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A comparison of some methodologies for the factor analysis of non-
normal Likert variables

Bengt Muthén and David Kaplan

“This paper considers the problem of applying factor analysis to non-normal categorical variables. A
Monte Carlo study is conducted where five prototypical cases of non-normal variables are generated.
Two normal theory estimators, ML and GLS, are compared to Browne's (1982) ADF estimator. A
categorical variable methodology (CVM) estimator of Muthén (1984) is also considered for the most
severely skewed case. Results show that ML and GLS chi-square tests are quite robust but obtain too
large values for variables that are severely skewed and kurtotic. ADF, however, performs well.
Parameter estimate bias appears non-existent for all estimators. Results also show that ML and GLS
estimated standard errors are biased downward. For ADF no such standard error bias was found. The
CVM estimator appears to work well when applied to severely skewed variables that had been
dichotomized. ML and GLS results for a kurtosis only case showed no distortion of chi-square or
parameter estimates and only a slight downward bias in estimated standard errors. The results are
compared to those of other related studies.

1. Introduction

In practice, factor analysis is often carried out on variables which are highly skewed
and/or kurtotic and frequently are not observed on a continuous, interval scale. This
paper addresses the issue of factor analysis in ¢ases of ordered, five-category Likert
scales. The paper considers treating them as interval scale normal and interval scale
non-normal variables. It also discusses the use of methodology specifically developed
for categorical variables in such instances. Issues of variable discreteness, skewness,
and kurtosis will be studied. In Section 2 a limited statistical framework is given.
Within this, Section 3 describes the design and purpose of a small Monte Carlo study
and Section 4 relates the present research to previous work. The results are given in
Section 5. Section 6 gives a concluding discussion. '

- 2. Statistical framework
‘Assume a factor analysis model for p continuous response variables y*, ‘

y* = v+ An+e, | . (1)
which with ordinary specifications gives rise to the covariance structure

I(y*) = A¥A' + 0. | 2)

Let y be a p-dimensional vector of observed response variables. Usually, we specify
y =Y*, but we will here emphasize cases where y contains ordered categorical
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variables, so that for variable i(s = 1,2, ..., p)
(=1, iftic- i<yt

Ci—2, ift,c_,<y*<tc,-
Yi :

Il

\ O, if y, <Tl 1

where the ts are threshold parameters and C; is the number of categories for variable
i. The multinomial distribution for the categorical y variables can be deduced by
integration over y*, where in this paper we limit ourselves to the assumption of
multivariate normality for the vector y*. With the specification of (1), (2) and (3), w
will say that the factor analysis model (its covariance structure, rather) ‘holds for
y*. |

The above modelling may be relevant for the situation of ordinal variables, for
example, as encountered with five-category Likert scales. We will be particularly
concerned with variables that depart from the zero skew and kurtosis of normal
variables. While each y* may be normal, the histograms for each y may for instance
be quite skewed, e.g., due to inappropriate question wording. As an example,
consider a five-category Likert variable with observed frequencies for the different y
categories of 5, 5, 5, 10 and 75 per cent. With an underlying normal y*, this means
that the y variable is ‘censored’ in the sense that the right-most y category lumps
together all the different subjects having y* >1:4, the observed y variation is censorec
relative to the true underlying variation of y*.

With five-category Likert scales, the y variables are often scored by consecutive
" integers, say 0,1, 2, 3, 4. The analysis then proceeds as if these y variables are interve
scaled, assuming that y = y* with the covariance structure of (2). Strictly speaking,
the model cannot be correct unless there are infinitely many categories for-each y,
since the right-hand side (RHS) of (1) can give rise to infinitely many values for eact
- dimension. If we accept the approximation of discrete ys with continuous y*s (RHS
of (1)), two cases are of interest. First, given that a certain covariance structure hold
true for y*, the same structure will in general not hold for the ys; see, for instance,
Olsson (1979), also discussed below. Second, a certain covariance structure may hold
for the ys and not for multivariate normal y*s. If the latter is the case, and the ys
are skewed, this can be interpreted by (1) where the RHS produces skewed variables
for instance with residuals that are normal, but factors that are skewed. In this
second case, the covariance structure (2) does not hold for normal y*s, and we will
instead say that the model holds for y.

With y variables such as in the above Likert scale example with extreme skews it
should further be noted that the ordinary measures of association, covariances and
Pearson product moment correlations, may not be suitable. Not only are the ys in
this example discrete, but they are also limited in range with strong censoring. In
such cases, a linear model for ys may be unrealistic, and a non-linear model, such as
the one using the y*-formulation, may be more appropriate.

In some special cases, the covariance structure of (2) may hold for both normal y»*:
and non-normal ys, the latter generated by (3) and again scored 0,1,2, ... . Consider
for example a single-factor model that holds for multinormal y*s. Assume that all y*
have the same variances and loadings so that all correlations are equal and the
thresholds are the same across variables, i.e. the ys have the same distributions. For
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all pairs of ys we then have the common correlation p, = ap,., where a will be called
the attenuation factor. Consider determining the metric of the factor by fixing a
loading to a non-zero value. Then the covariance matrix for the ys can be expressed
as

Z(y) =My, +0, (4)
where

A, =,

Y, = yola, (5)

0, = cX(1—A*Ya).

Here, o7 is the common variance for the ys and 6, is the common diagonal element of
®,. In this case, X(y*) and X(y) have the same covarlance structure, but with
different parameter values We will then say that the model holds for both y and y*

In the simulation study to be reported below, data are generated according to the
special single-factor model just described (see Section 3). Here, we are in a position to
study how well the Z(y*) structure can be recovered. Although the normal y* model
is the one that actually generated the data, such data may at the same time be used
to illustrate how various estimators perform in the estimation of L(y) structures. We
are then considering effects of non-normal ys on estimation. The y* model is only
used as a means of conveniently producing non-normal ys, but our interest is in
recovering L(y). A consistent estimator would consistently estimate the parameters of
this covariance structure, so that an infinitely large sample will give a perfect model
fit. Finite sample biases may however occur. Althéugh both structures hold in the
above special case, this can also be viewed as illustrating cases where no simple
underlying normal factor structure exists for y*s. Whether or not such an underlying
y* structure may exist for any given data set is a matter of statistical testing and
will not be considered here (see, e.g., Muthén, 1984).

In passing, consider again the special single-factor model above for normal y*s.
With a chmce of different threshold values for different variables, the distributions
would vary across the ys. It is well known (see, e.g., Olsson, 1979) that despite
equality of y* correlations, this would yield different correlations across pairs of y
variables; there would be a differential correlation attenuation. In general, this means
that although the factor analysis structure X(y*) holds true, X(y) would not obey the
same structure even with different parameter values. Here, an infinitely large sample
would not give a perfect fit for the factor analysis structure hypothesized; the
structure is distorted by differential attenuation. In this case, a consistent estimator
applied to the covariance matrix of ¥ would not only be affected by non-normality
but also by the model structure being incorrect.

3. Design and purpose of the study

3.1. Estimators

In this paper we will consider four different estimators. The first one is the
traditional maximum-likelihood (ML) estimator, which assumes continuous,

multivariate normal observed variables; see, for example, Joreskog (1969, 1977). Here
the fitting function is

Fyp =log|Z|—log|S|+tr (S ) —p, ‘ (6)
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where 8 is the sample covariance matrix. Both £ and 8 refer to the distribution of
the ys in our study. The second one is the generalized least-squares (GLS) estimator,
which assumes continuous variables for which all fourth-order cumulants are zero:
see, for example, Joreskog & Goldberger (1972), Browne ( 1974). Here the fitting
function is

Fors = tr (I—8™1T)2, ~ (7

The requirement of zero fourth-order cumulants is practically the same as that of
multivariate normality. Hence, we will refer to both ML and GLS as normal theory
estimators. Under multivariate normality, ML and GLS have the same asymptotic
properties (Browne, 1974).

The third estimator is an interesting and less explored one that has recently been
proposed for continuous non-normal variables, not requiring zero fourth-order
cumulants. This is the so-called asymptotically distribution-free (ADF) generalized
least-squares estimator of Browne (1982). The fitting function for both GLS and ADF
(which is also a GLS estimator) can be written

Fuis = (s—0) W™ (s—a), BT

where the WLS subscript stands for GLS or ADF, s is the p(p+1)/2 vector of distinct
elements of S, ¢ contains the corresponding elements of X, and W is a consistent
estimator of the asymptotic covariance matrix of s. Browne (1982) pointed out that
the general form for covariances between covariances in a sample of size N is
N-1
N
where k;, is a fourth-order cumulant (see, e.g., Kendall & Stuart, 1977, pp. 340, 342)
Equation (9) gives the weight matrix for Browne’s ADF estimator. Since in GLS zero
fourth-order cumulants are assumed, the weight matrix becomes a function of the
covariance matrix only, with considerable computational savings.

The fourth estimator explicitly takes into account the categorical nature of the
observed variables to be considered here, using the model specification of (1), (2) and
(3) with multivariate normal y*s. This is the generalized least-squares estimator of
Muthén (1978, 1984), which will be referred to as the CVM (categorical variable
methodology) estimator. Using limited information from all pairs of ys, CVM avoids
the use of Pearson product moment correlations and instead fits the model to the
estimated latent correlations of the y*s. The fitting function can be written as in (8),
where s and ¢ would refer to y* correlations and with a specific choice of weight
matrix.

(V—1)cov (i, 8u) = Oy 0+ 0,05+ K jxis V (9

3.2. Simulation design

We will limit the study to ordered, five-category variables and the special single-
factor model described in Section 2, studying cases where a factor model is true for
both X(y*) and L(y). In all cases we will use a simple four-variable, single-factor
model for X(y*), where all loadings are 0-7, the factor variance is 1, and the residual
variances are all 0-51. Hence, the y*-variances are all 1 and the y* correlations are all
equal and medium-sized, 0-49. We will generate multivariate normal y* vectors
according to L(y*), using GGNSM (IMSL, 1982), categorizing y*s at certain threshold
values to form ys. We will limit ourselves to large-sample properties and will hence
choose a sample size of N = 1000 throughout. The sampling procedure will be
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repeated 25 times. In the analyses we choose to determine the metric of the factor by
fixing the first loading to 0-7. Fixing a loading as opposed to the factor variance is a
common approach of confirmatory factor analysis and structural equation modelling.

Let us consider measures of non-normality for the y variables. In the univariate
case, (9) becomes _ ‘

N-1
(N—1)var(sy) = 2ai2i+T Kiii- (10)
" Note that
Kiiiii ' :
Y2,i = ?, : (11)

using 7y, ; to denote the univariate (excess) kurtosis coefficient for variable z,
standardized to be zero for a normal variable; y, = f,—3 (cf. Kendall & Stuart, 1977,
p-88). From a univariate perspective, equations (10) and (11) indicate that it is the
kurtosis which gives information on the importance of the error of the GLS
assumption when variables are non-normal. Let skewness be denoted y,, where

-y} = B,. Note that large skewness implies large kurtosis, since (cf. Kendall & Stuart,
1977, pp. 88, 95) y,>y; —2 must hold. In our study we will consider not only
univariate skewness (y,) and kurtosis (y,), but also the multivariate counterparts
suggested by Mardia (1970); see also Mardia (1974), Mardia & Zemroch (1975),
Browne (1982). In the sample, Mardia’s measures are defined as

N N
bi,=N"2% ¥ d} | | (12)
i=1j=1
N
by,=N"1Y di | . (13)
i=1
with ,
dij= (y;i~7)S" Uy~ §), | (14)

where ¥ is the sample mean vector. Denoting the corresponding population measures
B1.p B2,y we have B, | = B, and B, | = f,. A symmetric distribution has f, , =0
and a multivariate normal distribution has f, , = p(p +2). In our study, we will
consider multivariate skewness defined as f8; ,, which reduces to y? for the univariate
case (reported as (skewness)? in Table 1 below), and, as recommended by Browne
(1984), multivariate relative kurtosis defined as f, ,/p(p+2), which has the value 1
for multivariate normal distributions, and reduces to (y,+3)/3 for the univariate
case.

The data generation procedure will be carried out for each of five cases, according
to different choices of thresholds for the variables. In our opinion, these choices
represent Likert scale data commonly encountered in the social and behavioural
sciences; see Table 1. Case 1 corresponds to a desirable situation where all y variables
are symmetric with univariate skewness, kurtosis, and fourth-order cumulants close
to those of the normal distribution. Here we can study the effects of categorization
without interference of skewness or kurtosis. In cases 2, 3 and 4, increasing degrees of
skewness and kurtosis are introduced. Case 4 represents a situation where the y
variables are strongly ‘censored’, i.e. we observe a ‘piling up’ of observations at one
of the extreme categories. All of these cases are presumably commonly encountered
in real data. More severe skews than case 4 seem to be relatively rare (see, however,
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Table 1. Descriptive statistics of y for all cases

Case 1 Case 2 Case 3 Case 4 Case 5
Tb Cb Tb Cb Tb Cb Tb Cb Tb Cb
. . 5" 5 3 5 5
—1-645 —1:645 —1-881 —1:645 —1-645
21 10 -6 5 75
—0-643 —1-036 —1-341 —1-282 —1-150
48 20 13 5 75
0-643 —0-385 —-0772 —1-036 , 1-150
21 30 30 10 : 75
1-645 0-385 0-050 —0-674 1-645
- 5 35 48 75 5
Variance 0-820 - 1-360 1-100 1-248 0-550
Skewness 0-000 —0-742 C—1-217 —2-028 0-000
(Skewness)? © 0000 0-551 1-615 4-113 0-000
Kurtosis 0-004 —0-334 0-846 2-898 2:785
Univariate . 1-001 0-889 1-282 ) 1-966 1-928
relative kurtosis
Fourth-order 0-003 —0-618 1-024 © 4-510 0-843
cumulant .
Multivariate 0-082 1-796 5625 15-421 0-131
skewness”
Multivariate 0-989 1-026 1-277 1-892 1-580
relative kurtosis®
Correlation 0-437 0436 0416 0-345 0-352
Attenuation factor - 0-892 0-890 0850 0-703 0718

? A sample estimate based on a random sample of 1000 (four variables).
®T = Threshold; C = Category.

Section 4.2.1 below), and this is also deemed to be the case for situations with large
skews of opposite sign (given a positive correlation). While we recognize the
importance of kurtosis deviations from zero as discussed above, in cases 2, 3 and 4,
high kurtosis values may be seen as arising incidentally as an effect of skewness;
highly correlated skew and kurtosis values would seem to frequently be the case in
practice. However, a zero skew, kurtosis only case, case 5, is also included for
comparison. A kurtosis close to that of case 4 was attempted, representing a
leptokurtic case with a very high percentage of responses in the neutral category.
While the multivariate kurtosis value for case 5 is not as high as for case 4, we think
that case 5 already borders on what can be viewed as realistic for Likert scales in the
social and behavioural sciences.

3.3. Purpose ofl the study

It should be noted that ML, GLS and ADF are all consistent estimators of
parameters of X(y). Consistency holds true even if observed variables are not
multivariate normal, as long as X(y) holds true (Browne, 1974). On the other hand,
CVM consistently estimates parameters of X(y*), although only if the y*s are
multivariate normal. Given that the respective prerequisites are fulfilled, each
estimator produces asymptotically normal estimates, a large sample chi-square test
model fit, and large sample standard errors of estimates. The aim of this paper is to
study to what extent these quantities behave appropriately in the case of ordered,
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categorical variables. Hence, in line with the usage of confirmatory (as opposed to
exploratory) factor analysis and structural equation modelling, we place a heavy
emphasis on chi-square and standard errors. Also, as is common here, the sample
covariance rather than correlation matrix will be analysed for ML, GLS and ADF.

Our first objective is to study how well the normal theory estimators ML and GLS
perform regarding chi-square and variability measures and in the estimation of Z(y)
parameters. In particular, how skewed and kurtotic can the ys be for these
estimators to still behave approximately correctly? A second objective is to study
how well the more optimal ADF estimator manages the analysis of X(y) parameters
for non-normal ys that are ordered categorical. A third objective is to study how ML,
GLS and ADF perform in the estimation of E(y*) parameters. The CVM estimator
will only be utilized in one situation, case 4. Here, we have for simplicity chosen to
work with dichotomized ys, the highest category versus all others, since not much
information would seem to be lost by collapsing categories. The X(y*) structure is
correct for CVM and the fourth objective will be to study its sampling properties.

Admittedly, this is a very limited Monte Carlo study, both with respect to different
models studied, different sample sizes, and number of replications. This is due to cost
restrictions, particularly due to relatively heavy computations for ADF and CVM.
Nevertheless, the study should give a good deal of important information. Judging
from related research to be discussed below, certain generalizations beyond our five
cases seem possible. For example, the assumption of exactly equal univariate y
distributions is unrealistic, but may serve as a ‘prototype’ for realistic data (cf.
Boomsma, 1983). Before presenting the results, we will now give a brief overview of
some related research and point out what our study contributes.

4. Overview of some related research
4.1. ML results

4.1.1. Fuller & Hemmerle (1966); Boomsma (1983). An early study, which is only
marginally related to ours, is that of Fuller & Hemmerle (1966). Considering certain
two-factor models, the authors were concerned with the effects of non-normal
continuous data in the estimation via normal theory ML. Problems of ordered
categorical variables were not addressed. Various non-normal distributions (uniform,
truncated normal, ¢ distribution, triangular and bimodal) were chosen for each of the
two factors and the residual. The authors concluded that both with respect to chi-
square and estimates the ML procedure is ‘relatively insensitive to departure from
normality’. Arriving at this conclusion, the .authors used five variable, one degree of
freedom models, and a sample size of NV = 200. The design must be regarded as
rather weak, however, since only a single replication was used for each case. Also, in
most cases, the deviations from normality in the ys were not very large (see Fuller &
Hemmerle, 1966, p. 258 and also Olsson, 1979).

Recently, Boomsma (1983) performed an interesting and very rigorous Monte Carlo
study to investigate, among other things, effects of non-normality on ML estimation.
Boomsma pointed out the distinction, discussed above, between a certain covariance
structure holding true for £(y*) or for Z(y). He decided on the investigation of
confirmatory factor analysis and structural equation models holding true for X(y) in
order to study effects of non-normality only, without the confounding effect of
categorization of y*s into ys. As in our case, Boomsma chose to study non-normality
in the form of ordered categorical ys for which a simple structure holds. (These were
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in fact obtained by a categorization of normal y*s, although without a simple
structure holding for these y*s; see Boomsma, p.147). In line with Olsson, Boomsma
was concerned with the effects of skewness. Using a sample size of N = 400 and 300
replications of each case, he generated data according to four models with number of
variables ranging from 6 to 10 and the size of correlations varying across the full
range. For each such model he generated data according to various combinations of
number of categories and skewness. A symmetric case, such as our case 1, was always
included, and the skewed cases exhibited mixed skews ranging up to the value four.
Throughout these cases, Boomsma in fact found very little bias in parameter '
estimates. However, for the more skewed cases, particularly those with most
correlations medium-sized or high, he found that the empirically determined
variation of the estimates was higher than that estimated by the standard errors of
the estimates. Also, for those same cases, he found the chi-square measure of model -
fit to reject the true model much too often. Effects of number of categories and
categorization with no skewness seemed to be very minor. He concluded:

On the basis of our findings we shall not dissuade researchers to apply maximum likelihood
estimation in structural equation modelling, when the observed variables are discrete but
symmetric. However, we do not recommend to use such a procedure when the median (or mean)
absolute value of the skewnesses of the observed variables is larger than 1-0 (approximately),
because it would affect crucial elements of statistical estimation (confidence intervals for
parameters, correlations among parameter estimates), and model fitting. '

Again, we should note that this conclusion only pertains to the ML estimation of X(y
structures holding true. In our study, the confounding of non-normality and
categorization that Boomsma was concerned with is avolided, since a certain factor
model is true for both E(y) and X(y*). We can therefore add to Boomsma’s results by
considering results in relation to both models at the same time, as explained in
Section 2. Also, our study includes GLS, ADF and CVM, in addition to ML and
studies case 5 with zero skew.

4.1.2. Olsson (1979). An important study is that of Olsson (1979). Olsson was
particularly interested in the effects on factor analysis of categorizing multinormal
y*s into ordered categorical ys, scored as 0, 1,2, .... Further theoretical developments
have been made by Mooijaart (1983), who related the y correlations to the underlyin,
y* parameters in a simplified way, and McDonald (1974), discussing similar issues in
the context of so-called difficulty factors with dichotomous ys. Olsson chose to study
a single-factor model for the y*s, six and twelve variables, and a variety of number
of categories and threshold combinations with an emphasis on strongly skewed
variables and variables of opposite skew. Olson studied the effects of distortions in
“the E(y) structure as deviating from the true X(y*) structure. He did not use Monte
Carlo simulated data, but instead derived the population X(y)s for analysis by ML.
This corresponds to results for infinitely large samples. The population approach
enabled Olsson to cover a large variety of situations, from which he concluded that
‘classification, as we have defined it, may give rise to a substantial lack of fit’. Also,
‘the skewnesses of the variables, rather than the number of scale steps, seems to be ¢
major determinant of lack of fit of the factor model’. Important biases were obtainec
for factor loadings. The number of variables seemed to have little effect whereas
increasing size of true loadings, and thereby correlations, made things worse. Olsson
attributed the discrepancy regarding robustness as compared to the Fuller &
Hemmerle study to his use of more severely non-normal variables. We should note
here that for situations where all y-variables have the same distribution, Olsson
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obtains a perfect fit to the X(y) structure (the variances of the y*s were standardized
to one). Hence, lack of fit, as measured in the chi-square metric, only reflects
distortions in the X(y) structure relative to the true X(y*) model. This is noteworthy,
since with simulated data we are able to also study lack of fit for models where
Olsson would obtain perfect fit. We furthermore add to Olsson’s work on X(y*)
estimation by including GLS, ADF and CVM in addition to ML, and studying effects
of categorization in the zero skew case, case 5. ’

‘ 4.2. GLS and ADF results

4.2.1. Some case studies. In the above reported studies, ML was the only estimator
.considered. In the literature of today, however, there are also some limited results on
the performance of the GLS and ADF estimators. Joreskog & Goldberger (1972)
noted that the GLS estimator produced lower error variances than ML in a certain
factor analysis of a real data example with nine variables, three factors, and N = 200.
Browne (1982) noticed that ‘ADF estimators of parameters in covariance structures
tend to be noticeably biased below the true values’. He compared ML and ADF
estimation using a data set (Huba et al., 1981) with 13 five-category variables, three
factors, and N = 1634. This data set is further analysed by ADF in Huba & Bentler
(1983). For these variables skewness values ranged up to around ten, with an average
of about four, while kurtosis values ranged up to 127 with an average of about 27.
The multivariate relative kurtosis value was 4:19. We may view this data set as an
extreme version of our case 4. The ADF chi-square was less than a third of the ML
chi-square. No large differences were found among estimated loadings, while error
variances consistently obtained lower estimated values by ADF than by ML.
Furthermore, estimated standard errors were generally smaller for ML than for ADF.
Bentler (1983) also found the ML chi-square value to be considerably higher than the
ADF value for a simulated data set with zero skewness and positive kurtosis values.
Huba & Harlow (1983) and Huba & Tanaka (1983) compared ML, GLS and ADF in
applications with non-normal data. Huba & Harlow (1984) also used the CVM
estimator for comparison. The general outcome of these real data comparisons of
estimators was a large degree of similarity.

4.2.2. Tanaka (1984),; Browne (1984). Tanaka (1984) performed a small Monte Carlo
study which addressed the performance of ML and ADF but not GLS for variables
with high positive kurtosis. Using a two-factor model with three continuous variables
loading on each factor, yielding an 8 degree of freedom model, he generated data
with sample sizes of N = 100, 500, 1500, using 20 replications. Tanaka generated his
data as a mixture of two multivariate normals with equal and zero means but
covariance matrices differing by scaling with a diagonal matrix with different sized
diagonal elements. He obtained univariate kurtosis values ranging up to about 7,
with a mean value of about 5. The skewness values were however zero. Hence, his
data are rather different from those considered by Olsson, Boomsma and also the
data of Huba et al. (1981), considered by Browne (1982) and Huba & Bentler (1983).
Tanaka’s correlations were small to medium-sized. Excluding the NV = 100 case, he
found that ML chi-square values were considerably overestimated, whereas ADF chi-
square behaved appropriately. The loadings and error variances were however
considerably underestimated by both ML and ADF. This was more serious for error
variances than for loadings. Interestingly, ADF was markedly more biased than ML.
Tanaka also concluded that the ML estimated standard errors were markedly biased
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downwards, whereas this bias was much less pronounced for ADF. It should be note:
that Tanaka’s results on parameter estimate bias for ML are in contrast with the
results of Boomsma. By contrasting the high skew/high kurtésis case 4 with the zero
skew/high kurtosis case 5, our study adds to Tanaka’s. Note, however, for reasons
mentioned in Section 3.2, that the case 5 kurtosis value is much lower than the
typical value of Tanaka’s. Also, he did not study ordered, categorical variables. We
also add to Tanaka’s kurtosis study by including the GLS estimator for case 5.

Browne (1984) included a small Monte Carlo study which among other things
considered the properties of the ML and ADF estimators. Browne studied data from
a rescaled multivariate chi-square distribution, such that each variable had
univariate population skewness and kurtosis of 2 and 6, respectively. The
multivariate relative kurtosis coefficient was 1-93. Here, 20 replications were used,
with sample size 500. Two models were considered: an eight variable intraclass
correlation model with 34 degrees of freedom and an eight variable, single factor
model, parameterized as a correlation structure, with 20 degrees of freedom. All
population correlations were 0-5. While the ADF chi-square test performed well, ML
~ gave much too high values. Regarding parameter estimates, ML showed no bias for
either model, while ADT exhibited a clear bias for the intraclass model. There was a
clear downward bias in the estimated standard errors for ML, and a similar but less
noticeable trend was observed for ADF. We note that Browne’s results are in line
with Tanaka’s, except for Tanaka’s finding of ML parameter bias. We may view
Browne’s data as a more severely non-normal version of our case 4, although he did
not consider ordered, categorical variables. We add to Browne’s study by including
GLS and analysing ordered, categorical variables.

5. Results

As a first step, a quality check was made of the data generation process. In Tables &
and 3 are given results for the analysis-of 25 replications with N = 1000 for
multivariate normal y*s, that is, not introducing the categorization to ys. Results a1
only presented for GLS and for Case 1 and Case 4 y*s. The degrees of freedom of th
model is two. In terms of chi-squares, Table 2 shows that GLS for case 1 tends to
slightly overestimate chi-square, i.e. the true y* model is rejected slightly too often,
while for case 4, chi-square is slightly underestimated. This gives an indication of th
degree of imprecision in the generating process. The crudeness of the data-generatio
process should be kept in mind when considering chi-squares for the cases studied.
From Table 2 it appears that parameter estimates are behaving as expected; i.e. no
important, consistent bias can be detected. Furthermore, a comparison of expected
standard errrors using the population L(y*) with mean estimated standing errors of
estimates gives another quality control on the data-generating process. For samples
of this size no substantial differences are expected, and none is found. However, the
crudeness of a Monte Carlo study with only 25 replications shows in the empirical
standard deviations of the estimates. These are often somewhat smaller than the
other two measures of variability. To remedy this, one may have to use up to, say,
300 replications in all situations, which would be too costly. This crudeness must be
borne in mind when considering the results to be presented on variability of
estimates.

To partially address the concern about the small number of replications we studi
cases 1-5 each with 300 replications and N = 1000, where due to cost consideration
we only applied the normal theory GLS estimator to each sample covariance matri:
Relative to 25 replications the results showed very little difference in general trends
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Table 2. Parameter estimates and their variability: GLS on »* variables

Case 1 y* Case 4 y*
Variable True value  Estimate® Variability® Estimate Variability
Loadings
1 0-700 0-700 — 0700 —
(—) — () —
2 0-700 0-698 - 0039 0-704 0-039
(—0-3) 0-039 (0-6) 0-039
0-032 0-035
3 0-700 0-691 . 0039 0-688 -0-039
(—1-3) 0-038 (=17 0-039
0-033 0-036
4 : 0-700 0-685 0-:039 0695 0-039 .
(—21) 0-038 (—=0-7) 0-039
0-035 0-031
Error variances
1 0-510 0-498 0-031 0-516 0-031
(—24) 0-031 (1-2) 0-031
0-022 : 0-028
2 0-510 0-503 0-031 0511 0031
(—14) 0-031 (0-2) : 0-031
0-034 0-021
3 0-510 0508 0-031 0-510 0-031
(—04) 0-030 (0-0) 0-031
' 0-033 0-029
4 0-510 0-520 0-031 0-517 0-031"
i (2-0) 0-031 (1-4) 0-031
0-025 0-032
Factor variance '
1-000 1-032 0-089 1027 . 0-089
(3:2) 0-090 (21 0-091
0-064 0-077
Chi-square
Mean 2:793 1-603
Variance 6157 1-557
Reject freq. 2 0
Skewness/kurtosis
Multivariate 0-100 0113
skewness? .
Multivariate 0-973 - 1-007

relative kurtosis?

*In parentheses is given percentage under- or over-estimation of the true value.
®The three entries under Variability are:
—expected (true) standard error of estimate;
—rmean of estimated standard errors;
—empirical standard deviation of estimates. -
‘ Reject freq. denotes the frequency of samples with chi-squares greater than the 5 per cent
critical value (expected number is 1-25).
4Based on a random sample of N = 1000.
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Table 3. Chi-square for all cases®

Method Case 1 Case 2 Case 3 Case ¢ Case 5
GLS on y*
Mean ) 2793 — — 1-603 —
* Variance 6-157 — — 1557 —
Reject freq. : 2 — —_ 0 —
L .
Mean 2:525 3123 2-540 4-644 2:300
Variance 4-684 6-363 4-978 14-296 12:533
Reject freq. 3 2 3 8 3
GLS .
Mean v 2:643 3013 2519 4-679 2:274
Variance 5070 5014 4-929 15-558 11-294
Reject freq. 3 2 3 8 3 -
ADF
Mean 2:492 2:706 1-840 2-633 1-894
Variance 4-363 4-829 2:576 5430 7-359
Reject freq. 3 2 1 2 2
CVM .
Mean — — — 1527 —
Variance — — — 2-357 _
Reject freq. — C— — 0 —

“Degrees of freedom = 2; Expected mean = 2; Expected variance = 4. Reject
freq. denotes the frequency of samples with chi-squares greater than the 5 per
cent critical value (expected number is 1-25).

regarding chi-square means, chi-square reject frequencies, parameter estimate bias, or
sampling variability. Thus, we feel reasonably confident that the number of
replications used in this study do not present any serious limitations.

Results will first be given pertaining to ML, GLS and ADF estimation of the y-
model for case 1, case 2, case 3 and case 4, where the latter three cases exhibit an
increasing skew and kurtosis. Then CVM estimation of case 4 will be presented.
Finally, ML, GLS and ADF estimation of case 5 is treated.

5.1. ML, GLS, ADF for cases 1-4 and the X(y) model

Let us first consider results for ML, GLS and ADF estimation of the y-model for
cases 1, 2, 3 and 4. Table 3 gives results on chi-squares, Table 4 gives results on
parameter estimates, whereas Table 5 gives results on sampling variability.
Regarding chi-squares, we note that only case 4, with a univariate skew of about twc
and a univariate kurtosis of about three, gives substantial overestimation with ML
and GLS. ADF performs rather well throughout, again keeping in mind the crudenes:
of the Monte Carlo study. This result on chi-square is in line with Boomsma,

Tanaka and Browne.

Regarding the parameter estimates in Table 4 we find no substantial and
consistent blas for any of these three estimators. For ML this is in line with
Boomsma’s and Browne’s findings. Note, however, that this is in contrast to
Tanaka’s results on the non- IObUStneSb of ML and ADF and Browne’s result on the
non-robustness of ADF for parameter estimation with non-normal variables.

In Table 5, we find results on sampling variability for cases 1-4. A consistent bias
is found for case 3 and case 4, where the ML and GLS estimated standard errors
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Table 4. Parameter estimates for cases 1-5: ML, GLS and ADF*

True value Estimator
Case Parameter  y Model y* Model ML GLS ADF
1 A 0-700 0-700 . 0-691 0-693 0-693
(=13/—=13) (—=10/=10) (—10/—10)
0 0-461 0418 0-462 0-461 0-460
(0-2/10-5) (0-0/10-3) (—0-2/10-0)
¥ 0-731 0-820 0-762 0-759 0-760
42/-T1)  (38/—T4)  (40/—73)
2 A 0-700 0-700 0-695 0-704 0-695
(—=07/—=07) (0-6/0-6) (—=07/—=0"7)
0 0767 0-694 0772 0769 0-768
(0-7/112) (0-3/10-8) (0-1/10°7)
Y 1-210 1-360 1-225 1-210 . 1-227
(12/—90)  (00/—110)  (14/—98)
3 A 0-700 0-700 0-704 0-704 0-705
(0-6/0-6) (0-6/0-6) (0-7/0-7)
0 0-642 0-561 0-634 0-632 0631
(—12/130) (—=16/127) (—17/125)
v 0-935 1100 0-963 0-964 0-962
(3:0/—125)  (31/—124) (2:9/—125)
4 A 0-700 0-700 0-704 0-706 0-701
(0-6/0-6) (0-9/0-9) (01/0°1)
0 0-818 0636 0-820 0-813 0-812
(02/289)  (—06/286) (—07/277)
/8 0-877 1-248 0910 0-908 0916
‘ (38/—27'1) (35/—272)  (44/—266)
5 A 0-700 0-700 0-696 0-696 0-696
v (—0:6/—0-6) (—06/—06) (—06/—06)
0 0-357 0-281 0-360 0-359 0-359
(0-8/281) (0-6/27-8) (06/27-8)
v 0-395 0-550 0-409 0-408 0-407
(3:5/—256)  (3:3/—258)  (3:0/—260)

*Fstimates are based on averaging free parameters within parameter types.
bIn parentheses is given a/b where: a is the percentage under- or overestimation of the true
value in the y model; b is the percentage under- or overestimation of the true value in the y*

model.

seem to be biased downwards as compared to the empirical standard deviations of

18:

the estimates. For case 4, this bias may be deemed serious. Regarding ML, this is in

line with Boomsma, Tanaka and Browne; here the finding is generalized to GLS.
However, for ADF no such bias is detected. This is in contrast with Tanaka’s and
. Browne’s studies, since they exhibited small downward biases also for ADF. We

conclude that for case 4, the observations from our study are in part different from
those of Tanaka and Browne. Most importantly, we find no ADF parameter estimate
bias. This is an important practical point which may warrant future research. Several

factors may play a role, such as: the use of ordered, categorical variables versus

continuous, interval scaled ones, the degree of non-normality (skewness/kurtosis), and
the type of model, including the number of degrees of freedom.
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Table 5. Sampling variability for cases 1-5: ML,
GLS, ADF*

Estimator
Case Parameter ML GLS ADF
1 A 0-046 0-046 - 0-044
i 0-044 0-044 0-044
0-042 0-044 0043
6 0-028 0-028 0-028
0-028 0-028 0-028
v - 0025 0-025 0-025
] 0-073 0073 0-076
0074 0074 0074
0-057 0-057 0-057
2 A 0-046 0-046 0-047
0-046 0-046 0-046
0-048 0-047 0-048
6 0-046 0-046 0-051
0-047 0-047 0050
0-053 0-052 0-053
v 0-121 0121 0117
0-121 0-121 0-121
0122 0114 0122
3 A 0-048 0-048 0-057
. 0-047 0-047 0-053
0052 0-052 0-053
0 0039 0039 0-044
0-038 0039 0-046
0-044 0-044 0044
V] 0-:098 0-098 - 0-108
‘ 0-098 0-098 0111
0-099 0-098 0-100
4 A 0-060 0-060 0-083
0-061 0-060 0-083
0-086 0-085 0-087
0 0-050 0-050 0073
0-050 0-050 0075
0-074 0073 0-074
v 0-110 0-110 0-155
0-111 0111 0-155
0165 0-160 0-165
5 A - 0059 0-059 0-070
0-059 0-059 0071
0-074 0-073 0-073
0 0-022 0-022 0-028
0-022 0-022 0-028
0-028 0-027 0-028
v 0048 0-048 0-062
0-050 0-050 0-061
0-060 0-060 0-058

“The-three entries are: :

—expected (true) standard error of estimate;

—mean of estimated standard errors calculated as the
average of the standard errors for each parameter estimate;
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5.2. ML, GLS, ADF for cases 1-4 and the X(y*) model

Consider now parameters for the y*-model in cases 1-4 with ML, GLS and ADF
estimation. The results on chi-squares presented in Table 3 are relevant also for the
y* model, since the same structure holds. In Table 4 we find true parameter values
in the column ‘y*-model’. These are the original parameter values scaled to a metric
corresponding to the population y variances for each of the four cases. Here, the
attenuation factor discussed in Section 2 comes into play. ML, GLS and ADF

- consistently estimate parameters of the y model. These parameters are related to
those of the y* model by (5), showing the expected bias of ML, GLS and ADF
-estimates relative to y* model parameters. Above, we have noted no appreciable bias
in ML, GLS or ADF estimation of ¥y model parameters. Hence, the X(y*) biases
expressed by (5) will actually be realized in the samples as expected. Throughout, no
bias is found in loadings, but is absorbed into error and factor variance bias as
expected. We find that there is a consistent and increasing bias over the four cases,
such that error variances are overestimated and factor variance is underestimated in
line with (5). Regarding ML, this is in line with Olsson’s results. We note that the
bias is about the same for ML, GLS and ADF. For case 4, where the attenuation
factor is 0-703, there is considerable bias of about 30 per cent. For case 1, case 2 and
case 3, however, we may perhaps be willing to accept the amount of bias (generally
less than 10 per cent).

Regarding sampling variability under the y* model one may want to compare the
results of Table 5 to those of Table 2 for the y*s. Note, however, that one would then
have to scale the Table 2 results to correspond to the y variances for each of the four
cases. This will not be carried out here due to the parameter estimate bias already
observed. : -

5.3. CVM for case 4 and the L(y*) model

If the y* model is of interest, the ML, GLS and ADF estimators were found to be not
at all robust for case 4. Hence, for case 4, the CVM estimator was also applied, as
discussed in Section 3. We then consider different association measures, the estimated
latent correlations among the y*s. Here, each y variable is dichotomized into a 25/75
per cent split. We may note in passing that the ML, GLS and ADF estimators could
be applied to these 0/1 y-variables. However, this would involve an attenuation
factor a = 0-614 and would thus give a larger bias relative to X(y*) parameters than
that found in Section 5.2 (@ = 0-703). Results on chi-square test of fit for CVM are
given at the bottom of Table 3 above. We do note a slight ‘underestimation’ of chi-
square, but not more marked than for GLS on case 4 y*s (see Table 2).

In Table 6 results are given for parameter estimates, and sampling variability.
Here, the CVM estimator is shown to work rather well. No parameter estimate bias
can be detected, and mean standard errors for parameter estimates are reasonably
close to the empirical standard deviations. We note, however, a slight but consistent
upward bias of mean estimated standard errors relative to the empirical standard
deviations. For this situation, we conclude that the CVM estimator is a better

—empirical standard deviations of estimates calculated as
the square root of the average variance for each parameter
estimate.
®For ADF the expected standard errors of estimates are
estimated from a random sample of N = 10000.
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‘Table 6. Results for case 4 with CVM

True value
Parameter (y* model) Estimate®  Variability”
A ‘ 0700 0-700 —
A, 0-700 0-705 0-066
07y 0065
0-060
Y 0700 0-694 0-063
. . (—09) 0-064 -
0-055
Ay 0700 0711 0-066
(1-6) 0-064
0-055
Factor variance
v 1-000 1-003 0123
(0-3) 0125
0110

“In parentheses is given the percent under- or
overestimation of the true parameter value.
®The three entries are:

—expected (true) standard error of estimate (estimated as
for ADF in Table 5);

—mean of estimated standard error;

—empirical standard deviation of estimates.

alternative than either ML, GLS or ADF. In passing, it is interesting to note a 40-50
per cent increase in sampling variability with CVM using dichotomized y variable
information as compared to using y* variable information as was the case of the GLS
estimator in Table 2. Given the high precision of parameter estimation, the loss of
information is however unimportant in this situation.

5.4. ML, GLS, ADF for case 5 and L(y), E(y*) models

Turning finally to case 5, we will again study the ML, GLS and ADT estimators.
Here we have approximately the same univariate kurtosis as in case 4, but zero
skewness. For case 4 we noted that ML and GLS estimates, but not chi-square or
standard errors, were robust against the non-normality. ADF was found robust on al
three counts. Will the ML/GLS problems persist when only kurtosis and not skewnes
deviate from zero? Also of interest for case 5 is whether we can replicate Tanaka’s
findings regarding the problems of ML and ADF.

In the right-most column of Table 3 we have the case 5 chi-squares. In terms of
chi-square mean and reject frequency, there seems to be no important difference
between ML, GLS and ADF, and all perform close to expectation. ML and GLS
robustness seems to be at hand. Parameter estimates are given in Table 4. Compared
to the true parameter values of the X(y) model, ML, GLS and ADF all perform very
well with no bias or discernible differences among estimators. This result is in
contrast to Tanaka’s, although it should again be kept in mind that his kurtosis
values were generally higher and that he did not study ordered categorical variables.
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In Table 5 the sampling varlablhty of parameter estimates is given for case 5. As
with case 3 and case 4, there is a certain tendency for empirical standard deviations
of ML and GLS to be larger than the other two measures of variability. Here
robustness is questionable. ADF performs well with respect to these three measures
of variability. In conclusion, case 5 does not replicate the findings of Tanaka in that
here ADF performs well and better than both ML and GLS for X(y) parameters.

It is interesting to contrast the results on ML and GLS (non-)robustness for case 4
versus case 5. Case 4 gives much more severe distortions. An interesting question
that remains is the role of skewness versus kurtosis in this comparison. Case 4 does
exhibit a larger skew, but it also exhibits a larger kurtosis. It should be noted that
we also studied a slightly less non-normal version of case 4 with univariate
skew = —1-921 and univariate kurtosis = 2-618, i.e. smaller kurtosis than case 5. The
results were virtually identical with those of case 4 reported here. Further research is
needed to evaluate the role of skewness versus kurtosis measures as for predictive
value regarding distortions/non-robustness in finite samples.

Turning finally to case 5 parameter estimates as compared to true values of the
X(y*) structure, we first note from Table 1 an important y correlation attenuation
factor of 0-718. This results in an error variance and factor variance bias in Table 4
of 25-30 per cent. Hence, important distortions of y* structure can occur not only in
the context of skewness as was discussed in Olsson and Mooijaart, but also with zero
skewness and high kurtosis.

6. Conclusions

The availability of the two new approaches ADF (for y models) and CVM (for y*
models) seems to be promising for the analysis of non-normal, ordered categorical
variables. In our study, we have found that with strong skewness and/or kurtosis,
these estimators may outperform the more traditional, normal theory estimators ML
and GLS. Nevertheless, cost of estimation will presumably continue to be a factor of
overriding concern for quite some time. From this point of view, ADF and CVM are
less attractive. The approaches are roughly as costly as and considerably more costly
than ML and GLS. At present, both ADF and CVM are perhaps intractable for
analyses with more than, say, 25-30 variables. Hence, for still some time to come,
the robustness of ML and GLS is of great interest. It is therefore reassuring to find
that these normal theory estimators perform quite well even with ordered categorlcal
and moderately skewed/kurtotic variables, at least when the sample size is not small.
For our choice of N = 1000, no discernible differences existed between ML and GLS.
From other research, however, it is conjectured that GLS may exhibit larger bias
than ML in smaller samples, say N <400.

If most variables have univariate skewnesses and kurtoses in the range —1-0 to
+ 10, not much distortion is to be expected. Here ADF or CVM are not needed.
From the results of Boomsma and Olsson we conjecture that this is largely
independent of number of variables and number of categories. From their studies we
also would not expect that our choice of equal univariate distributions would limit
our conclusions. However, size of correlations seems to be important, so that with
many low correlations (say 0-2 and lower), larger skews may be acceptable. Note that
our study concentrates on medium-sized correlations.

When most skewnesses and/or kurtoses are larger in absolute value than 2-0, and
correlations are large (say 0-5 and higher), dlstortlons of ML and GLS chi-squares
and standard errors are very likely, although estimates seem robust when relating to
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the y model. Unless only estimates are of interest, ML and GLS should presumably
be abandoned here. ADF would be expected to still yield good chi-squares and ‘
standard errors and, if the y model is relevant, also good estimates. Note, however,
that the contradictory research results of Tanaka and Browne indicate that this is
specific to the type of data we have considered.

We note that ML, GLS and ADF are really intended for use with interval-scaled,
unlimited variables. When, however, as in case 4, the y distribution is strongly
censored, a y model is inappropriate since the assumptions of the linear factor
analysis model are unrealistic. The y* model assumed by CVM may be more
appropriate.
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