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Goodness of Fit With Categorical
and Other Nonnormal Variables

BENGT O. MUTHEN

With continuous-normal variables, the testing of a structural model
involves testing the fit of the restrictions imposed on the covariance
matrix. Testing of structural models for categorical data involves addi-
tional considerations compared with those for normal data. Since these
considerations are similar to testing with nonnormal continuous vari-
ables, the case of nonnormal continuous variables will also be discussed
in this chapter and will thereby provide a convenient connection with
the continuous-normal case discussed in other chapters.

For continuous-normal variables, the sample covariance matrix is a
natural choice of statistic to analyze, and testing the model involves testing
restrictions on the covariance matrix. Structural models for categorical
data have no such natural choice of sample statistics, and testing the
model can be done in more than one way. The structural models for
categorical data considered here use a model specification that can be
expressed as a certain model family for the observed variables, where
the parameters of this model family are further restricted in terms of a
smaller number of structural parameters. As an example, we may con-
sider a model with four binary variables. With an assumption of nor-
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206 Fit With Categorical and Other Nonnormal Variables

mality for continuous variables underlying the observed variables, the
natural statistics to analyze are the correlations among the underlying
variables, the tetrachoric correlations. As a structural model for the
correlations among the underlying variables we may consider a stan-
dard one-factor model. In this example, the model family for the
observed variables is one that specifies multivariate normality for the
underlying variables. Only if this model family is accepted should
tetrachorics be used. Having accepted the model family, the testing of
the structural model proceeds with testing the restrictions it imposes on
the tetrachorics. Since in this way variances are not considered, the
usual residual variance parameters of covariance structure analysis are
disregarded. In this way, the degrees of freedom for p variables are
obtained as p(p — 1)/2, the number of parameters in the unrestricted
model, minus the number of free parameters. With four variables, the
unrestricted model has as many parameters as there are correlations, in
this case six, while a one-factor model uses four parameters to generate
the correlations. In this way, the structural model implies that two
restrictions are imposed on the correlations. Note, however, that the
choice of model family, and hence of statistics to analyze, is not
unambiguous. The use of the tetrachoric family implies accepting a
model for the probabilities of the cells of the 2 x 2 x 2 x 2 table for the
four binary variables. Testing of this model will be discussed below. It is
interesting to contrast the incorrect acceptance of the normality assumption
of the tetrachoric family with the incorrect use of normal theory estimators
and tests for continuous, nonnormal variables. In the latter case, it is well
known that the estimators will produce consistent estimates of structural
model parameters and that only chi-square tests and standard errors are
affected. In the former case, however, using the wrong model family results
in using the wrong statistics, and inconsistent estimation of structural
model parameters results.

In testing structural models for categorical data one may therefore
consider two levels of goodness of fit: (a) the fit of the observed variable
model family to the observed data where no further restrictions of model
family parameters are made and (b) the fit of the structural model to the
model family. As will be discussed, it is often hard to test the structural
model! directly against observed categorical data, and the two levels of fit
may instead be considered in these two steps. The second level of testing
corresponds most closely to the conventional testing for continuous vari-
ables. The first level of testing has no counterpart in normal theory analysis
and it is unfortunately often ignored in structural analysis of categorical
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data. Examples of the first level of testing will be discussed in terms of
logit and probit regression for binary dependent variables, regression
with ordered polytomous response, analysis with polychoric correlation
coefficients, analysis with tetrachoric correlations, and analysis with
mixtures of continuous and categorical variables. Examples of the
second level of testing will be discussed only briefly in terms of factor
analysis and structural equation modeling of binary variables. Struc-
tural modeling with latent variables runs the risk of removing interpre-
tations of the model too far from the observed data; this is perhaps
particularly true for categorical data. A final section discusses how this
can be avoided by complementing the two levels of testing by explicat-
ing predictions from the structural model for the observed data.

A general structural equation model will first be presented. Checking
the appropriateness of model families against the data will then be
discussed, followed by testing of underlying structure and how this
structure can be tied back to the data.

The Structural Model

As in the LISCOMP program (Muthén, 1978, 1979, 1983, 1984, 1987,
1989b), a variety of response models for categorical and other nonnormal
data can be put into a unifying framework by the use of latent continuous
response variables. These y” variables may be observed as y variables in a
variety of forms. In the conventional case, the y's may be directly observed
as continuous-unlimited y variables, whether they are normal or nonnormal
(Muthén, 1989c). The y* variables may also be observed as censored
continuous variables (Muthén, 1987, 1989d) and as ordered categorical
variables, including binary variables. Recently, such modeling has also
been provided within the framework of Joreskog and S6rbom’s (1988,
1989) PRELIS and LISREL programs. Thus the estimation and testing
procedures to be discussed are widely available.

This chapter will focus on the ordered categorical case,

y=c, if T.<y' <7, (1]
where y" is an underlying continuous variable with thresholds T as

parameters for the categories ¢ =0, 1,2, ..., C -1, for a variable with
C categories, and where T, = —eo, T, = co. In the binary case, there is a
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single T parameter and it is equivalent to the negative of the intercept
of conventional probit regression. If continuous variables y are present,
this is taken to mean that the underlying variable is directly observed,
*
y=y.
The LISCOMP model involves a measurement model

y* = A’[I + €, IZI
and a structural model
n=Bn+Ix+C. 131

Here, € is a random vector of measurement errors with zero means and
covariance matrix 0., m is a random vector of constructs with zero
means, x is a random vector of observed background variables, and Cis
a random vector of residuals with zero means and covariance matrix .
The vectors € and { are assumed to be independent of each other and of
. For simplicity, arrays related to intercepts and means are left out in
the present discussion and so are multiple-group specifications and
scaling issues. The model parts of Equations 2 and 3 lead to the model
structure for the conditional distribution of y" given x,

E(y'lx)=1Tlx, (4]
Viy'lx)=Q, [5]

where
N=Ad-B)'T, (6]
Q=Ad-B'WAI-B)"+0,. 17)

The II structure constitutes LISCOMP’s model part 2, while the
structure constitutes LISCOMP’s model part 3. Mean and threshold
structures would be included in part 1. When categorical y variables are
present, the corresponding diagonal elements of  are not identifiable
and are not included in the LISCOMP analysis. In the modeling such
diagonal elements are taken to be unity. For categorical variables, the
PRELIS/LISREL system also involves the € structure, but the thresh-
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old structure of part | and the II structure of part 2 have no counterparts
in the current PRELIS/LISREL system.

For categorical and other nonnormal y variables, generalized least
squares (GLS) estimation is used to estimate the model parameters in
LISCOMP and PRELIS/LISREL (see also Joreskog, 1991). LISCOMP
has the special feature that when x variables are present, GLS estima-
tion is done by fitting Il and  elements to the vector of sample
statistics corresponding to the multivariate regression slopes and re-
sidual covariances (see Muthén, 1987). The advantage is that the
calculation of these regression-based statistics draws only on the
assumption of conditional normality for y* given x, while the custom-
ary use of correlations would entail joint normality of y* and x. When
x variables are not present, the conditioning on x is vacuous, the II
matrix does not exist, and the  elements are fitted to a sample
statistics matrix of underlying variable correlations and/or covariances.
This includes tetrachoric, polyserial, and polychoric correlations as
well as correlations and covariances for censored variables. In all
cases, the sample statistics are calculated in two steps using univariate
and bivariate response variable information and maximum likelihood
(ML) estimation.

Testing of the First Level: The Fit to the Data

In this section the fitting of the model is related to the sampling scheme
under which the data were observed. For categorical data, product-
multinomial or multinomial sampling schemes are relevant (see, e.g.
Agresti, 1990; Bock, 1975, chap. 8). The just-identified, or saturated,
model then has the corresponding probabilities as parameters and the ML
estimates are the observed proportions. Checking the model involves an
investigation of how these estimated probabilities are reproduced by our
model. The general point of this section is that this first-level model testing
stage is often ignored, despite the fact that a host of model checking
techniques are available. By means of a series of examples, this testing is
shown to contribute crucially to the understanding of the data. Examples

“of the first level of testing will be discussed in terms of logit and probit

regression for binary dependent variables, regression with ordered poly-
tomous response, analysis with polychoric correlation coefficients, analy-
sis with tetrachoric correlations, and analysis with mixtures of continuous
and categorical variables.
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Regression With a Binary Dependent Variable

The first two examples discuss regression analysis with categorical
dependent variables. As a starting point, consider the simple case of
regression of a binary dependent variable y on an x variable. In terms
of the general model of the previous section, probit regression is obtained
with A =1,0_=0, B =1, so that

yi=yx+L, 8]

obtaining the ML-estimated probit slope of Il in Equation 6 as . The
variance of the residual { is standardized to one so that £ of Equation
7 is the scalar 1. The model expresses the conditional probability of y
given x as the probability that y* exceeds the threshold 7, in Equation 1,

- (9]
P(y=11x=[ o,

T =X

where ¢ denotes the univariate standard normal density. Equivalently,
conventional probit regression parameterization expresses the negative
of 7 as an intercept, while <y is the conventional slope.

P(y=11x)=®d(—1+vx) [10]
=P(a + Bx),
where ® is the standard normal distribution function.

Example 1: Probit Regression

Table 9.1 gives British coal miner data taken from Ashford and
Sowden (1970). The x variable is age and the binary y variable is breath-
lessness. This is a case of grouped data in the sense that each distinct x
value in the sample has more than a single observation. The sampling
scheme may be considered as product-binomial so that the conditional
probabilities of y given x are modeled. There are 9 different x values
and for each x value a binomial variable is observed. Hence the unre-
stricted H, model for the data has one parameter, a probability, for each
of 9 x values, giving a total of 9 parameters. In contrast, the linear probit
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Table 9.1 Example 1: British Coal Miner Data

Probit Logit OLS

N Proportion  Estimated  Estimated  Estimated

Age (x) N Yes Yes Probability  Probability Probability
22 1,952 16 0.008 0.009 0.013 —-0.053
27 1,791 32 0.018 0.018 0.022 -0.004
32 2,113 73 0.035 0.034 0.036 0.045
37 2,783 169 0.061 0.060 0.059 0.094
42 2,274 223 0.098 0.100 0.095 0.143
47 2,393 357 0.149 0.156 0.148 0.192
52 2,090 521 0.249 0.231 0.225 0.241
57 1,750 558 0.319 0.322 0.327 0.290
62 1,136 478 0.421 0.425 0.448 0.339

18,282 2,427 0.130

SOURCE: Data from Ashford and Sowden (1970).

model has two parameters, T and . The latter model is nested within
the former. This can be seen by considering a transformation of the 9
probability parameters 7, j=1,2,..., 9, into 9 (probit) parameters,
Zj, where W = d>(zj): The probit model restricts the 9 zs to be a linear
function of x. In this way, a Pearson or likelihood ratio chi-square test
of fit has 7 degrees of freedom. If a multinomial sampling scheme is
instead considered, the result is the same. The unrestricted model then
has 17 parameters because there are 9 x 2 cells of probabilities and these
have to add to one. As is the case in log-linear modeling, 8 of these
parameters correspond to the marginal distribution of x and should be
added to the H, model. However, in line with ordinary regression, the
marginal distribution of x is not restricted here. The likelihood ratio
chi-square value is 5.19 with 7 degrees of freedom and the model is not
rejected despite the huge sample size. Note that this may be considered
a test against the data of the probit model family for the relationship
between y and x. The corresponding test of the logit family results in a
likelihood ratio chi-square of 17.13, which is not significant on the 1%
level. Table 9.1 also gives the fitted, or predicted, probabilities of
breathlessness for each x value. It can be seen that the probit family
captures the observed proportions better than the logit family at low and
high x values. In Example | there is no further structure imposed on the
linear probit model parameters, but this could be envisioned as a case
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of testing y = 0, or equality of -y slopes with more than one x variable.
Such a test can be performed using as the alternative hypothesis the
probit/logit model with unrestricted slopes. In this way, the test is done
on the second level without involving the unrestricted multinomial
model. '

If data are not grouped as in Example 1, model testing against the
data is more difficult, because the chi-square approximation may be
poor, with many cells having zero or very low expected frequencies.
This is the more common case and illustrates the difficulty of testing
the categorical variable model against the data directly. Standard com-
puter packages offer a “model test” also in this case, but it refers to the
H, hypothesis of vys all being zero tested against the H, hypothesis of
the -ys not being zero. Such a test is what is here termed a second-level
test. Although it is interesting to know that your predictors have signif-
icant influence on y, this procedure does not offer the desired test of the
probit/logit family against the data. For ungrouped data, Agresti (1990)
discusses more suitable goodness-of-fit tests related to residuals.

Regression With an Ordered Polytomous Dependent Variable

Example 2: Ordered Polytomous Regression

Muthén (1987) considered an example of alcohol consumption where
y corresponds to the number of drinks a person has per day on average
and the xs are age and income. The y categories are 0 (nondrinker), 1
(1-2 drinks per day), 2 (3-4 drinks per day), and 3 (5 or more drinks per
day). A U.S. general population sample of 713 males with regular
physical activity levels was considered. In this example there are four
ordered response categories, where

P(y=01x)=®(1,—vx), [11]
P(y=11x)=®(1,—y0) - (1, - ¥%),
P(y=21x)=®(1,—y'x) - (1, - v¥x),
P(y=31x)=®(1,+vx).

The arguments of ® are called (population) probits and are linear in the
xs. For example, (-7, + y'x) is the probit for P(y =31 x). The conditional

BENGT O. MUTHEN 213

2.4 Sample probit

1L \\.
y=1o0r2or3 (21 drink)

Y — __» Age category
1 — ., y-20r3 (>3drinks)
T——, y = 3 (2 5 drinks)
.2T
2.4 Sample probit

y=1or2or3 (21 drink)

0 — » Income category
1l TS y-2013 (23dinks)
T y-3(5dinks)
-2 T

Figure 9.1. Example 2: Sample probit plots for alcohol data.

probabilities of the response categories imply that the probits are linear
in the xs when the probabilities for the following three events are
considered: y=3,y=2or 3,y =1 or 2 or 3. As an example, consider
the event y = 2 or 3. Noting that 1 — ®(z) = ®(-z), the probit for this
event is —7, + y'x. The probits for these three events also have the same
x slopes . These facts can be used to test the goodness of fit for the
family of ordered four-category probit models against the data. Using
grouped data, the corresponding sample probits based on observed propoi-
tions can be plotted against the x variables. Figure 9.1 shows the plots
where age has been categorized into four categories and income has
been categorized into five categories.
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The top panel of Figure 9.1 shows three probit functions correspond-
ing to the three events plotted against age. If the ordered probit model
is correct, these functions should be linear and parallcl, and this seems
to hold to a reasonable degree of approximation. For income, however,
the bottom panel indicates that the lines are not parallel. The probit for
drinking at all appears to have a positive slope, while larger amounts of
drinking appear to have zero probit slopes. These plots suggest that the
ordered polytomous probit model is inappropriate for these data. Note
that the plots should more properly be done for each variable while
conditioning on the other, using, say, the modal category. This, how-
ever, will drastically reduce the sample sizes used for the plots, and the
distortion may not be large if the xs are approximately normally distrib-
uted. ML estimation of the model results in a strongly significant
negative slope for age and a weakly significant positive slope for
income. If instead the y variable is dichotomized as nondrinker versus
drinker, the age slope is about the same and the income slope becomes
strongly significant, with a large positive value. The conclusion is that
while drinking is strongly related to income, the amount of drinking is
not. This outcome is predictable from the probit plots. The example
shows the value of testing the model family against the data. If one goes
ahead and uses the ordered polytomous probit model for these data,
misleading conclusions can be drawn.

Regression With Several Dependent Variables

With multivariate categorical dependent variables, the testing and
model checking becomes more complex. As an example of the increas-
ing complexity, consider the case of bivariate, binary response. As a
special case of the general model of Equations 2 and 3, Muthén (1979)
studied a bivariate probit model with two indicators of a single factor,
where the factor was regressed on a set of exogenous variables. Leaving
the fit of the underlying latent variable structure asidc, checking the
appropriateness of the family of bivariate probit models against the data
involves checking a 2 x 2 table for each distinct combination of values
on the x variables. Unless data are grouped and a large sample is
available, this is intractable. More informal model checking is, how-
ever, possible in line with the probit plots of the previous example. For
bivariate binary responses, a probit plot is first carried out for each
variable and checked for linearity in line with the previous example. In
addition, a probit plot needs to be inspected for the joint event y, = 1,
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y, = 1. This requires transforming the sample proportion by use of a
bivariate normal distribution function. ,

Correlations Between Ordered, Polytomous Variables

Multivariate response with a structural model is a special case of the
general model of Equations 2 and 3 where xs are not present and I' = 0.
Here, the assumption of conditional normality for y's given xs is replaced
by the assumption of normality of the y's themselves. In particular, this
occurs when the latent variables of m as well as the measurement errors
€ are normal. Assuming normally distributed y" variables and using only
bivariate information from pairs of variables leads to the analysis of
latent correlations such as tetrachorics, polychorics, and polyserials, as
is done in LISCOMP and PRELIS/LISREL. The use of such correlations
implies the acceptance of a model in itself, the model of underlying
normality of y“s. This is different from the case of continuous variables
where Pearson product-moment (PPM) correlations are used. For cate-
gorical variables, underlying y" variables have to be assigned a distri-
bution, although not necessarily normal (see, e.g., Joreskog, 1991), in
order to enable the estimation of latent correlations. For continuous
variables, a linear relationship between the two variables is assumed for
a PPM correlation, but the full distribution of the two variables need
not be given. If the two variables are not bivariate normal this does not
invalidate the use of the PPM correlation as it does the latent correla-
tion. The next two examples consider the goodness of fit of underlying
normality models to data.

Example 3: Polychoric Correlations

Muthén, Huba, and Short (1985) analyzed quality of life data mea-
sured on seven-category Likert scales for 1,814 individuals. Questions
referred to satisfaction with a person’s house, leisure, family life,
standard of living, and savings, among other factors. The scale steps
ranged from “very satisfied” to “very dissatisfied,” with the fourth
category being neutral. Underlying normality for a pair of variables can
be assessed by a chi-square test. With seven-category variables the
pairwise chi-square tests have 35 degrees of freedom, obtained as the
difference of 48 parameters in the unrestricted multinomial model for
the 49 cells and 6 + 6 + 1 = 13 parameters in the normality model (6
thresholds for each variable and | correlation). The latter model may
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Table 9.2 Example 3: Polychoric Versus Pearson Correlations: Quality
of Life Data (N = 1,814; seven-category Likert)

Pairwise Chi-Square Tests of Normality (35 df)

Neighborhood — House Leisure Family Standard
House 160.7
Leisure 117.8 145.7
Family 73.7 88.2 197.5
Standard 115.0 173.3 181.3 123.2
Savings 93.6 139.8 120.1 92.0 173.7
Correlations: Pearson

Polvchoric

House 454
515
Leisure .249 285
309 .335
Family 188 .230 .376
249 291 .437
Standard 323 384 .376 .305
373 431 432 355
Savings 226 .296 2330 287 578
261 .336 373 .330 632

SOURCE: Data from Muthén, Huba, and Short (1985).

be seen as nested within the former as follows. The unrestricted model
parameters can be transformed into bivariate probit parameters. The
normality model restricts these parameters so that they increase or
decrease monotonically both horizontally and vertically in the table,
reflecting the ordered nature of the pair of variables at hand.

The top panel of Table 9.2 shows the results of this chi-square testing
using Pearson chi-squares. In my experience, the rejections of the
normality model observed in this example are frequently found, but
these rejections are often to a large extent caused by cells with low
expected frequencies (see, €.8., Benson & Muthén, 1992). For cells with
large enough numbers, however, there are often interesting information
and ideas to be found in such testing. A particularly common outcome
is one where “outlier” responses, or responses by a heterogeneous
subpopulation, contribute to the rejection. In the quality of life example,
certain individuals are very satisfied with one aspect of life and very
dissatisfied with another, related, aspect. An example is given in Table 9.3
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Table 9.3 Quality of Life, Neighborhood, Savings

Observed Table

I 2 3 4 5 6 7
1 134 139 1 118 64 52
2 37 95 97 75 76 43 62
3 13 26 39 59 19 34
4 15 17 26 43 34 34 34
5 2 10 12 16 21 14 17
6 0 4 7 5 7 9 6
7 3 I 2 6 9 6 1
Expected Table ( rounded)
I 1s 139 135 13 90 52
2 49 71 87 84 75 48 64
3 20 35 44 42 29 42
4 13 24 32 34 34 25 40
5 4 9 13 15 16 12 22
6 2 3 5 6 7 5 10
7 | 3 4 6 7 6 12
Chi-Square Elements ( rounded)
| 3 0 4 0 8 0
2 3 4 1 I 0 ! 0
3 2 2 1] I 7 3 2
4 0 2 I 2 0 3 |
5 | 0 0 0 2 0 I
6 1 0 1 0 0 3 2
7 3 1 I 0 I 0 0

for the pair of variables Neighborhood and Savings. Consider first cell
1, 7, in the top panel. Here, 86 individuals are very satisfied with their
neighborhoods and very dissatisfied with their savings. One may sus-
pect either that certain individuals have made sloppy responses or that
for these individuals the two matters have become negatively related,
perhaps because of a recent house purchase. Consider next cell 3,3,
corresponding to a point on the response scale that is one step away
from neutral toward the satisfied end. While 64 individuals respond in
this way, the model estimates a lower number of 43. Perhaps the higher
number of observed individuals can be explained by a noncommittal
response style, where the individual perhaps responds to most questions
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in a somewhat positive way although he or she has different truc feelings.
In any case, the bottom panel shows that these two cells contribute ina
major way to the rejection of the underlying normality model. It is
possible that retaining the model and using its polychoric correlation
gives a smoothed estimate of association that is less influenced by
outlier behavior than, say, PPM correlations. Such speculations can be
made plausible only by in-depth analysis using additional information
from other variables. A comparison of regular PPM correlations and
polychoric correlations is given in Table 9.2. The testing of underlying
normality in conjunction with polychoric correlations can be done in
both LISCOMP and PRELIS/LISREL.

Correlations Between Binary Variables

While testing of underlying normality is possible for a pair of poly-
tomous variables, the case of a 2 x 2 table results in a just-identified
model that cannot be tested. As suggested in Muthén and Hofacker
(1988), this fact may have contributed to the long-standing debate about
whether or not to use tetrachoric correlations. Usually, parameter esti-
mates, such as tetrachorics, are used only when the model from which
they are derived fits the data well. But the customary way of computing
tetrachorics from 2 x 2 tables does not provide such a test. In principle,
one could attempt to use full information from the 2” cells, but, as
already noted, this leads to problems of small cell frequencies. Muthén
and Hofacker propose a compromise using information from three
variables at a time. The unrestricted model for a 2 x 2 x 2 table has 7
probability parameters. Since the trivariate normality model has three
threshold and three correlation parameters, this gives a single-degree-
of-freedom chi-square test of underlying normality. This triplet testing
approach is suggested by Muthén and Hofacker (1988) for assessing the
suitability of using tetrachoric correlations for dichotomous data. This
technique is currently available only in LISCOMP.

Example 4: Triplet Testing of Tetrachorics

Consider panel data for a dichotomous variable observed at three time
points. This example relates to attempts by Alwin (1992) to establish a
quality declaration of attitudinal items by studying their correlation
over time. This longitudinal model is shown in Figure 9.2 using the
notation of the general framework of Equations 2 and 3. As in this

BENGT O. MUTHEN 219

Figure 9.2. Example 4: Three-wave panel model for binary variables.

framework, the paths involving the continuous variables of y* and m are
linear regression among latent variables. In line with Heise (1969),
Alwin (1989) considered the case of standardized factors m and denoted
the slope of m, on m, and the slope of m; on m, as stability coefficients.
Standardizing the y* variances to unity, the squared slopes (loadings)
of the regressions of each y"* on the respective m then corresponds to the
reliability of that y* variable. Since y can be viewed as a crude measure-
ment of y”, this reliability may be viewed as the maximum attainable
reliability under optimal measurement circumstances. In addition, the
size of this reliability is directly related to how precisely the stability
coefficients can be estimated. Following Heise’s approach of assuming
time-invariant reliabilities, the common reliability may be obtained as
an estimate of the ratio p,,p;,/ps;, Where in this case ps denote correla-
tions between the y's, estimated as the tetrachoric correlations for the
ys. Under this structural model, there are three parameters: the common
loading and the two stability coefficients. The structural model mea-
surement error and residual variances are not free parameters, but are
restricted to yield unit y* and m variances. The structural model is
therefore just-identified in terms of the three correlations. In this way,
the second-level testing of the structure is not possible. The first-level
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testing of underlying normality of the y' variables, however, is possible
using the Muthén-Hofacker triplet testing approach.

As an illustration, data were generated according to this model using
stabilities of 0.7 and reliabilities of 0.64. A “population”™ was created
by using LISCOMP to generate 100,000 trivariate normal y' observa-
tions that were dichotomized at 0.25 to give 40% **17 responses at each
time point. A random sample of 1,500 observations was then drawn
from this population. For this sample, the one-degree-of-freedom like-
lihood ratio chi-square value was obtained as 0.003 with an cstimated
reliability of 0.64. Hence the sample reflects the population very well
in that normality is not rejected and the true reliability valuc is obtained.
The true situation is then distorted in order to violate underlying
normality. This is done by assuming that after the first wave, 20% of
those with true minority opinions (y" > 7) change their responses to the
majority opinion (y = 0). In this way, 20% of the response pattern
frequencies for 101, 110, and 111 are changed to response pattern 100.
The triplet test for this new data set obtained a likelihood ratio chi-
square value of 7.87, which exceeds the 1% critical value of 6.64 so that
the tetrachoric model is rejected. The rejection is fortunate, since for
these distorted data the estimated reliability is 0.93, which is a severe
overestimation of the true value of 0.64. If only 10% are changed. the
chi-square value is 2.24, so that the model is not rejected at the 5% level
(critical value 3.84). In this case, however, the estimated reliability of
0.74 is closer to the true value.

This artificial example suggests that lack of first-level goodness of
fit can have important consequences for inference on structural param-
eters. Very little is known about the interaction between first-level
misfit and structural modeling, however. Muthén and Hofacker (1988)
performed triplet testing of data on attitudes toward abortion. For six
abortion items, there were 20 triplets (o be tested. Four of the 20 triplets
were rejected at the 5% level from a sample of 3,921. One item, RAPE,
was involved in all four triplets. Factor analysis of tetrachoric correla-
tions using all six items versus five items deleting RAPE gave very
similar results, however. Muthén and Hofacker (1988) also provided an
artificial example where response consistency effects were generated
for the last three of a set of 12 items following a one-factor model.
Triplet testing correctly identified the misfitting items. Incorrectly
using tetrachoric correlations for all 12 items led to a two-factor model
where the last three items were incorrectly taken to measure a second

factor.
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Correlations Between Ordered Polytomous
and Continuous-Normal Variables

Given a mixture of ordered categorical variables and continuous
variables, both polychoric and polyserial correlations are computed.
F(?r polyserial correlations, the underlying normality assumption per-
tains to the bivariate distribution of the v;’ for the categorical variable
and the continuous y, variable. This case has been studied by Joreskog
(1985). Testing of underlying bivariate normality is available in PRE-
LIS, but.nol in LISCOMP. Traditionally, polyserial correlations have
been‘ estimated by considering the product of the likelihood for the
C(?nimlhlous v, variable and the likelihood of the conditional distribution
of ¥; given . Joreskog (1985) points out that there is a strong compu-
lqtnonal advantage to considering instead the product of the marginal
dls.tribution of y; and the conditional distribution of y,. Approaching the
estimation in this way, the individual data points on v, are not ne:ded
be«;:ause the means and variances of y, for each c.;llegory of y. are
sut.ticient statistics. This approach also provides a likelihood jratio
chi-square test of underlying bivariate normality that is readily inter-
pretable as follows.

The model of bivariate normality has C + 2 parameters: C — 1 threshold
parameters (for a y; with C categories), one mean and one variance
parameter for the continuous y,, and one correlation betwecen v, and y,.
This mf)del expresses the C conditional means and C conditi(.»:lal vz{rf-
ances for y, given each y; category in terms of only three parameters
(the mean, the variance, and the correlation). In contrast, the unre-
stricted model uses the 2C mean and variance parameters, which to-
gether with tl}e C — | probability parameters for the marginal distribu-
thn of y; gives a total of 3C — | parameters. It follows that the
chi-square test has 3C — 1 — (C + 2) = 2C - 3 degrees of freedom (Joreskog,
‘198'5). The test is clearly applicable also when the categorical variable
is binary, yielding 3 degrees of freedom.

To conclude the section on first-level testing of the observed variable
model family against the data, one may safely say that much more
research is warranted. First of all, not all cases have been covered. As
an example, censored variables and mixtures of such variables and
categorical variables have not been covered. Second, and perhaps more

important, there is almost no research on how goodness-of-fit assess-

ment on the first level interacts with structural inference. It is largely
unknown how serious the consequences of lack of fit on the first level
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are for estimation and testing of structural models. Nevertheless, the
techniques that are available today appear to be underutilized in terms
of providing insights about the data. '

Testing of the Second Level:
The Structural Model Fit

This section discusses inferential procedures for structural models
not only in cases with categorical variables, but also in those with
continuous, nonnormal variables. It will be shown that testing tech-
niques for nonnormal continuous variables are closely related to those
for categorical data; this development ties the present discussion to that
of other chapters for continuous variables. For simplicity, the general
modeling framework of Equations 2 and 3 will be considered for the
special case of no xs. The case of binary variables will be emphasized
as an illustration of the ideas, focusing on the fitting of tetrachoric
correlations. However, the general discussion carries over to polytom-
ous and censored variables as well as to models with xs and fitting
models to regression statistics.

Testing of a structural model in terms of summary sample statistics
such as correlations involves the use of test statistics that under certain
conditions are asymptotically distributed as chi-square. As is well
known, such testing often leads to rejection of a hypothesized model.
A primary suggested cause of this is overwhelming power due to large
sample size. Many alternative fit indices have been proposed and some
are discussed elsewhere in this book. In my opinion, however, there are
good reasons for not discarding the chi-square approach for a test of
overall model fit. Power issues can be directly addressed (see Saris &
Satorra, Chapter 8, this volume). In situations where power is difficult
to assess, there are practical ways of checking ill effects of large sample
§izes. First, respecifications of the model as suggested by modification
indices can be carried out until a nominally well-fitting model is
approached. Second, the importance of these respecifications can be
checked in terms of practical significance of the new parameter esti-
mates and in terms of the change in the estimates of the original
parameters of central interest. If, practically speaking, these changes
are not large, then the original fit may be deemed sufficient. There are
two important caveats to this approach. One is that the researcher must
have started out in a modeling framework that is close enough to the
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true model for model modifications to be able to lcad in the right
direction. Second, the chi-square value itself must be trustworthy. It is
this second point on which the following discussion centers.

In Equation 5, the covariance matrix of the v variables is expressed in
terms of structural model parameters. In the continuous case, the y
variables are directly observed as ys and the sample matrix is a conven-
tional covariance or correlation matrix. In the binary case, the y' variables
are indirectly observed by the ys and the sample matrix is a tetrachoric
correlation matrix. If the continuous variables are not multivariate normal,
the use of the sample covariance matrix to fit the model represents a limited
information estimation approach. This is also the case when using tetracho-
ric correlations. In both cases, the sample matrix is created using only
bivariate information from pairs of variables.

Estimation and Testing for Continuous Variables:
A Brief Overview

Under the conventional assumption of 11D observations on a p-variate
vector y and assuming normality for y, the sample covariance matrix S
contains sufficient statistics for estimating the structural model param-
eters of 0, say. In this case, two common fitting functions are normal
theory maximum likelihood (NTML) and normal theory GLS (NTGLS),

ﬂ“ML=1n|2|+¢uz45)—|n|s|_p, [12]

mmm=m@-$§v, [13]

where 3, is the population covariance matrix fory. The expression for FygLs
is a special case of the general weighted least squares fitting function

FWLS=(s—0)'W_'(s—(r), [14]
where s and & refer to the p(p + 1)/2 vectors of distinct elements of S and
3., respectively. If in Equation 14 W is taken as a consistent estimator of
the asymptotic covariance matrix of s, then Fyys is referred to as a
generalized least squares estimator or minimum chi-square analysis (Fer-
guson, 1958; Fuller, 1987, sec. 4.2). In the special case of multivariate
normality for y, the asymptotic covariance matrix of s has a particularly
simple structure, depending only on second-order moments,
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2K (O I)K,, [15]

where K,,’ is given in Browne (1974, p. 210) and ® denotes the Kronecker
product. A consistent estimator of Equation 15 is obtained by replacing
3, with S. This simplification of Equation 14 leads to Equation 13.

For arbitrary distributions, the asymptotic covariance matrix of s, I,
say, has elements

Yijk1 = Gijkt— Ty ' |16]

(see, e.g., Browne, 1982), when these moments exist. (Note that this T’
matrix is not the same as in equation 3.) Define the p(p + 1)/2 data
vector d, for observation i,

(y“ ";1)()’“ _y|) [17]
(yiz";z)()’“ —§|)
di= ()’,-2‘;2)()’,'2_3’—2) ,

ip— y,,)(y,,, ¥p)

where y,, is the ith observation on variable v(v=1,2, ..., p) and }v is
the sample mean for variable v, so that summing over the n sample units,

n I18I
(n-— l)_'Zdl:s.

i=1

A consistent estimator of I' is obtained via the sample covariance
matrix of d;, involving fourth-order moments (see, e.g., Browne, 1982,
1984; Chamberlain, 1982),

. n ~ B [19]
C=m-0"Y d-d)d,-dy

i=1

so that the estimator of the asymptotic covariance matrix of s is n"f‘.
Taking I as W in the weighted least squares fitting function of Equation
14 gives the asymptotically distribution free (ADF) estimator proposed
by Browne (1982) for covariance structure analysis of nonnormal con-
tinuous variables.

- R — | P
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Consider now standard errors of parameter estimates and tests of
model fit. Let p° = p(p + 1)/2 and define the p" X ¢ derivative matrix

A =00(0)/90 . 120]

Estimating @ with the weighted least squares fitting function of Equa-
tion 14, it is well known that a Taylor expansion gives the asymptotic
covariance matrix,

nV@) = (AW A AW TW AL W AY! [21]

(see, e.g., Browne, 1984; Ferguson, 1958; Fuller, 1987; Satorra, 1989).
This matrix may be consistently estimated by inserting the estimated 0
in A and using the estimated I'. It is common to set the weight matrix
W = F so that the estimated asymptotic covariance matrix of the
parameter estimates simplifies to

nV(®)= (A W'A)" . 122]

Note that this expression is commonly used for both NTGLS and ADF.
Satorra (1989) shows that asymplotically the same expressions hold for
NTML. The expression in Equation 21 points to the fact that W need not
be the same as I". For example, W may be calculated via the com-
putationally simple normal theory expression of Equation 15 to give
normal theory parameter estimates. Using the general I expression of
Equation 19 in Equation 21 provides the proper covariance matrix for
these estimates even under nonnormality. Under nonnormality the esti-
mates then have somewhat larger asymptotic variability than for ADF,
but such an approach is strongly preferable to ADF from a computa-
tional point of view when the number of variables is large. In contrast to
the ADF approach, Equation 21 shows that the large I matrix need
not be inverted to obtain the standard errors of the estimates.

Under normal theory, the conventional model test of fit of H, againstan
unrestricted covariance matrix is obtained as the likelihood ratio statistic
nF, where F is the optimum value of the fitting functions in Equations 12
and 13. For Equation 14, a corresponding Wald statistic is obtained. This
quantity is distributed as chi-square with p" — g degrees of freedom. Relaxing
the restriction of normality, Browne (1984) gives a more general expression
for a chi-square test of model fit. Consider the residual expression,
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nT=(s — G)A(s - 0), [23]

AL . . . .
where o is the estimated covariance structure and A is a consistent
estimator of

V-VAA'VA)'AV=A A/ V'A)'AL, [24]

where A | is an orthogonal complement of A (see Satorra, 1992, p. 7).
Robustness to nonnormality is obtained by using V™ = F of Equation
19. Satorra (1989) shows that this also holds when the optimum of Fis
obtained via NTML. In line with Bartlett (1937), a simpler, mean-
corrected expression is the scaled chi-square, nF/a, where

a = tr|(W - WAA'WA) 'AW)I'|/r, [25]
v
where r is the degrees of freedom of the model. A mean- and variance-
corrected chi-square may also be computed (see, e.g., Satorra & Bentler,
1990; Satterthwaite, 1941).

To summarize estimation and testing for continuous variables, three
types of analysis approaches can be distinguished. First, normal theory
analysis refers to obtaining model estimates by the NTML or NTGLS
fitting functions and computing standard errors and chi-square test of
model fit by the conventional formulas of Equation 22 and nF. Second,
ADF analysis refers to obtaining parameter estimates by the weighted
least squares fitting function of Equation 14, setting W to the ADF-type
] of Equation 19, computing standard errors via Equation 22, and a
chi-square model test as nF. Third, robust normal theory analysis refers
to obtaining estimates by the NTML or NTGLS estimators. Using the
normal theory W and the ADF-type l standard errors are computed via
Equation 21, and the chi-square test of model fit is computed either as
the residual chi-square of Equations 23 and 24 or as the scaled chi-
square of Equation 25. ‘

Muthén and Kaplan (1985, 1992) carried out Monte Carlo studies of

normal theory analysis and ADF analysis using factor analysis on
nonnormal data. They found that normal theory analysis gave good
inference for small models (around five variables), but inflated chi-
square values and a downward bias of standard errors for larger models
(ten or more variables). ADF analysis gave good standard errors and
chi-square tests for small models and large samples (at least 1,000), but
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larger models did not show good results. Larger models produced inflated
chi-square values and a downward_bias of standard errors that was
comparable to or worse than that of normal theory analysis. Apparently
the asymptotic properties of ADF are not realized for the type of models
and the finite sample sizes often used in practice. The method is also
computationally heavy with many variables. This means that while ADF
analysis may be theoretically optimal, it is not a practical method.
Robust normal theory analysis appears to be an attractive alternative.
To date, however, there is very limited experience with this type of
analysis. Muthén and Kaplan (1985, 1992) have demonstrated that
normal theory estimates usually show very little bias, even under
nonnormality. A few studies with small models have recently reported
promising results with regard to the robust standard errors and robust
chi-square for nonnormal data (see, e.g., Chou, Bentler, & Satorra,
1991; Satorra, 1992; Satorra & Bentler, 1990), but nothing has been
reported for realistic-sized models. Robust normal theory analysis ap-
pears to warrant further study.

The previous discussion considered second-level testing using chi-
square statistics to investigate the fit of a model to sample variances
and covariances. At issue was the trustworthiness of the chi-square
value itself, and it was noted that robust procedures seem to offer better
results in this regard. Some investigations of robustness will now be
presented in connection with binary data.

Correlation Structure Analysis With Dichotomous Variables

The robust standard errors and chi-square tests of model fit can be
extended to analysis of statistics other than the sample covariance
matrix § for continuous variables, for example, the use of tetrachoric
correlations in the factor analysis of binary items. In Muthén (1978,
1984), a weighted least squares procedure was proposed for the estima-
tion and calculation of standard errors and chi-square test of model fit.
An estimated I' matrix was computed as a consistent estimate of the
asymptotic covariance matrix of the sample thresholds and tetrachoric
correlations (see Muthén, 1978),

I =@n/da) 'V(p)on/do) ", 126]

where r denotes the vector of univariate and bivariate marginal prob-
abilities, o denotes the vector of population thresholds and tetrachoric
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correlations, and V(p) denotes the covariance matrix of the vector of
univariate and bivariate marginal sample proportions, consisting of
sample moments up to the fourth order. In this way, the Muthén (1978)
estimator is analogous to the ADF analysis for continuous variables. In
both cases, fourth-order moments are used in computing I'. In practice,
the method suffers from the same type of computational and statistical
limitations for large models as does ADF, as described previously. Here,
a counterpart to robust normal theory analysis will be discussed that
avoids these limitations. I have recently proposed this method else-
where (Muthén, 1992).

In the dichotomous case, correlations are analyzed and there is no
issue of scale dependency. Because of this, a simple analogue to robust
normal theory analysis for continuous variables is to obtain model
parameter estimates by unweighted least squares, using W = I for
estimation, standard errors, and tests by Equations 14, 21, and 25. This
new approach to the analysis of tetrachoric correlations shows promise
for a computationally efficient way of obtaining more robust standard
errors and chi-square tests of model fit. The approach has a further
advantage as well. For strongly skewed dichotomous variables, the
weight matrix is often singular, even with large samples. This was
frequently found in analysis of symptom items for depression and
alcohol, as in Muthén (1989a) and Muthén, Wisnicki, and Hasin (1991),
owing to the fact that these items have small frequencies for y = 1 even
with large samples. In these cases, the conventional weighted least
squares estimator cannot be used, because the weight matrix cannot be
inverted. The new approach, however, does not rely on the inversion of
a weight matrix and provides standard errors and chi-square by Equa-
tions 21 and 25 even for a singular I'.

As shown in Muthén and Kaplan (1992), the size of the model is a
crucial factor in testing structural models for categorical and other
nonnormal data. The larger the model, the larger the sample size needed
for the asymptotic properties of the chi-square approximations to hold
to a reasonable degree. The importance of this may not be fully realized
among practitioners. In particular, the fact that the chi-square value is
inflated by a too small sample size may come as a surprise. Also,
methodologists demonstrating the sampling behavior of new testing
procedures are wise not to limit their study to the common choice of
small-sized models of around five variables. Although such studies are
valuable, they may seriously misrepresent results for larger models.
These issues are illustrated in the next example.
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Example 5: Size of the Model in Testing
Skewed Likert Scale and Dichotomous Data

In this study, standard errors and chi-square tests of model fit are
contrasted for a small model of 5 variables and a medium-sized model
of 15 variables. Strongly skewed 5-category and 2-category scales were
studied, each case generated as categorized multivariate normal data
with a single-factor structure. The 5-category case was the same as
“Case 4” in Muthén and Kaplan (1985), where category percentages for
the variables were 5, 5, 5, 10, and 75. The 2-category case used
75%/25% splits for each variable, which may be viewed as dichotomiz-
ing the 5-category variables. The 5-category data were treated as con-
tinuous variables scored 0-4 and analyzed by regular sample covariance
matrices, while the 2-category data were treated as binary and analyzed
via tetrachoric correlation matrices. The different technologies for
continuous and binary data are discussed together here because it turns
out that they produce analogous results.

In both cases, the categorized data follow the postulated model of a
single factor. Equal loadings were chosen to give correlations of 0.5 and
reliabilities of 0.5. Two sample sizes were studied. Because such skewed
variables were analyzed, these sizes were set at large values, using N =
1,000 and 4,000, representing large-scale surveys of rare phenomena. The
Monte Carlo study was carried out with 500 replications. For each data set,
the conventional inference method as well as the robust inference method
was used. The two methods will be referred to as MI and MII, respectively.
In this way, the 5-category data were analyzed by conventional nonnormal
variable GLS (ADF) using the estimator of Equation 14, standard error
calculations as in Equation 22, and chi-square computed as nF (MI). The
5-category data were also analyzed by robust normal theory analysis of
Equation 12, using W based on Equation 15, calculating the standard errors
by Equation 21, and computing the mean-corrected chi-square as in Equa-
tion 25 (MII). The 2-category data were analyzed by the conventional GLS
estimator of Equation 14 applied to tetrachorics, standard errors as in
Equation 22, and chi-square as nF (MI). The 2-category data were also
analyzed by ULS, using the standard error formula of Equation 21, W =1,
and chi-square as in Equation 25 (MII; see Muthén, 1992, for technical
details).

Table 9.4 presents results for both 5-category (labeled continuous)
and 2-category (labeled dichotomous) data, contrasting the small model
(5 variables) with the medium-sized model (15 variables), the smaller
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Table 9.4 Example 5: Size of the Model in Testing Skewed Likert Scale
and Dichotomous Data

N = 1,000 N = 4,000
Continuous Dichotomous Continuous Dichotomous
MI Mil MI Ml MI MIl MI Mil

5 Variables (5 df)
Standard Error Bias %

-7 -5 1 2 -6 -5 -4 -4
Chi-square (mean, variance, 5%, 1%)

4.97 4.49 4.86 4.83 4.90 4.45 5.18 5.18

8.70 7.29 8.88 8.82 9.30 7.73 11.37 11.29

4.8 2.4 4.4 4.0 4.0 2.6 6.0 5.6

0.2 0.4 0.0 0.6 1.0 0.6 1.0 0.8

15 Variables (90 df)
Standard Error Bias %

-19 1 -13 -2 -5 -2 -8 -4
' Chi-square (mean, variance, 5%, 1%)
103.8 91.2 98.99 90.86 94.21 90.18 92.72 90.72
195.4 163.3 225.9 196.0 189.6 172.1 196.8 176.6
26.2 3.8 17.2 7.2 9.8 4.2 9.4 6.4
8.2 1.0 7.8 1.4 1.8 0.2 2.4 0.6

sample (N = 1,000) with the larger sample (N = 4.000), and the conven-
tional inference method (MI) with the more robust inference method
(MII). The table reports standard error bias percentage in the loadings,
where bias is calculated as (a — b)/b, where a is the mean estimated
standard error over the 500 replications and b is the standard deviation
of the estimates over the replications. The table also reports chi-square
test results. The four entries are mean value over the replications,
variance over the replications, proportion of the replications leading to
model rejection at the 5% level, and proportion of replications leading
to model rejection at the 1% level.

Table 9.4 shows that for the smaller model of 5 variables the conven-
tional method of MI works well at the lower sample size of 1,000 for
both the continuous case and the dichotomous case. No adjustments
seem needed. In fact, judging by the 5% rejection proportion, the more
robust chi-square procedures of MII seem to overcorrect slightly in the
continuous case. For the larger model of 15 variables the conventional
methods of MI do not work well at the smaller sample size of 1,000,
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and can be said to be only marginally acceptable at sample size 4,000.
For this model size, the more robust procedures of MII give a marked
improvement at sample size 1,000. It is interesting to note that the
standard errors computed for MII by Equation 22 in all cases outper-
form the conventional standard errors.

The preceding analyses have shown that robust model testing meth-
ods are needed for models with categorical data whenever the model is
not small. The new robust method for the analysis of dichotomous
variables shows a marked improvement over the older method, partic-
ularly in terms of the chi-square test of model fit. In this way, a more
trustworthy tool is provided for the second-level model testing.

Discussion

With continuous variables, the testing of a structural model involves
testing the model’s fit to its sample statistics, the sample covariance
matrix. If techniques are used that are robust to deviations from normal-
ity, no further testing against the data seems essential. It is true, how-
ever, that checks of linear relations among variables should be carried
out. Also, with strongly skewed variables it may be argued that a
nonlinear model, using different sample statistics, may be more appro-
priate—for example, a “tobit” factor analysis model for censored vari-
ables (see Muthén, 1989d). For the categorical variables techniques that
we have discussed, however, first-level testing of the model family
against the data is an essential augmentation to second-level testing of
the structural model. This is because first-level testing may affect the
very choice of sample statistics.

If efficient estimates are obtained for the cell probabilities, first- and
second-level testing can be replaced by a chi-square test of a structural
model directly against the data by comparing it to the unrestricted multi-
nomial alternative. To this end, full-information estimation via ML can be
carried out, such as in the Bock and Aitkin (1981) approach to the exploratory
factor analysis of dichotomous items. Such a direct test of a factor model
against the unrestricted multinomial alternative is often problematic, how-
ever, because the chi-square approximation is poor in the typical situation
of many cells having small or zero frequencies.

While informative, the combined use of first- and second-level test-
ing proposed here poses the question of how to assess the seriousness
of first-level misfits for inferences about structural models that have
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good second-level fits. Muthén and Hofacker’s (1988) abortion exam-
ple suggests a certain amount of robustness for first-level misfit, whereas
the artificial three-wave panel example suggests that important struc-
tural parameters may be misestimated.

It is also important that a model be assessed in a way that is relevant
for its ultimate use. To augment first-level and second-level testing, a
useful approach would be to deduce predictions from the structural
model to the observed data. Take as an example MIMIC modeling as
discussed in Muthén (1989b). Here the MIMIC model was used to
capture mean differences in factors and items for various sociodemo-
graphic groups by including group membership variables as dummies
among the exogenous “multiple causes” variable set. This modeling
was suggested as an alternative to multiple-group structural modeling
with one group for each sociodemographic cross-classification. The
multiple-group approach is unattractive because of small group sizes
when there are many cells in the cross-classification, particularly when
the y variables, the “multiple indicators,” are strongly skewed, as in
modeling of dichotomous alcohol dependence or depression symptom
items. The MIMIC approach avoids these problems, but assumes in-
stead that the factor variances and the loadings are invariant across
groups. If the use of the model is to predict group differences in levels,
a relevant test is to check how close the set of predicted item means are
to the observed ones for as fine a sociodemographic grouping as possi-
ble. This sort of model check also ties the implications of the structural
model back to the data.
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A standard methodology for improving an ill-fitting structural equation
or covariance structure model is o remove parameter restrictions (e.g.,
to free up previously fixed parameters). The Lagrange Multiplier (LM)
or score test was developed to evaluate hypotheses on whether a restric-
tion is statistically inconsistent with the data (Lee & Bentler, 1980;
Satorra, 1989; Sérbom, 1989). Another method suggests evaluating the
estimated value, or estimated parameter change (EPC), that a specific
fixed parameter may take if itis freed (Saris, Satorra, & Sorbom, 1987).
In this chapter, we propose extending the ideas behind these model
improvement methods and develop three other criteria that concentrate
on the impacts to the current model of reducing constraints. As each
restriction is removed, or a fixed parameter is freed, from the current
model, it may cause changes in parameter estimates as well as an
increment in the estimated sampling variabilities of the free parameters
(Bentler & Mooijaart, 1989). Without reevaluating the model, statistics
reflecting these features can be computed based on the existing model.
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