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Abstract

Methods for investigating the influence of an early developmental process on a later
process are discussed. Conventional growth modeling is founci inadequate but a growth
mixture model is sufficiently flexible. The growth mixture model allows for prediction
of the later process using different trajectory clésses for the early prgbess. The growth
mixture model is applied to the st{idy of progress in reading skills among first-grade

students.
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1 Introduction

This paper outlines how growth mixture modeling can be used to study achievement
and learning progress. The work is motivated by a study of reading development among
children from Kindergarten to first grade. Section 2 presents the data and tile substantive
problem, Section 3 discusses random coefficient growth modeling, Section 4 present
how random coefficient growth modeling in a latent variable framework can be used to
relate the growth factors of two growth processes. Section 5 extends the latent variable

framework so that multiple classes of development can be studied.

)

2 The Substantive Problem

2.1 The Reading Study

The research questions originated from the study Detecting Reading Problems by Model-
ing Individual Growth (Francis, 1996), also referred to as the EARS study (Early Assess-
ment of Reading Skills). EARS collected data in a modified longitudinal time-sequential
design involving about 1000 children. The children were measured four times a year
from Kindergarten to grade two. In grade one and two measures included spelling, word
recognition, and reading comprehension. In Kindergarten, skills which are .considered
precursor skills to reading‘deve]opment were measured, such as alphabetic awareness,
orthographic and phonemic'awareness and visual motor integration. Standar-dized read-

ing comprehension tests were administered at the end of first and second grade. The
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background variables gender, SES, and ethnicity were collected.

Francis (1996) focused on the early detection and 'identiﬁcation of reading disabled
children. In this context, he formulated three research hypotheses: (1) Kindergarten
children will differ in their growth and development in precursor skills; (2) the rate of
development of the precursor skills will relate to the rate of development and the level
of attainment of reading and spelling skills, and individual growth rates in reading and
spelling skills will predict performance on standardized tests of reading and spelling; (3)
- the use of growth rates for skills and precursors will allow for earlier identification of
children at risk for poor academic outcomes and lead to more stable predictions regarding

future academic performance.

2.2 General Issues

Conventional growth modeling of individual differences in development can in principle
use growth trajectory features such as the rate of learning as statistically-based measures
of progress. There is a general problem, however, of measuring and modeling student
progress over an extended period of time. As the EARS study illustrates, the undgrlying
construct under study in a developmental process is changing and evolving due to mat-
uration of subjects. Reading skills are relevant in first grade but not in Kindergarten.
In Kindergarten reading precursor skills are of interest, but lose their relevance in first

grade.

This exposes the Achilles heal of growth modeling, namely the assumption that the



outcome variable has a constant scale or metric and a stable meaning over time. If it
does not, conventional growth modeling is not meaningful. Item Response Theory oﬂ'grs
a limited solution to this problem by allowing the formation of scale scores based on
different-test forms that change over time but have overlapping items. But constructs of
interest in a longitudinal study are naturally changing and evolving over time in more

fundamental ways and to capture this a more radical solution is necessary.

Changing meaning of the outcome does not make growth modeling impossible. In-
stead, conventional growth modeling needs to be developed methodologically to suit the
research problem. Developmental processes that eyolve over time need to be studied in
the context of multi-stage growth and multiple processes. There is a need to investigate
modeling methodology that can describe how one growth process leads into the next
process. It is of interest to see how relationships between trajectories of early growth

processes relate to failure/success in later growth processes.

The solution proposed in this paper is essentially to turn the problem into an op-
portunity. Different developmental phases have different expressions of a construct and
should not be forced onto the same scale. Instead, a multi-stage analysis approach
should be taken where the different phases are viewed as sequential processes, one lead-
ing to another, and are analyzed jointly. This study will focus on how an early process
influences a later process as exemplified by how the development of phonemic awareness
during kindergarten influences the development of word recognition in first grade. A
speciél focus is on modeling that provides a prediction of a first-grade development by

kindergarten development.



3 Growth Modeling

Research hypotheses regarding achievement and learning are often formulated in terms
of individual dev‘e]opment over time and tested using repeated measurements on groups
of individuals. With a developmental perspective, the interest is not so much in the level
of a certain outcome at a particular time point as it is in the growth trajectory across
multiple time points. Learning outcomes typically show natural systematic growth over
time. There may be an initial phase of rapid increase followed by a later phase of
leveling out. The starting level, the rate of increase, and the leveling out are of interest
in studying learning theories! The focus is on characterizing the individual variation in

development and describing it in terms of its antecedents and consequences.

Standard statistical techniques for repeated measures data use random coefficient
modeling to describe individual differences in development. This is carried out using
software such as BNIDP5V, SAS PROC MIXED, and MIXOR using the mixed linear
model (see. e.g.. L;lird & Ware, 1982; Jennrich & Sluchter, 1986; Lindstrom & Bates,
1988). or MLn and HLM dra\.ving on hierarchical linear (multilevel) modeling (see, e.g.,
Goldstein. 1995; Bryk & Raqdenbush, 1992). From a moaeling point of view, these ap-
proaches are essentially the same. Although it is possible to model multivariate outcomes
using these techniques (see, e.g., Thﬁm, 1997; MacCallum, Kim, Malarkey & Kiecolt-
Glaser, 1997), applications typically focus on longitudinal development of a univariate
outcome variable. Antecedents of individual variation are modeled as time-invariant

covariates while time-specific antecedents are modeled as time-varying covariates.



Developmental theories can be better modeled if the analysis methodology can allow
trajectory shapes to be of primary focus rather than measurements at specific time
points. This means that analysis methodology is needed to describe trajectory shapes
not only as outcomes, but also as predictors, as mediators, and, in intervention studies,
as the performance of a control group to which the trajectories of the intervention group
are compared. Multiple processes, each with its own set of trajectories, for which the
interplay and dependencies of the processes are of key interest should also be allowed.
The trajectories should be able to have multiple indicators at each time point to reduce

measurement error influence and to capture several aspects of the developing construct.

Given this broader research perspective, it is advantageous to perform repeated mea-
sures analysis in a more general framework than the mixed linear model or multilevel
model. Latent variable structural equation modeling offers such a general framework.
While repeated measures analysis of a single outcome variable is obtained as a spe-
cial case of latent variable structural equation modeling, the generalizations discussed
above are possible in the latent variable structural equation modeling framework. This
is because the random coeﬁcients are represented as latent variables where the latent
variables can have regression relations among themselves and where the latent vari-
ables can also represent constructs as outcomes that have multiple indicators. Using
psychometric growth modeling introduced by Meredith and Tisak (1990) as a starting
point, Muthén and Curran (1997) give an overview of latent variable work related to
longitudinal modeling as wéll as mixed linear modeling aﬂd hierarchical linear modeling

work and provide an up to date account of the potential of latent variable.techniques



for longitudinal data suitable for developmental studies. As pointed out in Muthén and
Curran (1997), once the mixed linear model is put into the latent variable structural
equation modeling framework, many general forms of longitudinal analysis are possible
including: mediational variables influencing the developmental process; ultimate (dis-
tal) outcome variables influenced by the developmental process; multiple developmental
proc.:esses for more than one outcome variable; sequential-cohort and treatment-control

multiple-population studies; and longitudinal analysis for latent variable constructs in

the traditional psychometric sense of factor analytic measurement models for multiple

indicators. The latent variable framework also accommodates missing data (see. e.g.,

Muthen, Kaplan, & Hollis, 1987; Arminger & Sobel, 1989), categorical and other non-
normal variable outcomes (see, e.g., Muthen, 1984; Muthen, 1996), and techniques for

clustered (multilevel) data (see, e.g., Muthen, 1994, 1997; Muthen & Satorra, 1995).

4 Multi-Stage Growth Modeling of Reading Skills
Development using a Conventional Latent Vari-

able Framework

A first attempt at multi-stage modeling of sequential processes uses the conventional
latent variable framework for growth modeling. It is suitable for relating multiple out-
come variables to each other. The case of a single outcome variable will be discussed

first.
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4.1 Growth Modeling with a Single Outcome Variable

Consider a certain outcome variable y; which is measured repeatedly. For individual ¢

at time t, we may formulate the following linear growth model for this outcome variable
Yijt = Mij1 + (ar — ao) Mij2 + €51, t =1,2,...,T. (1)

Here n;k(k = 1,2) are latent variables, or growth factors, representing the random coeffi-
cients of the growth process, the individually-varying intercepts and slopes, respec‘tively.
Furthermore, a, denotes a time-related variable such as age, aq is an anchor point (such
as mean age), and ¢;j; is a residual. The model may be elaborated by adding time-
varyipg covariates to (1) representing educational inputs or other factors influencing the

learning at different time points.

The modeling in (1) can be used to address the first research hypothesis of Francis
(1996): Kindergarten children will differ in their growth and development in precursor
skills. The amount of variation in development is captured by the variance of the growth
factors 7;;; and 7;j2. This variation can be explained by background variables observed
for the children. such as gender, SES, and ethnicity. A child’s developmental status
at a given time is of interest when transitioning to a new phase of learning. Here,
developmental status refers to the value predicted by the growth curve, not including
the time-specific term ¢;5 in (1). For instance, if ag represents the end of Kindergarten,
7i;1 represents the deve]oﬁmental status at ‘that time. The child’s progress over time
adds further useful information. A measijre of progress is obtained by nijé, the linear

growth rate for individual i. This describes how the individual reached the Kindergarten
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end point. A child may have been close to that level throughout the year or may have
experienced rapid growth up to that level. Given an estimated growth model for a
sample of individuals, a specific individual’s status and growth rate may be estimated
by éayesian methods; in psychometrics this is termed factor score estimation. This

describes the essence how conventional growth modeling can ‘be used to study progress.

4.2 Growth Modeling with Multiple Processes

‘The novel growth modeling feature to be considered is relating the random coef‘ﬁc.ients
of the later process to those of the earlier process. This addresses the second research
hypothesis of Francis (1996): The rate of development of the precursor skills will relate
to the rate of development and the level of attainment of reading and spelling skills
and individual growth fates in reading and spelling skills will predict performance on

standardized tests of reading and spelling.

Phonemic awareness can be taken as an example of a precursor skill. Consider the
influence of phonemic awareness on first-grade word recognition. Using the subscripts
p and w to replace the generic j subscript in the growth model of (1), these outcome
variables will be denoted y;p,, and y;y: With the corresponding subscripts for the 7 factors.
The intercept and slope equations for the growth coefficients of the first-grade process

regressed on those of the Kindergarten process may then be written as,
Niw1 = &1 + P11 Nip1 + P12 Nig2 + G, (2)

Miw2 = Q2 + P21 Nip1 + Ba2 Mgz + G- (3)
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Here, the 3 coefficients represent the strength of the dependencies on past performance
and acquired skills in transitioning to a new skill. It is assumed that phonemic awareness
development predicts word recognition development, emphasizing the importance of the

(3 transition parameters.

As an additional sequential link, the standardized reading and spelling test scores -
at the end of first grade can be regressed on the growth coefficients of the first-grade

process. Letting the reading and spelling scores be denoted y, and ys, respectively,
Yr = Qr + ,Brl Niw1 + ﬂrQ Niw2 + C’i’r (4)

Ys = Qs + Bs1 Miwt + Bs2 Miw2 + Cis- (5)

Products of 8 coeficients in (2), (3) and in (4), (5) translate progress on precursor
skills into predictions of ultimate outcomes on the standardized reading and spelling
tests. Background characteristics of the child may have an influence on the dependent

variables in all four of these equations.

Assembling the observed variables into the vector y; = (Yip1, - - - » YipTs Yiwl) - - - » YiwTs
yir- ¥is)' and considering the latent variable vector 1; = (Tip Mip2 Mhiwl Tiw2 Yir, Yis)» (1)

mav be fitted into the measurement part of a structural equation model,
yvi=v+An+Kx +e. (6)
Equations (2) - (5) may be fitted into the structural part of a structural equation model,

n;=a+Bn+Tx+(, ' (7)
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where x represents background variables. The model may be estimated by maximum-
likelihood under normality assumptions using standard structural equation modeling

software (see, e.g., Muthén & Curran, 1997).

4.3 Results

Thé growth model in (1), (2) and (3) was applied to the growth processes of Kindergarten
phonemic awareness and grade 1 word recognition. Linear growth was found to hold for
both processes. A sample of n = 410 children had complete data on the four kindergarten
measures and the four grade 1 measures and the analyses are based on these children.
To capture the phonemic awareness level at exit from Kindergarten, the intercept factor
is defined at time point 4. Similarly, the word recognition intercept factor is defined at

time point 4 in grade 1. -

The maximume-likelihood estimates of the mean of the phonemic awareness slope
factor is 0.21. Th(; variance of the intercept and slope factors are 0.64 and 0.02. Both
values are significantly diﬂerént from zero. Their relative size shows the typical feature
of much higher level variation than growth rate variation. The correlation between the
intercept and slope is high, 0.72. The estimates of the four  coefficients in the growth

factor cquations (2) and (3) are given in Table 1.

This indicates that for word recognition level at the end of grade 1, i.e. the W
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Table 1: Estimates of the Relations between the First-
Grade and Kindergarten Growth Factors (standard er-

rors in parenthesis).

Dependent Variable P intercept P slope
W intercept
Unstandardized 0.79 (0.07) -0.41 (0.40)
Standardized 0.70 -0.07
W slope
Unstandardized -0.05 (0.02) 0.32 (0.11)
Standardized -0.24 0.30

intercept, the phonemic awareness level at the end of Kindergarten (P intercept) is
important while the Kindergarten growth rate (P slope) is ins{gniﬁcant. The amount of
variation in the W intercept accounted for by the Kindergarten growth factors is 42%.
The grade 1 growth rate (W slope) is best predicted by the Kindergarten slope (P slope).

In this case, however, only 4% of the variation is accounted for.

5 Modeling with Multiple Trajectory Classes

This section describes shortcomings in the analysis of sequential processes using growth
modeling in a conventional latent variable framework. An alternative, extended growth

model analvzed in a more general latent variable framework is presented.
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5.1 Shortcomings of the Growth Model

The growth model allows for individual differences in development. In this way, the
estimated model gives not only an estimated mean curve but also estimates the variation
in individual curves as a function of the growth factors. This model allows curves for
different individuals to be very different. Nevertheless, the model is restrictive in that
it does not recognize that the sample of children may be heterogeneous so that different
subgroups may follow different models. This restriction is particularly limiting when

attempting to predict a later process from an earlier process.

The use of growth factors as predictors is complicated by the fact that the me;mmg
of a growth factor may be different at different levels of anothe;r growth factor. Consider
for example the hypothesis that a high Kindergarten phonemic awareness intercept and
slope interact to influence good grade 1 word recognition development. The intercept
is defined at the Kindergarten exit point so a high positive slope value means that the
child has been at considerably lower levels earlier in Kindergarten. This rapid growth
can in principle be either good or bad. The rapid growth may be good because the
child shows potential for rapid learning that may carry over to grade 1. For example,
a low starting point in Kindergarten may be due to detrimental home circumstances
but. the child grows because its aptitude for reading is good. The rapid growth may be
bad because the child has not been at the Kindergarten exit level for long and therefore
may have had limited learning opportunities during Kindergarten. It is conceivable that

these two alternatives have different plausibility at different Kindergarten exit levels.
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If this is the case, the influence of the interaction between Kindergarten intercept and
slope is not monotonic and needs a special modeling approach. An approach of this type

will now be presented.

5.2 Growth Mixture Modeling

The latent variable model in (6) and (7) will now be modified drawing on the growth
mixture model of Muthén, Shedden, and Spisic (1998). This builds on a latent variable
structural equation model generalized to K classes of a finite mixture. The heterogeneity
of the growth is captured by a categorical latent variable c; = (Ci1y--.,cCix)', where
cir =1 if individual 7 falls in class k and zero otherwise. The modeling and estimation

will be presented first, followed by the application to the reading skills development.

5.2.1 Modeling and Estimation

For each class k, continuous outcome variables y are assumed normally distributed

conditional on covariates x, related as follows
Yik = Vi + Ap gy + Kie xic + €51, (8)

Mik = 0 + By + Tk X + Cp . (9)

The covariance matrices © = V(e;) and ¥, = V(¢;x) are also allowed to vary across
the A classes. Here,’a) contains the intercepts for 7 for latent class k. The different

ay. values are used to represent different trajectory shapes for the different classes.
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This is a finite mixture model similar to what has been proposed by Verbeke and
Lesaffre (1996). To understand membership composition for the different trajectory
classes, it is useful to relate the probability of class membership to background vari-
abl.es. As in Muthen and Shedden (1998), a further component is therefore added to
the model, where c is related to x through a multinomial logistic regression model for

unordered polytomous response. Defining 7 = P(cix = 1|x;), the K-dimensional vector

m; = (7, T, ..., Tik), and the K — 1-dimensional vector logit (7;) = (log [m;1/mik],
log [mia/Tik], .- log [7: x-1/mix])’, this model part is expressed as
, lOg'l:t (7\',‘) = o, + Fc Xi, (10)

where a. is a K — 1-dimensional parameter vector and I'; is a (K — 1) x ¢ parameter

matrix.

Maximum-likelihood éstimation under normality assumptions can be carried out us-
ing the ENI algorithm. In the EM algorithm, data are considered missing on the latent
categorical variable ¢;. The complete-data likelihood of the EM algorithm for the model
in (8). (9). and (10) considers

[elx] [yle, ], . (11)

where [z] denotes a density or probability distribution. The first term of (11) corre-
sponds to a multinomial regression with a multinomial latent categorical dependent
variable determined by (10), while the second term corresponds to a multivariate nor-
mal distribution. f(y;.|xi) = N (. Zi) derived from (8) and (9). The E and M steps

" of the algorithm are discussed in Muthén, Shedden, and Spisic (1998). A useful side

15



product of the analysis is estimates of posterior probabilities for each individual’s class

membership,
pix = Plci = 1]y;, %) o< Plea = 1x:) f(yalxi)- (12)

An individual may be classified into the class for which he/she has the highest posterior

probability.

In the context of growth modeling the finite mixture model above will be referred to
as a growth mixture model. Mixture modeling can be viewed as a form of cluster analysis.
Many researchers have attempted to cluster longitudinbal measures to capture different
classes of trajectories by various ad hoc methods. The present method is a rigorous
parametric approach; for related mixture approaches to clustering, see, e.g., McLachlan
and Basford (1988). In the present study, a "confirmatory” clustering approach will
be used, where parameter .restrictions are imposed based on a priori hypotheses about
growth. Different prespecified growth shapes can be captured by letting some of the
parameters of oy be fixed. The growth mixture modeling results shown below were
obtained using the new latent variable modeling software Mplus (Muthén & Muthén,

1998). Input specifications for the analyses can be obtained from the first author.

The posterior probability computations shown in (12) can be used to derive the most
likelv class membership for a given individual observation vector (y;, ;). A typical use
is where the estimated model is taken as given and a new individual from the same
population is observed. Here, the estimated model is used as a measurement instrument

in the sense that an observation vector is translated into a class membership statement.
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The Mplus program can be used for such posterior probability calculations holding all
model parameters fixed at the estimated values and only doing one E step. Because
the estimated model is still valid for a subset of the outcome variables in y;, posterior
probabilities can also be computed using a subset of the repeated measures on y; up to
a certain time point. This responds to questions of how early a useful classification can

be obtained.

The growth mixture modeling approach also provides a way to study early indications
of problematic development. As an example, it is of interest to be able to identify
students who are likely to belong to Class 1. The estimated posterior probabilities
obtained by (12) provides a classification of each individual into the class with the
highest probability. This is of interest when using the estimated model to classify a new
student as early as possible. In this case, the parameters of the estimated model are
taken as given and only the posterior probabilities are estimated. While the model is
estimated from all the y and z variable, the estimation of the posterior probabilities can
be done using only a subset of early measurements. This is a useful approach to identify
children who are at risk for reading failure as early as possible. Muthén, Francis, and

Boscardin (1999) provides an analysis of this kind.

5.2.2 Application to Reading Skills Development

Applied to the prediction of first-grade word recognition growth using Kindergarten

phonemic awareness growth, y; = (Yip1, - - - s Yip4; Yiwl» - - - » Yiwa» Yr, Ys)' and
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1; = (Mip1s Tip2s w1 » Tiw2s T n,)". Here, the modeling includes the standardized reading
and spelling test scores ¥ and y, at the end of first grade. These scores are included
in the model as two further 7 variables 7, and 7, that are perfectly measured by cor-
responding y variables (¢, = 0,¢; = 0). To illustrate the use of covariates x in (10), a
measure of letters, name, and sounds skills obtained at the beginning of Kindergarten
is used. This serves as a proxy for home literacy support and early instruction and
is a rudimentary early indicator of both automation of the symbol recognition process
needed for deciphering print into language and, in the case of letter sounds, of phonemic

awareness/grapho-phonemic awareness.
)

In (9), the first two elements of aj contain the means of the phonemic awareness
intercept and slope and the next two elements contain the means of the word recognition
intercept and slope. The trajectory classes are obtained by fixing the aj mean of the
Kindergarten phonemic awareness intercept and slope to different values. Four classes
are chosen to represent variation in both intercept and slope values for phonemic aware-
ness development: they will be described below. The latent class variable is a predictor
of first-grade development of word recognition. This is expressed by (9) where the six
vectors ay capture the across-class differences in means. The estimated values of the
word recognition intercept and slope means in ay are of primary interest in the analysis.
Given the high number of classes, it is assumed that relatively little within-class varia-
tion remains in these growth factors. The variation is instead represented by the latent
classes. For simplicity, the ].atent class variable'is therefor’e taken as the only predictor .

of first-grade development of word recognition with corresponding zero elements of B
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in (9) ih the present analysis. The 7, and 7, variables are specified to be predicted by
the latent class variable in the sense that their means are allowed to vary across classes,
and they will also be predicted by the intercept factors for phonemic awareness and
word recognition with corresponding non-zero elements in B. The model is shown in
path diagram form in the bottom part of Figure 1, where as a comparison the top part

represents the conventional growth model estimated in Section 4.

The four prespecified trajectory classes for phonemic awareness are shown in the
left-hand panel of Figure 2. Each line is plotted at the mean values of the phonemic
awareness intercept and slope for the class. Each class allows \}ariation around this line
as a function of variation in the intercept and slope. The classes represent th;ee different
mean values at the exit of Kindergarten. These values are determined from the mean
and variance of the growth intercept in a single-class analysis of these data, where the
intercept is defined at the end of Kindergarten. The values are thevmean and plus and
minus one standard deviation away from the mean of the intercept growth factor. The
slopes for all classes except class 1 are the average values given that intercept value.
Classes 1 and 2 differ only in the growth slope, where Class 1 has zero growth. Class 1
is of special interest given that it shows failure in reading precursor develop.ment. It is
also of interest to contrast Class 1 with Class 2. The choice of four classes is not based
on model fit criteria bup the degree of separation of classes that is of substantive interest
and that can be supported by the analysis. In earlier analyses six classes were used but

two classes gave zero class counts when analyzing the full model.

It is of interest to be able to identify students who are likely to belong to the different
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classes. The estimated posterior probabilities obtained by (12) provides a classification of
each individual into the class with the highest probabiliiy. In this case, the parameters of

the estimated model are taken as given and only the posterior probabilities are estimated.

5.3 Growth Mixture Results

Growth mixture analysis was applied to the same sample as in Section 4.3, except
reduced to n = 409 due to the inclusion of the covariate. In the analysis, initial spec-
ifications of class-invariant parameters are relaxed stepwise to see if a solution could
be found with a significantly better fit. Here, fit is evaluated by a log likelihood ratio
chi-square statistic obtained for nested models. Growth factor variances for the Kinder-
garten phonemic awareness intercept and slope was found class-varying with a partic-
ularly large intercept variance for Class 4. The residual variances for the standardized

reading and spelling test scores were also found class varying.

Table 2 shows the prespecified means for the phonemic awareness intercept and slope
for the four classes and also the estimated class probabilities. It is seen that Class 1,
showing no Kindergarten growth and a low level at exit from Kindergarten, contains 21%
of the children. Class 2, showing rapid Kindergarten growth but the same low level at
exit from Kindergarten contains 7% of the children. Class 3 and Class 4 contain children

with average level and above average level at exit from Kindergarten, respectively, with

49% and 23%.
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Table 2: Fixed Values for the Kindergarten Phonemic
Awareness Intercept and Slope Means and the Esti-

mated Class Probabilities.

Intercept Slope Probability
Class 1 -1.40 0.00 a2
Class 2 -1.40 0.20 .07
Class 3 -0.59 0.32 .49
Class 4 0.20 0.43 .23

Table 3 shows the estimated word recognition intercept and slope means for the four

classes. The corresponding estimated trajectories are shown in the right-hand part of

Figure 2.

Table 3: Estimated Values for the First-Grade Word
Recognition Intercept and Slope Means (standard er-

rors in parentheses).

Intercept Slope
Class 1 -1.33 (.13) 0.10 (.05)
Class 2 -0.41 (.20) 0.41 (.04)
Class 3 -0.12 (.06) 0.38 (.02)
Class 4 0.95 (.06) 0.26 (.02)

Table 3 and Figure 2 show that children in Class 1 continue to do poorly during
first grade in terms of word recognition development. Children in Class 1 do better
than children in Class 2. This responds to the earlier discussion about whether rapid

growth up to a certain level is better than having been at that level longer. These
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results indicate that at this Kindergarten exit level rapid growth is preferrable for good
first-grade development of word recognition. Children in Class 3 and Class 4 continue

to do well in first grade.

The étandardized reading test score was found significantly related to the word recog-
nition intercept and slope, but not to the phonemic awareness intercept or slope. The .
standardized spelling test score was found significantly related to the phonemic aware-
ness intercept and the word recognition intercept. As expected, the estimated means of
the two test scores were in increasing order for Class 1, Class 2, Class 3, and Class 4.
For both of the two test scores, the Class 1 mean was estimated at approximately one

standard deviation below the overall mean.

The estimated multinomial regression of the latent class variable on the letters,
sounds, and names covariate is summarized in Figure 3. The mean and variance of
this covariate are 0.27 and 0.16, respectively. The figure shows that for students who
Liave covariate values lower than one standard deviation below the mean, Class 1 mem-

bership is most likely. For increasing covariate values Class 3 and Class 4, respectively,

become more likely.

6 Conclusions

The general growth mixture modeling approach was found to be a useful tool for studying
the relationship between two sequential processes. It avoided the complexity of predict-
ing growth in the later process by the growth factors of the earlier process. Instead, a
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latent class variable with classes corresponding to prespecified growth shapes was used

to predict growth in the later process.

Application to predicting first-grade word recognition development by Kindergarten
phonemic awareness development resulted in several interesting findings. In particular,
it was found that among children with low phonemic awareness scores at the end of
Kindergarten, those who had shown little growth during Kindergarten continued to
do poorly in terms of word recognition during first grade. An estimated 21% of the
children in this sample showed this type of development. The children who had started
out lower but had grown rapidly up to this low phonemic awareness level at the end
of Kindergarten performed significantly better in terms of word recognition during first

grade. An estimated 7% showed this type of development.

The results from the growth mixture analysis may be contrasted with those of the
conventional. single-class analysis in Section 4. In the single-class analysis, the slope
of the phonemic atwareness development was not found to be a significant predictor of
the word recognition intercept at exit from grade 1. In contrast, the growth mixture
analysis shows that the phonemic awareness slope is an important determinant of word
recognition level at exit from grade 1 as illustrated by comparing word recognition

development for Class 1 and Class 2.

The growth mixture modeling approach also provides a way to study early indications
of problematic development. For example, it is of interest to be able to identify students

who are likely to belong to Class 1. The estimated posterior probabilities provide a
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classification of each individual into the class with the highest probability. This is of
interest when using the estimated model to classify a new student as early as possible. In
this case, the parameters of the estimated model are taken as given and only the posterior
probabilities are estimated. While the model is estimated from all the observed variable,
the estimation of the posterior probabilities can be done using only a subset of early
measurements. This is a useful approach to identify children who are at risk for reading

failure as early as possible. Muthén, Francis, and Boscardin (1999) provides an analysis

of this kind.

The line of research described here has important implication for preventive inter-
ventions and choice of treatment, i.e. different methods of teaching reading. Children
belonging to different trajectory classes may respond differently to a given treatment and
the modeling can be used to better assess treatment-aptitude interactions. The mod-
cling can also be used to design different treatments for children belonging to different

trajectory classes.
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Kindergarten Growth (Four Classes)
Phonemic Awareness
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1
3
| 2 s .
Time P_oim
Class 1 Class 2
counts 86 (.21) 28 (.07)

First Grade Growth (Four Classes)
Word Recognition

; 6 , X
Time Point
Class 3 Class 4
200 (.49) 95 (.23)
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