the within-level regressions (Gp: 0.76, 0.77;
Mathg: 0.50, 0.45), this shows that the Sch SES and MinorityC variables are able to
account for a large proportion of the across-school variation in the general factor and the
residual math factor in both populations. The MinorityC effects on G are significant
and negative for both the public schools (b= -0.04) and the Catholic schools (b=-0.07),
with a stronger effect in the Catholic schools. Using an independent t-test, the two

slopes are not significantly different at the 0.05 level (t=1.4).

Fig. 3a shows a plot of Gy against MinorityC at overall mean value of SES. The aver-

age general performance line for the Catholic schools is above that of the public schools

17



across the full range of the MinorityC values. This shows that although increase in
minority enrollment has a stronger negative effect on general achievement, the Catholic
schools are still ahead in Gp compared to the public schools. The MinorityC effect on
'Mathg is significant and negative for the Catholic schools (b=-0.05) but not significant
for the public schools (b=-0.01). The plot of Mathp against MinorityC.at overall mean
value of SES is shown in Fig. 3b. Since the effect is negative and the public schools have
a math advantage after controlling for Gg and SES, the gap due to increase in minority
enrollment widens. In other words, given the same general performance and school SES,
public schools are ahead in math performance and this advantage is more pronounced

for schools with higher minority enrollment.

School SES has positive significant effects on both the general factor Gg and the
residual math factor Mathg in both populations. The slopes for Gg are significantly
different in the two populations (t=2.7). The results show that Sch SES has a greater
effect in the public schools (b=0.53) and makes a greater difference to overall achievement
than in the Catholic schools (b=0.26). The slopes for Mathp are not different (t=0.2)
in the two populations (b=0.19 for public schools and 0.22 for Catholic schools). Fig.
3c shows a plot of Gp against Sch SES at the overall mean value of MinorityC. The
plot shows that for higher SES schools, the public schools actually do better in the
overall performance after controlling for Minority enrollment. Fig. 3d shows that the
residual mathematics gap between the two school populations is not affected by Sch SES
after controlling for Gp and minority enrollment though the achievement level increases

significantly with higher Sch SES in both school populations.
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The above results regarding SES and Sch SES are quite consistent with research
findings in comparing achievements in the Catholic school sector and the public school
sector (Lee & Bryk, 1989: Coleman. Hoffer & Kilmore, 1982). This research usually finds
" that the relationship between social background and academic achievement is weaker
in Catholic schools than in public schools. Lee and Bryk (1989) found that Catholic
schools are more equitable not only with respect to SES but also with respect to mi-
nority enrollment. They found that a high minority concentration negatively affects the
achievement in public schools more than in the Catholic schools. This is different from
our finding above. We found that a high minority concentration negatively affects the
general achievement in Catholic schools more than in the public schools after control-
ling for SES. This is also true for the residual math achievement after controlling for
general achievement. This effect is negative and significant for Catholic schools but not

significant for public schools.
5 Conclusions

This paper described a methodology for multiva.riaté latent variable modeling of two-
level data where differences and simililarities across several populations are of particular
interest. This generalizes conventional latent variable multiple-group analysis to two-
level data. The model imposes a structure on the between- and within-cluster covariance
matrices as well as the means of the variables. Across-population comparisons of latent
variable means and covariance matrices are possible when across-population invariance

of between-level intercepts and loadings has not been rejected. In addition, within-level
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invariance of factor loadings and covariance matrices can also be tested.

To illustrate the new analysis possibilities, the methodology was applied to achieve-
ment data from Catholic and public schools. Here, data from the urban Catholic and
urban public schools in the National Educational Longitudinal Study (NELS) were used.
A measurement model with a general and several specific factors was formulated and
tested for differences and similarities across the two populations. The within measure-
ment structure and the between structure were allowed to be different in the two pop-
ulations. Measurement invariance of the between structure across the two populations
was not rejected which enabled a multidimensional comparisons of performance between
the Catholic school population and the public school population. This multiple-group
multilevel latent variable modeling method extends the way we can compare the rela-
tionships between social background and academic achievement across populations. For
example, in our illustration, we compared influences on math performance controlling

for overall performance which reduced the confounding by student selection.
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Table 1. Multi-level multi-population analysis

NELSSS: Public sample (195 schools, 4154 students)
Catholic sample ( 40 schools, 1044 students)

df

Model 1 Within: Gw, Math, Sc, HCG
Between: GB, Mathp

« factor loadings (within & between) not equated across pop.
* between Y intercepts not equated across pop.
» factor variances allowed to be different across pop. 380

Model 2 Within: Gw, Math, Sc, HCG
Between: GB, Mathp

« factor loadings (between) equated across pop.

« factor loadings (within) not equated across pop.

* between Y intercepts equated across pop.

» factor variances allowed to be different across pop. 415

Model 3 Within: Gw, Math, Sc, HCG
Between: GB, Mathp

o factor loadings (within & between) equated across pop.
* between Y intercepts equated across pop.
« factor variances allowed to be different across pop. 439

Model 4 Within: Gw, Math, Sc, HCG
Between: GB, Mathp

(With 2 school-level covariates, MinorityC and Sch SES,
and 2 individual covariates, SES and Gender)

« factor loadings (within & between) equated across pop.

* between Y intercepts equated across pop.

» factor variances allowed to be different across pop.

» Z means and reg. coeffs. not equated across pop. 575

chi-sqg

832.6

913.2

959.2

1139.0

df-diff

chi-sqg-

Model 2-1

35

80.6

Model 3-2

24

46.0




Table 2: Model with measurement invariance on both the between and
within levels: no covariates

x2(439)=959.2, p=0.000

Public Urban Catholic Urban
n=4154 n=1044

Within
Factor variances
Gw 0.58 (0.02)t 0.52 (0.03)
Math 0.26 (0.02) 0.26 (0.03)
Science 0.16 (0.05) 0.10 (0.05)
HCG 0.11 (0.04) 0.19 (0.04)
Between
Factor variances
GB 0.27 (0.04) 0.12 (0.04)
Mathp 0.02 (0.0 0.06 (0.02)
Factor means
GB 0.00 0.57 (0.08)
Mathp 0.00 ©-0.18 (0.05)

1 Standard errors are given in parentheses



Table 3: Model with measurement invariance on both the between and within
levels: covariates included

%2(575) = 1139.0, p=0.000

Residual Variances

Within
Gw
Math

Science
HCG

Between
GB
Mathp

Intercepts

Between
GB
Mathp

Regression coefficients

Within

Regression of Gw:
SES

Male

Regression of Math:
SES
Male

Regression of Science:
SES
Male

Regression of HCG:
SES
Male

Between
Regression of GB:
Minority
School SES
Regression of MathR:
Minority
School SES

Public Urban
n=4154 (195 schools)

Catholic Urban

- n=1044 (40 schools)

052  (0.02)t
026 (0.02)
0.17  (0.03)
0.04  (0.01)
0.04 (0.01)
002  (0.01)
0.00
0.00

R2=0.09
024  (0.02)
019  (0.03)
R2=0.07
0.04  (0.01)
026  (0.03)
R2=0.23
001  (0.02)
045  (0.03)
R2=0.13

000  (0.01)

0.16  (0.02)
R2=0.76

007  (0.02)

053  (0.07)
R2=0.50

001  (0.01)

0.19  (0.07)

049  (0.03)
026  (0.03)
0.11  (0.04)
0.03 (0.01)
0.02  (0.01)
0.04 (0.02)
0.83  (0.26)
017  (0.29)

R2=0.07
0.14  (0.03)
030  (0.05)
R2=0.10
0.04  (0.03)
035  (0.05)
R2=0.42
002  (0.03)
0.57  (0.06)
R2=0.15

001  (0.01)

0.16  (0.03)
R2=0.77

007 (0.02)

026  (0.06)
R2=045

005 (0.02)

022 (0.08)

1 Standard errors are given in parentheses



Table 3 contd.

Factor loadings

Within
Gw Math - Science HCG
R1 98 .00 .00 00
Rp 1.34 .00 .00 00
R3 1.12 .00 .00 00
R4 1.28 00 .00 .00
Rs 1.22 .00 00 .00
Mj 98 .86 .00 .00
My 1.00 1.00 .00 .00
M3 .66 .62 .00 .00
My 1.03 .88 .00 .00
S1 .89 .00 1.00 .00
S2 72 30 .50 00
S3 .82 .00 29 .00
S4 .85 00 25 .00
Hj 1.04 .00 .00 67
Hp 77 .00 .00 1.00
H3 95 .00 .00 2.18
Between
GB Mathp__
RIB .96 00
RoB 1.29 .00
R3p 1.12 .00
R4B 1.19 .00
RsB 1.46 .00
MiB 92 95
M2B 1.00 1.00
M3B 55 67
M4B 1.26 41
S1B 1.06 .00
SoB .85 38
S3B .88 00
S4B 1.07 .00
HiB 1.05 .00
HoB .86 .00
H3p 1.02 .00




Figuré 1. A two-level measurement model with general and specific factors

BETWEEN

WITHIN



Figure 2. The two-level model with covariates

WITHIN
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