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Factor structure in groups selected on
observed scores

Bengt O. Muthén

Graduate School of Education, University of California, Los Angeles, Los Angeles,
CA 90024, USA

A new method is proposed for estimating factor means and factor
covariances in a group of individuals selected on their observed scores. The
selection variable is, for example, the total score on an admissions test.
Given a factor model for the test items based on the group of test takers, we
may be interested in the factor structure for those in the top quartile. The
differences in factor means and covariances between this selected group and
the full group gives useful information both on successful test performance
and on test validity. The new method draws on the classic Pearson-Lawley
selection formulas. It avoids the fallacy of factor analysis on the selected
group, which would lead to incorrect estimates. The new method is applied
to a simple factor structure model for the GMAT test. Although the
majority of the GMAT items test verbal skills, it is found that a quantitative
factor shows the greatest change in moving from average to top quartile test
takers.

1. Introduction

Consider a certain factor analysis model that fits well for a population of individuals.
The analyses leading to this estimated model are assumed to be based on random
observations from this population. The question to be studied is: what is the factor
structure for a subset of this population, when the subset is defined by a variable that
is a function of the observed variables?

This problem arises naturally in the analysis of student responses to university
admissions tests of various kinds, e.g. SAT, GRE, LSAT, GMAT. Here, the set of
variables consists of test items administered to a sample from a population of test
takers. The sum of the test items constitutes the test score. This test score plays a
major role in decisions to admit students. The test items may be added up
(‘parcelled’) according to different content areas and factor analysed. If a certain
simple factor structure is found in this population an interesting investigation is then
to try to determine what the factor structure is for students in the upper tail of the
test score distribution. How is the factor structure different for this group of students,
who are likely to be admitted, as compared to the general population? Do the factor
means increase more for certain factors, implying that these are particularly
. important in a successful test outcome? Do the decreased factor variances indicate a
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particularly strong increase in homogeneity for certain factors? What is the change in
pattern of factor correlations? Answers to these questions may give useful insights
into the validity of the test and the dimensions underlying the test performance. For
instance, if a certain factor mean increases relatively little when moving from the
general population to the top group, this indicates that the items measuring this
factor have little power in discriminating between average and successful test takers.
If a factor mean increases relatively strongly, this indicates that the factor is a
dominant one in determining successful outcomes. An investigation of this kind is
also a valuable complement to a ‘validity study’, where test responses are used as
predictors of success among the select group of admitted students.

To actually obtain an estimated model for the top group of test takers is, however,
not a straightforward task. Direct attempts at applying factor analysis on a sample
from such a subpopulation will fail. This is because when a factor model holds for
the total population it will not in general hold for observations randomly sampled
from a subpopulation defined by selection on the total observed scores. The aim of
this paper is to provide a new method which, while avoiding the problem of
subpopulation factor analysis, still provides an estimated factor model for the selected
group.

Section 2 points out the statistical problems of ordinary factor analysis on a
selected group and describes the theory for the new method. As an illustration,
Section 3 considers test taker data on the Graduate Management Admissions Test
(GMAT) administered to students who want to apply to Graduate Schools of
Business and Management. After briefly describing previous factor analyses carried
out on a large sample of such test takers (Muthén, Shavelson, Hollis, Kao, Muthén,
Tam, Wu, Yang, 1988), factor analysis is applied to the top quartile on the GMAT
score. The results are constrasted with those obtained by the new method.

2. Factor analysis in selected populations

Consider the factor analysis model for a p vector of observed variables y,
y=v+An+eg, , (1)

where v is a p vector of intercept, A is a pxm matrix of factor loadings, n is an m
vector of factor scores standardized to zero means, and ¢ is a p vector of residuals
that are independent of n and have zero means. This gives

E(y)=p,=, )
V())=E,,=AYA'+ 0O (3)

where W is a factor covariance matrix and © is a residual covariance matrix usually
assumed to be diagonal.

We are interested in a g vector of selection variables s where an observational unit
is selected depending on elements of s falling below or exceeding certain thresholds.
Let us consider the two cases:
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(i) s=W,n (selection related to the factors)
(i) s=W,y (selection directly on the observed variables)

Here, the Ws contain known weights.

The classic Pearson-Lawley selection formulas (see, for example, Johnson & Kotz,
1972; Lawley, 1943) give the mean vector and covariance matrix of a vector z in a
subpopulation (denoted by an asterisk) selected on s. Let B=X_ X~ ! Then

uF =+ B(uF —py), 4
2::=2:2+B(2:;—2“)B1. (5)
Ix=BIy . (6)

These formulas are valid if the regression of z on s is linear and homoscedastic, for
instance, when the vector (s'z') is multivariate normal.

2.1. The problem of factor analysis in selected subgroups

Case (1) of selection related to the factors was studied, e.g., by Meredith (1964), sce
also Muthén & Joreskog, (1983), where it was shown that such selection retains the
full population factor model in the subpopulation with invariant v, A, and @, while
E(n) and V(n) are changed. This is utilized in the simultaneous factor analysis of
several groups, see e.g. Joreskog (1971).

This paper considers selection case (ii) using a single selection variable s=w'y,
where s may be thought of as a total test score used for admissions. We are
interested in the subpopulations for which s=¢, where ¢ is for instance the upper
quartile value in the full population. The goal of our analysis is to correctly estimate
the factor mean vector and covariance matrix for the subpopulation and compare
these quantities to the corresponding ones for the full population, 0 and Y,
respectively.

Let us first consider why attempting to estimate the subpopulation factor
covariance matrix by the naive approach of regular factor analysis in the subpopula-
tion will fail.

The invariance of the factor model under selection case (i) is due to the indirect
selection on y via n. In contrast, for case (ii) of direct selection on y, the full
poulation factor model generally does not hold for subjects randomly drawn from the
selected subpopulation. Such situations were studied, e.g. in Muthén, Kaplan &
Hollis (1987). Using the Pearson-Lawley selection formula (5) with z=y, we find a
distorted factor structure in the subpopulation,

LY =AYA + O+ o(AYA' + O)ww'(AYA'+ 0), N
where

w=0;"(c%—0)05". (8)
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Furthermore, since selection takes place on a variable that is directly related to the
dependent variable vector y in the linear regressions of (1), the assumed linearity and
homoscedasticity of these regressions will not hold in the subpopulation; see, e.g.,
Muthén & Joreskog, (1983).

We conclude that factor analysis of a sample covariance matrix that consistently
estimates LY, ie., regular factor analysis on a random sample in the subpopulation,
will be incorrectly applied. The assumptions of the regular factor model do not hold
and if the analysis is nevertheless applied, it will consider a covariance matrix for
which no simple and meaningful structure generally exists.

2.2. A new approach

We will propose a different approach which avoids direct factor analysis in the
selected subpopulation. While we have established that an individual chosen ran-
domly from the selected subpopulation does not obey (3), individuals in the
subpopulation are part of the full population and therefore the factors of (1) also
operate in the subpopulation.

The new approach uses the Pearson-Lawley formulas to achieve the goal of
correctly estimating the subpopulation factor mean and covariance matrix. We
assume that estimates are available for the full population factor model parameters
and that w contains known weights.

With s=w'y, we obtain

Hs=WH,, )
0, =W(AYA' + D)w, (10)
0,s=YA'W. (11)
Let w be defined as in (8), while
k=05 (uF— 1) (12)

Assuming that the regression of n on s is linear and homoscedastic, the
Pearson-Lawley formulas applied to z=# then yield the factor mean vector

pr=k¥YA'w, (13)
and factor covariance matrix
¥ =¥*=¥Y +ow¥YA'wWwAY. (14)

Assuming further that s is normally distributed, xk and w may be computed using

the mean and variance of a truncated normal variable s, s=c (see, for example,
Johnson & Kotz, 1970)

pE=p+¢(d)n e, (15)
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oX=0,[1+dp(d)n™ " —(¢(d)n™ 1)), (16)

where ¢(d) is the standard normal density at d,
d=(_c+us)6s;ll2 (17)

and n~! is the area of the normal curve exceeding the truncation point ¢. For a
chosen ¢ and known weights w, factor model parameter estimates obtained from a
sample from the full population may then be inserted in (13) and (14) to give the
desired factor mean vector and factor covariance matrix estimates for the subpopula-
tion of s=c.

3. An application

As an illustration we use data from the GMAT test of October 1984. Muthén et al.
(1988) analysed a sample of 55279 test takers from this occasion. The 150 test items
were first subjected to an item factor analysis based on a random subsample of test
takers, suggesting five interpretable factors. Parcels of items corresponding to the
factors were created as proportion correct for a set of items. This gave 24 continuous
variables based on 5 to 7 items each. A simple structure, five-factor model was then
estimated for these 24 variables using a covariance matrix for the full sample of test
takers and found to fit well. The estimated loadings and factor covariance matrix are
given in standardized form in Table 1.

Of the 24 variables there are 14 verbal and 10 quantitative ones, corresponding to
the 85 and 65 verbal and quantitative items. There is one major verbal factor
corresponding to. sentence correction and reading comprehension skills, and two
minor verbal factors corresponding to item format (‘minor’ answer key and ‘other’
answer key). There are two quantitative factors, where the major one reflects
accuracy and the other one also reflects speed. The simple structure involves zero
loadings in cases where variables and factors have no substantively meaningful
relationship. For instance, verbal items are not allowed to load on the quantitative
factors. Using confirmatory factor analysis maximum-likelihood estimation, the chi-
square fit value for this model was 255 with 218 degrees of freedom when normed to
a sample size of 1000, reflecting a very good fit.

In this application we focus on the group of students belonging to the top quartile
of the total GMAT score, where the top quartile was estimated as 570. As a first
analysis, exploratory factor analysis was carried out on the corresponding sample of
13504 students. The top portion of Table 2 shows the drop in eigenvalues and
maximume-likelihood chi-square for increasing number of factors. We conclude that
three factors are probably sufficient in explaining the correlation structure. The three
factors are interpreted as a verbal factor corresponding to the general one of Table 1
for the full sample (1), a verbal factor corresponding to ‘analysis of situations’ items
(from the remaining verbal section) (2), and a general quantitative factor (3). The four
factor solution splits the verbal ‘analysis of situations’ factor into the full sample
answer key factors (2 and 3). The five factor solution splits the general verbal factor
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Table 1. Standardized estimates for GMAT simple structure factor model (n=155279)

Factor
Verbal Quantitative
General Specific General Specific
Sentence Corr. & Minor Other Speed &
Section Reading Comp. Key Key Accuracy Accuracy
Verbal
Sentence Vi 0.588
correction V2 0.599
V3 0.625
V4 0.656 —0.024
Analysis V5 0.044 0.598
of situations V6 0.662
V7 0.356 0.454 —0.002
V8 —0.044 0.647
V9 ‘ 0.765
V10 0.076 0.603 0.109
Reading Vil 0.573
comprehension Vi2 0.630
Vi3 0.622
vid 0.597 0.080
Quantitative
Problem Q1 —0.123 0.711 0.084
solving 1 Q2 —0.047 : 0.525 0.335
Q3 0.046 —0.148 0.838
Data Q4 0.635
sufficiency Q5 0.119 0.492 0.034
Q6 -0.026 0.244 0.530
Q7 0.178 —0.088 0.657
Problem Q8 —0.054 0.739 —0.071
solving 2 Q9 —0.026 0.645 0.218
QI0 0.846
Factor 1.000
correlations 0.577 1.000
0.668 0.674 1.000
0.583 0.620 0.557 1.000
0.268 0411 0.433 0.687 1.000

into variables corresponding to sentence correction items (1) and variables
corresponding to reading comprehension (5), the answer key factors are as for the full
sample (2 and 3), and there is a general quantitative factor (5).

The fact that fewer factors are observed in the top 25 per cent group than in the
total group could be taken as an indication of the full-sample factors being highly
correlated in the selected group, collapsing the factor space. However, Table 2 instead
shows lower factor correlations than Table 1, probably reflecting the observed
variable correlation attenuation. We conclude that the full sample factors could not
be recovered in the selected group.
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Table 2. Exploratory factor analysis in top 25 per cent group (n= 13 504)

Number of factors 1 2 3 4 ) 6
Eigenvalues 3.505 2.354 1.832 1.234 1.058 1.028
Chi-square® 760.4 276.1 170.7 115.2 72.6

df. A 229 207 186 166 147
Chi-square/d.f. 3.32 1.33 0.92 0.69 0.49
Factor correlation matrix
3-Factor 1.000
0.021 1.000
—0.267 0.177 1.000
4-Factor 1.000
0.122 1.000
0.193 0.300 1.000
—0.267 —0.056 0.026 1.000
S-Factor 1.000
0.096 1.000
0.212 0.322 1.000
—0.228 —0.055 0.025 1.000
0.594 0.152 0.118 —0.243 1.000

“Normed to a sample of 1000.

In using the proposed method, we first observe that the GMAT score is not the
same as, but highly correlated (0.99) with, a weighted sum of the 24 observed
variables. The weights simply correspond to the number of items in each parcel.
Hence, for the selection relation s=w'y we have known, fixed weight w and a
negligible residual. The selection variable s appears close to normal with small skew
and kurtosis as would be expected since it is a sum of many variables. Likewise, the
24 observed variables have univariate skews and kurtoses that are mostly in the
range of —0.5 to 0.5. The assumptions underlying the Pearson-Lawley selection
formulas therefore seem plausible.

Applying (13) and (14) of the proposed method, we obtain the estimated factor
mean vector and factor covariance matrix given in Table 3.

In Table 3 we first note that the five factors are in different metrics and are not
directly comparable. In terms of factor means we obtain comparability by considering
the means divided by the corresponding factor standard deviations. We choose to use
the standard deviation of the full population and assess the standardized mean
increase from the zero value of that population.

Our first observation is that the mean increases are similar, indicating a very
desirable test property of equal importance of the different parts of the GMAT in
determining a successful outcome. This is a new and important component of test
validity. However, the general quantitative factor (accuracy) is the dominant factor in
distinguishing average from top quartile test takers. This occurs despite the fact that
in comparing verbal vs. quantitative test content, verbal content is reflected in both
more items (85 vs. 65) and more item parcels (14 vs. 10). It is also interesting to note
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Table 3. Estimated factor structure in top 25 per cent group vs. total group

Factor
Verbal Quantitative
General Specific General Specific
Sentence Corr. & Minor - Other Speed &
Section Reading Comp. Key Key Accuracy  Accuracy
Factor means in 0.144 0.145 0.173 0.152 0.207
subpopulation
Relative factor 1.013 0.936 0970 . 1.099 0.895
means*
Factor SD in 0.103 0.119 0.134 0.092 0.183
subpopulation
Factor SD in 0.143 0.154 0.179 0.138 0.231
total population
Relative factor 0.723 0.769 0.751 0.663 0.793
SD?
Factor var—cov 0.011
matrix in 0.005 0.014
subpopulation 0.005 0.007 0.018
0.001 0.003 0.002 0.008
—0.005 0.001 0.001 0.007 0.033
Factor var-cov 0.020
matrix in total 0.013 0.024
population 0.017 0.019 0.032
0.011 0.013 0.014 0.019
0.009 0.015 0.018 0.022 0.053
Factor corr. 1.000
matrix in 0.244 1.000
subpopulation 0.389 0.437 1.000
: 0.138 0.277 0.125 1.000
—0.267 0.037 0.051 0.438 1.000
Factor corr. 1.000
matrix in total 0.577 1.000
population 0.668 0.674 1.000
0.583 0.620 0.557 1.000
0.268 0.411 0.433 0.687 1.000

“Factor means in subpopulation divided by factor SD in total population.
’Factor SD in subpopulation divided by factor SD in total population.

that the speed aspect of the quantitative factors discriminates the least among
average and top quartile test takers.

The general quantitative factor is also the one increasing the most in terms of
homogeneity, as measured by the ratio of subpopulation to full population variance.
Again, quantitative speed shows the least change. The factor correlation matrices
clearly show that the various skills represented by the five factors have much weaker
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relationships for the homogeneous top quartile group than for the full population.
For instance, the full population correlation of 0.58 between the major verbal and the
major quantitative factors reduces to 0.14 in the top quartile group.

4. Discussion

The proposed approach gives a powerful indirect way of estimating factor structure
in a strongly selective group that cannot be uncovered by conventional analysis. A
strong feature is that the estimates are obtained from full population estimates which
may build on a much larger sample than the select group under consideration. It was
shown that this approach provided new and useful information on the differences
between average and particularly successful test takers, while at the same time
providing insights about test validity.

An alternative approach to estimate the subpopulation factor means and
covariance matrix would be to simply estimate factor scores for the selected group
and calculate the desired quantities from those variables. It is well known, however,
that estimated factor scores do not provide unbiased estimates of the means and
covariances (see, e.g., Lawley & Maxwell, 1971). Also, if the subgroup sample is small,
unstable estimates would be obtained. :

A weakness of the proposed approach is that it is based on assumptions of
linearity and homoscedasticity of the factors regressed on the selection variable.
These assumptions must be evaluated in any given application. An aid in judging
their plausibility would be to compare the sample mean vector and covariance matrix
for the observed variables in the selected group with the corresponding quantities
predicted from the selection formulas, not using the underlying factor structure.
However, the results for the factors may be more robust than for the observed
variables. Further research in terms of simulation studies can shed some light on such
robustness.
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