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Analyzing criminal trajectory profiles: Bridging multilevel and group-based 

approaches using growth mixture modeling 

 

Abstract: 

 

Over the last 25 years, a life-course perspective on criminal behavior has assumed 

increasing prominence in the literature. This theoretical development has been 

accompanied by changes in the statistical models used to analyze criminological data. 

There are two main statistical modeling techniques currently used to model 

longitudinal data. These are growth curve models and latent class growth models, also 

known as group-based trajectory models. Using the well known Cambridge data and 

the Philadelphia cohort study, this paper compares the two “classical” models – 

conventional growth curve model and group-based trajectory models. In addition, two 

growth mixture models are introduced that bridge the gap between conventional 

growth models and group-based trajectory models. For the Cambridge data, the 

different mixture models yield quite consistent inferences regarding nature of the 

underlying trajectories of convictions. For the Philadelphia cohort study, the 

statistical indicators give stronger guidance on relative model fit. The main goals of 

this paper are to contribute to the discussion about different modeling techniques for 

analyzing data from a life-course perspective and to provide a concrete step-by-step 

illustration of such an analysis and model checking. Further modeling steps such as 

the inclusion of antecedents and consequences are discussed.  

 

Keywords:  

Latent class growth modeling, growth mixture modeling, zero-inflated Poisson 

distribution, developmental trajectory groups 
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1 Introduction1 

Research on the relationship between age and criminal behavior continues to 

play a prominent role in the criminological literature (for overviews see Sampson and 

Laub, 2005; Piquero et al., 2003; Piquero, 2007). The increasing availability of 

individual-level longitudinal data in criminology has led to a larger number of 

empirical papers in recent years with individual “criminal careers” as the outcome of 

interest (e.g., Elliot, 1985; Tracy et al., 1990; Farrington and West, 1993; 

Nieuwbeerta and Blokland, 2003). Those articles address questions regarding patterns 

of criminal offending across the (full or partial) age range of the life course (e.g., 

Piquero and Buka, 2002; Laub and Sampson, 2003), the existence of typical offender 

trajectories (e.g., Nagin et al. 1995; D’Unger et al., 1998),  possible correlates of or 

explanations for different offender trajectories (e.g., Blokland et al., 2005), and the 

prediction of future offending from juvenile offender trajectories in combination with 

certain covariates (Piquero and Buka, 2002).  

These studies, while different in content, all rely on analysis of the age-crime 

relationship. These respective analyses, as well as those that attempt to link other 

variables to the observed age-crime trajectories, require a decision on the statistical 

model used to estimate the trajectories of interest. Currently, two statistical modeling 

techniques are in prominent use for modeling longitudinal data in criminology: 

growth curve models (e.g., Raudenbush and Bryk, 2002) and latent class growth 

models, also known as group-based trajectory models (e.g., Nagin and Land, 1993; 

Roeder et al., 1999). 

In a growth curve model, the joint distribution of the observed outcome 

variables (in this case, the number of convictions at each time point) is characterized 

as a function of age. Individual variation is expressed as random effects or growth 

                                                 
1 We like to acknowledge everyone who discussed this paper with us during the last five years at 
various meetings and conferences. In particular we thank Tihomir Asparouhov for ongoing discussions 
that shaped our perspective on this paper. Shawn Bushway, Booil Jo, John Laub, Katherine Masyn, 
Daniel Nagin, Paul Nieuwbeerta and three anonymous reviewers provided critical comments to earlier 
versions of this manuscript that we gladly took into account. Michael Lemay was of great help in data 
preparation and analysis. The work on this paper was partially supported by grant K02 AA 00230 from 
National Institute on Alcohol Abuse and Alcoholism. 
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factors that are allowed to vary across individuals, assuming a normal distribution. 

Like growth curve models, latent class growth analysis (LCGA) models, or group-

based trajectory models2, model the development of criminal behavior as a function 

of age. However, instead of assuming normality for random effects, LCGA uses a 

small number of groups to approximate the distribution of developmental pathways 

across individuals. Group-based trajectory models are employed to study 

criminological theories that predict prototypical developmental etiologies and 

trajectories within the population (Nagin, 1999, 140). These theories distinguish, for 

example, between adolescent-limited and persistent offenders (Moffitt, 1993).  

Concretely, the use of group-based trajectory models specifies that the variation of 

the coefficients across individuals can be fully explained by group membership. The 

groups will differ in their developmental pathways, but, according to the model, there 

is no further variation within the group, i.e., all members of a group have the same 

expected outcome trajectory. 

The increasing number of criminological papers that use latent class growth 

analysis have led some to voice concern about the implicit notion behind them, i.e., 

the existence of a finite number of distinct developmental trajectories and the 

classification of people into those trajectories. “A key question […] is whether 

trajectory groups actually exist. If they do, then group-based trajectory modeling is 

clearly an ideal modeling approach. But if they do not, […] we must ask what insight 

is gained and also what is lost in this kind of approximation” (Raudenbush, 2005, 

132). “Perhaps we are better off assuming continuously varied growth a priori and 

therefore never tempting our audience to believe […] that groups actually exist” 

(Raudenbush, 2005, 136). But even if there is agreement on the existence of different 

groups (and with them typical offense trajectories), the question remains if those 

groups are distinct in their power to predict future criminal careers (Sampson and 

Laub, 2005, 907) and to which extent group members ‘follow' the group trajectories 

(Sampson and Laub, 2005, 908).  

                                                 
2 This approach is often referred to under its technical SAS procedure name PROC TRAJ (Jones et al, 
2001). 
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We think that this discussion would be well served by reflecting on the 

various modeling alternatives. To this end, we compare not only growth curve 

modeling and group-based modeling, but expand that comparison to include growth 

mixture modeling (GMM) and non-parametric growth mixture modeling (NP-GMM). 

These additional modeling approaches are conceptually located between the two 

extremes usually discussed in the criminological literature, i.e., the assumptions of 

purely random versus purely group-based variation among individuals in their 

developmental trajectories. In this paper, we will compare these four modeling 

approaches using a framework in which each approach is treated as a specific case of 

general growth mixture modeling.  

The focus of this paper is on the specification and interpretation of the 

different modeling alternatives as well as their relative performance for particular 

data sets rather than on their mathematical details or further substantive implications. 

To this end, we will illustrate the methods by analyses of data in common use in the 

criminological literature, the Cambridge data and the Philadelphia cohort study. 

These data are described in the next section and are almost entirely in the public 

domain.3 For the Cambridge data the different mixture models yield quite consistent 

inferences regarding the nature of the underlying trajectories of convictions. For the 

Philadelphia cohort study the statistical indicators give stronger guidance on relative 

model fit.   
 

2 Population-based conviction data 

We will use data from the “Cambridge Study” for the step-by-step 

demonstration of the different models, and show the modeling results for the data 

from the “Philadelphia Cohort Study”. Both data sets will also be used to further 

examine sensitivity in the model comparisons. 

                                                 
3 ICPSR study number 8488. http://www.icpsr.umich.edu/ includes the Cambridge data until age 24. 
David Farrington kindly provided us with the outcome variables until age 40 for the Cambridge sample. A 
summary of the non-public data is given in Table Ia. 
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The so-called “Cambridge Study” includes data on 411 males from 

Cambridge, England who were followed from ages 10 to 40.4 This data collection 

effort, initiated by Dr. Donald J. West and continued by Dr. David Farrington, was 

undertaken to test several hypotheses about delinquency (Farrington and West, 1990). 

The data set includes a rich set of covariates collected to determine the causes of 

crime and delinquency. The Philadelphia cohort study includes information on 13,160 

males born in Philadelphia in 1958. Annual counts of police contacts are available 

from ages 4 to 26 for this birth cohort. A detailed discussion of these data can be 

found in various places (e.g Moffitt, 1993; Nagin and Land, 1993) and will not be 

repeated here.  

Both data sets are typical in presenting two challenges that are characteristic 

for population-based conviction data where the prevalence of the non-normative 

behavior is, by definition, low. First, the outcome variable, number of convictions in 

the Cambridge study and number of police contacts in the Philadelphia study, is 

extremely skewed with a large number of zeros at each point in time. In the 

Cambridge study, in any given year between 89% and 99% percent of males have 

zero convictions. Table Ia displays the two year intervals used for the analyses in this 

paper. Even after the biannual grouping there are still between 83% to 98% percent of 

the observations with zero convictions. The number of police contacts is equally 

skewed in the Philadelphia data (Table Ib). Here the percentage of zero police 

contacts in the bi-annual intervals ranges between 80% and 98%.  

 

--- TABLE Ia AND TABLE Ib --- 

 

The second characteristic issue is that the aggregate age-crime curve follows 

the well-known pattern of increasing number of convictions throughout the subjects’ 

teenage years and a decrease in annual conviction rates thereafter (Farrington, 1986; 

Hirschi and Gottfredson, 1983). The left panel of Figure 1 depicts this age-crime 

relationship across all subjects in the Cambridge study, with the number of 
                                                 
4 Eight of these boys died within the observation period. For the sake of simplicity, data for these boys are 
not included in our analytical illustration. The variable of interest in this context is the number of 
convictions per year for each of the 403 remaining males. 
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convictions displayed for each of the biannual observation periods used here, starting 

from age 10-11 up to age 38-39. However, individual trajectories do not necessarily 

follow this aggregate curve and, in fact, sometimes deviate from it substantially. Most 

males in this data set were never once convicted. But even among those with criminal 

careers, development of an official criminal history over time can vary considerably. 

The right panel of Figure 1 shows an example of the heterogeneity in the trajectory 

curves. Displayed in Figure 1 are five individual trajectories. The dot-dashed line is 

an example of an observation with early and high-rising conviction counts. Four 

convictions had been recorded in the age interval 16-17 as well as 18-19 but after age 

25 there is no further conviction recorded for this case. In contrast, the dotted line 

shows a development with no conviction until age 31, one and respectively two 

counts between age 32 and 37 and zero thereafter. The dashed line is an example of a 

third type of trajectory with conviction counts on and off throughout the observation 

period. 

--- FIGURE 1 --- 

Although the panels in Figure 1 show the range of possible trajectories, it 

should be noted that the trajectories displayed in Panel 2 are somewhat “unusual” in 

the sense that each one appears in the data only once. The frequency of response 

patterns is typically not seen in papers analyzing longitudinal offense data. An 

example summary of pattern frequencies is given in Table II. We will use these 

pattern frequencies again when we discuss model fit to data in later sections.  

Table II summarizes patterns of conviction frequencies in biannual intervals 

that appear more than once in the Cambridge data. Including those males that died 

during the observation period, there are 108 single patterns that are omitted from this 

table. Most of those have a higher total number of convictions and are more likely to 

have convictions in two consecutive intervals.  

--- TABLE II -- 

 
Similar to the Cambridge data, around 60 of the subjects in the Philadelphia 

cohort study have no police contact throughout the entire observational period. Given 

the shorter time span and much larger sample there is a higher probability for multiple 
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patterns visible in Table III. Displayed are the ten patterns with more than 100 cases 

(where 100 cases are 0.76% of the data). 1082 cases (8.22%) show a unique 

frequency pattern. Among those the number police contacts throughout the entire 

observational period can go up to 57. However, for the vast majority of cases, 97% 

percent, the total number of police contacts between age 10 and age 25 does not 

exceed 10, and for a cumulative total of 99% it stayed below or equal 16. 

--- TABLE III --- 

 

Different strategies have been used to meet these two challenges characteristic 

of offense trajectories. To meet the first challenge—the skewness of the count 

variable (number of convictions) at each point in time—the outcome variable can be 

analyzed in a zero-inflated Poisson (ZIP) model (Lambert, 1992; Nagin and Land, 

1993). These models were developed for situations in which the count outcome is 

equal to zero more often than one would expect assuming a Poisson distribution 

(Hall, 2000). Zero-inflated Poisson models are discussed in detail in Nagin and Land 

(1993) and Roeder et al. (1999), and will therefore not be explained any further. A 

brief description of these mixture models can be found in the Appendix. 

Alternatively, negative binomial models could be used to address this challenge. For 

simplicity we will employ ZIP to all models in this paper. Our focus is on the second 

challenge of how to capture the heterogeneity around an overall developmental 

trajectory above and beyond what the zero-inflated Poisson is already capturing. 

More specifically, we will attempt to answer the following questions for data. How 

well can the development of a criminal career be approximated by one overall growth 

curve? How much individual variation is there around the overall growth curve? How 

can this variation be represented? What difference does the choice of a certain 

modeling technique make for substantive interpretation? And, finally, how should one 

proceed in exploring the fit of these different models to the data?  

 

3 Comparison of the mixture modeling approaches 

As noted above, the two dominant models used in the criminological literature 

to model heterogeneity of growth trajectories are growth curve models and latent 
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class growth analysis or group-based trajectory models. We will briefly review these 

two models using a general latent variable framework.5 This framework allows for 

the introduction of two additional models that bridge the gap between conventional 

growth and group-based models, namely a parametric and non-parametric version of 

growth mixture models. We propose that having all four models at one’s disposal will 

help criminological researchers understand the structure of a specific data set and will 

better guide modeling choices. Therefore, once the models are reviewed, we will 

apply each of the models in turn to the Cambridge data. A summary of the model 

comparisons will be provided for the Philadelphia data.  

3.1 Current Modeling Strategies 

Conventional Growth Modeling 
In growth curve models, the joint distribution of the observed outcome 

variables is characterized as a function of age. Conventional growth modeling can be 

used to estimate the amount of variation across individuals in the growth factors 

(random intercepts and slopes) as well as average growth. In other words, in a 

conventional growth model the individual variation around the estimated average 

trajectory is expressed in growth factors that are allowed to vary across individuals 

(Raudenbush and Bryk, 2002). The variation of the growth factors (random effects) is 

assumed to take on a normal distribution (Hedeker and Gibbons, 1994). 

Substantively, it means that one assumes all people in the sample have the same 

expected criminal trajectory and the individual variation around this expected 

trajectory is centered on the estimated intercept and slopes for the whole sample, with 

symmetric deviation on both sides (e.g., some individuals start their criminal careers 

earlier some later, but on average they start at the estimated intercept). Conventional 

growth models are most often used in conjunction with covariates to “explain” the 

variation in the growth factors. In such cases, the people in the sample have the same 

expected trajectory conditioned on their covariate pattern. We will address the issue 

                                                 
5 For an overview of this modeling framework, see Muthén (2002). For a step-by-step introduction to 
applying latent variable models to longitudinal data, see Muthén (2004). For a recent technical 
presentation see Muthén and Asparouhov (in press). 
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of covariates again in the discussion and focus on the simple modeling of trajectories 

for the present comparison. 

In a simple model with no covariates other than age, the age-crime 

relationship is often described by a quadratic growth function (e.g., Roeder et al., 

1999). In this case, the log of the Poisson rate parameter, λ, the expected value of the 

count part of the zero inflated Poisson model, can for each individual i and time point 

j be expressed as a linear combination of the time-related variable a with a linear 

slope factor 1η  and a quadratic slope factor 2η , 

2
0 1 2ln( ) +ij i i j i ja aλ η η η= +  .     (1) 

Here, η0i, η1i and η2i are random intercepts and slopes that vary across individuals. 

Using multilevel notation (e.g., Raudenbush and Bryk, 2002) the equations estimated 

at Level 2 (the individual level) are:  

0 0 0

1 1 1

2 2 2

,
Level 2: ,

.

i i

i i

i i

η α ζ
η α ζ
η α ζ

= +⎧
⎪ = +⎨
⎪ = +⎩

   (2) 

The random effects, η0i, η1i and η2i, can therefore also be seen as latent variables with 

a joint distribution that is usually assumed to be normal.   

Group-based trajectory model / latent class growth analysis 
For the reasons mentioned in Sections 1 and 2, the normality assumption for 

the random effects in the conventional growth model was challenged by Nagin and 

Land (1993). Instead Nagin and Land adopted a model by Heckman and Singer 

(1984) that approximates an unspecified continuous distribution of unobserved 

heterogeneity with a linear combination of discrete distributions (Nagin et al., 1995). 

That is, different groups, each with its own growth trajectory, are used to capture the 

overall variation. 

This model can be characterized as latent class growth model. Like classic 

latent class analysis (see Clogg, 1981), this model introduces a categorical latent 

variable, C (C = 1,2,…,K), that can be viewed as a possible explanatory variable for 

the observed correlation between the outcome variables. Here, the parameter λ in the 
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count part of the zero inflated Poisson is still expressed as a linear combination of the 

time-related variable, a, a linear slope factor, 1η  and a quadratic slope factor, 2η ,  

 Level 1: 2
| 0 1 2ln( ) +

iij c k k k j k ja aλ η η η= = + .  (3) 

 
0 0

1 1

2 2

,
Level 2: ,

.

k k

k k

k k

η α
η α
η α

=⎧
⎪ =⎨
⎪ =⎩

 

However, these ηs now no longer vary across individuals but across groups of 

individuals captured by the latent class variable. The model specifies zero within-

class variance in the growth factors. The variation and covariation in the growth 

factors is represented exclusively by discrete mass points (corresponding to bars in a 

histogram). The class variable, C, replaces any distributional assumptions regarding 

the growth factors. The growth factors—intercept, linear and quadratic slopes of the 

trajectories—can vary across classes, but the model specifies zero variation within a 

class. This means that individuals within class k of the class variable C are treated as 

identical with respect to their expected developmental trajectory.  

The LCGA model has been attractive for criminologists. In most of the group-

based modeling applications LCGA classes have been given substantive 

interpretation, and LCGA is used to support distinctions among subgroups with 

different offending trajectories. For example, Moffitt (1993) advances a theory 

differentiating between a large group of adolescence-limited offenders and a small 

subgroup of life-course persistent offenders.  

While classifying individuals in typical offender groups is appealing, there is a 

risk involved in the substantive interpretation of these latent class growth models. 

First, it is conceptually unclear whether or not the classes are used merely to model an 

unknown distribution of trajectories or if they instead represent substantively 

meaningful classes. The criminological literature is not clear on this, even across 

analyses of the same data set (see critique by Sampson and Laub, 2005). Second, the 

model assumes that the class-specific trajectory is a good representation for all 

members of this class. Variation around the expected trajectory within a class is 

assumed to be zero according to the model and therefore can not be estimated. Third, 
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as with all models that include latent classes, the number of classes necessary to best 

represent the data is often a matter of debate (e.g., D’Unger et al., 1998). 

 

3.2 Additional Modeling Strategies 
Both the conventional growth model and the latent class growth model can be 

seen as special cases of growth mixture models (for details see Muthén, 2004 and 

Muthén and Asparouhov, in press). The following section will briefly show the 

connection between these models6.  

Growth Mixture Modeling  
Similar to the conventional growth and group-based trajectory models, the 

quadratic growth function for a Poisson outcome in a growth mixture model can be 

expressed as linear combination of the time-related variable, a, a linear slope factor, 

η1 and a quadratic slope factor, η2. As in the conventional growth model, η0i, η1i and 

η2i are intercepts and slopes that may vary randomly among individuals. However, in 

marked contrast to conventional growth models, these random effect models can be 

specified for unobserved subpopulations or classes, 
2

| 0 1 2ln( ) + ,
iij c k k i ki j ki ja aλ η η η= = +      (4) 

0 0 0 ,ki k kiη α ζ= +  

1 1 1 ,ki k kiη α ζ= +  

2 2 2ki k kiη α ζ= +  . 

The key differences among the classes are typically found in the fixed effects α0, α1, 

and α2, which may differ for each of the K classes of C. Intercepts and slopes may 

have random effects, that is, non-zero variances. If all variances in the growth 

factors, 0η , 1η , and 2η  are set to zero, a GMM model provides the same results as a 

latent class growth model. The LCGA can therefore be seen as a specific member of 

the more general class of growth mixture models (Muthén, 2004). Also, the 

conventional growth model can be seen as a growth mixture model with one class. 

                                                 
6 For an in depth discussion of growth mixture models see Muthén (2001a). 
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The growth mixture model can be estimated by maximum likelihood using an 

EM algorithm. For models with random effects, this involves numerical integration 

computation (for technical details see Muthén and Asparouhov, in press). For a given 

solution, each individual’s probability of membership in each of the classes and the 

individual’s score on the growth factors can be estimated.  

The advantage of this model is that it allows for both subpopulations, as 

predicted by certain criminological theories of different trajectories types, and for a 

variation on the theme of the trajectory type within those subpopulations. This 

variation can itself be predicted by covariates. However, if random effects are 

allowed within the classes, the GMM model relies on the normality assumption. 

While the assumption of normally distributed random variation among individuals 

might be more likely to hold within subclasses than for the whole population, it is still 

possible that the data-generating process has some more systematic, non-normal 

components.  

Non-Parametric Growth Mixture Modeling 
As the name indicates, the non-parametric version of a growth mixture model 

does not rely on any distributional assumption for the random effects (Muthén and 

Asparouhov, in press). The model is specified such that additional latent classes are 

estimated to capture the potentially non-normal distribution within the growth 

mixture classes.  

Consider, for example, a growth mixture model with random intercept (no 

random effects for the linear and quadratic slope parameters):  
2

| 0 1 2ln( ) +
iij c k k i k j k ja aλ η η η= = + , and 0 0 0ki k kiη α ζ= + .   (5) 

A non-parametric version of this growth mixture model would use classes to 

capture the ζ0ki variation of the intercept within each of the K substantive classes. In 

this case, the distribution of the random effect for the intercept can be left unspecified 

and will be estimated. For estimation, the EM-algorithm can be employed. To 

understand the estimation procedure, it might be helpful to step back and think of 

numerical integration, which can be used to approximate a normal distribution. In 

numerical integration the integral is substituted by a finite weighted sum of mass 
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points (nodes), similar to bars in a histogram. If one were to approximate a normal 

distribution with numerical integration, Gauss-Hermite quadrature can be used. In this 

case nodes and weights of the nodes are known and fixed. However, if an unknown 

distribution needs to be approximated (as it is the case here), the nodes (mass points) 

and weight of the nodes (masses) can be estimated. Together they provide the 

necessary parameters to capture the unknown distribution of the random effect.   

An age-crime relationship that is described by a quadratic growth function, the 

random effect of the intercept within each of the K substantive classes would now no 

longer be captured by 0 0 0ki k kiη α ζ= + but through Dk different nodes that would be 

called classes in the latent variable framework. The full estimation equation would be 

expressed with  
2

| , 0 1 2ln( ) +
i iij c k cn d kd k j k ja aλ η η η= = = +  .     (6) 

The subscript i on the intercept growth factor is replaced with d indicating a 

particular class (node) in the unknown distribution. The overall trajectory shape of the 

K substantive classes will not change. That is, each substantive class is still defined 

by the same slope and quadratic term. However, in addition there will now be Dk 

classes within each class, k, that differ only in the estimated intercept term and that 

are used to capture the distribution of the intercept random effect.  One can think of 

these non-parametric classes as shifting the growth trajectories along the y-axis. 

Within the non-parametric classes there are no further random effects. Hence no 

normality assumption is needed. 

By having the slope factor means for the linear and quadratic term (η1k η2k) be 

the same across the cn-classes within each substantive class c, the assumption is made 

that the linear and quadratic slope growth factors are uncorrelated with the intercept 

growth factor.  In our example this assumption is made because there was initially no 

random effect for the linear and quadratic slope. (Thus the only variation that the sub-

classes model are for the random effect of the intercept.) This assumption is not made 

by the LCGA model specified in Equation 3. In LCGA, all growth factor means 

(intercept, slope, and quadratic terms) can be different across classes, and all growth 

factor variances are set to zero. This said a latent class growth model could give a 



 15 

result where the estimated slope factor means (η1k and η2k) vary across substantive 

classes without being correlated with the estimated mean intercept factor. 

3.3 Strategies to decide on the number of classes 
A common challenge for all of the latent variable models discussed here is the 

decision on the number of classes needed to best represent the data (see, e.g., 

McLachlan and Peel, 2000). Objective criteria for doing so have been a matter of 

some controversy. The likelihood ratio test (defined as minus two times the log-

likelihood of the restricted minus the log-likelihood of the unrestricted model) does 

not have the usual large-sample chi-square distribution due to the class probability 

parameter being at the border of its admissible space (Muthén, 2004). In nested 

models (comparing a k-1 to a k-class model) parameter values of the k-class model 

are set to zero to specify the k-1- class model. This model specification results in the 

difference of the two likelihoods not being chi-square distributed. In addition, the k-

parameter space no longer has a unique maximum. Although the comparison of the 

log-likelihood values can indicate the appropriate number of classes, the ratio test 

should not be used as the sole decision criteria (Muthén, 2004; Nylund et al., in 

press).  

An alternative procedure commonly used in past criminological applications is 

the Baysian Information Criteria (BIC) (see Schwartz, 1978). The BIC, defined as  

2log log ,L p n− +         (7) 

where p is the number of parameters and n is the sample size, also makes use of the 

likelihood ratio and is scaled so that a small BIC value corresponds to a good model 

with large log-likelihood value and not too many parameters.7 New mixture tests 

were developed in the past years (for an overview see Muthén, 2004), among those a 

bootstrap likelihood ratio-test (McLachlan and Peel, 2000).  The bootstrap LRT or 

BLRT, uses bootstrap samples to estimate the distribution of the log-likelihood 

                                                 
7 In addition to the BIC, the Akaike Information Criteria (AIC) is sometimes used for model comparison. 
However, for finite mixture models, the AIC has been shown to overestimate the correct number of 
components (Soromenho, 1993; Celeux and Soromenho, 1996). The BIC on the other hand has been 
reported to perform well (Roeder and Wasserman, 1997) and most consistently (Jedidi et al., 1997). For 
further details and comparisons see McLachlan and Peel (2000) as well as Nylund et al. (in press).  
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difference test statistic. Instead of assuming the difference distribution follows a 

known distribution (e.g., the chi-square distribution), the BLRT empirically estimates 

the difference distribution. The BLRT provides a p-value that can be used to test a k-

1-class model against a k-class model. In this sense the BLRT can be interpreted like 

the traditional likelihood ratio test, only that bootstrap sample distribution replaces 

the chi-square distributional assumption. 

A recent simulation study by Nylund et al. (in press), in which data were 

generated with a known number of classes, showed that the bootstrap likelihood ratio-

test (BLRT) performs better than the traditional likelihood ratio test or BIC in 

determining the correct number of classes. While the simulation was not carried out 

for GMM specifically with the Poisson or even zero-inflated Poisson outcome 

variables as are of interest here, the performance lags shown in the GMM setting with 

continuous outcomes and in the Latent Class Analysis setting were so substantial that 

it seems unlikely that they would surpass the performance of the bootstrap likelihood 

ratio-test in the present application. Nevertheless, we compare model performance 

using the two standard criteria (the log-likelihood test and the BIC) and supplement 

this information with the bootstrap likelihood test. 

3.4 Fit to data 
There is not yet a formal statistical test for comparing the results of the 

alternative modeling approaches. The log-likelihood statistics as well as BIC used in 

the previous section are only one type of guide for choosing among models. Another 

important guide is the actual fit to the data. Model fit to data does not seem to have 

been commonly considered in analyses of trajectory types. We will therefore compare 

the different models under consideration with respect to their standardized residuals 

in terms of response pattern frequencies (as seen in Table II and III). We also 

considered the effect of single influential cases on the model fit. This is done by 

computing the influence statistic for each observation (Cook, 1986; Liski, 1991). 
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4 Application of the four different modeling strategies  

In the previous section, we introduced four models for the analysis of 

longitudinal data. In this section, all four of these models will be applied to the 

analysis of the Cambridge data and the Philadelphia cohort study. All analyses are 

performed with maximum likelihood estimation in Mplus (Version 4.21). The code to 

reproduce our analyses is available online.8 For the mixture analyses of GMM, NP-

GMM and LCGA, a large number of random perturbations of starting values was 

used to avoid local maxima. 

4.1 Cambridge data 
A quadratic growth function will be specified in all models. The necessity of 

adding random effects on the intercept, slope and quadratic growth factors of the 

quadratic growth function will be explored. Further, in line with criminological 

theories on the existence of subpopulations with conceptually different developmental 

trajectories, the conventional growth models will be extended to growth mixture 

models, which allow both for separate classes and for random growth factors within 

those classes. Then the normality assumption within these classes will be examined 

and non-parametric growth mixture models will be applied. Finally, these models will 

be compared to latent class growth analysis in which classes represent different 

subpopulations with different trajectory shapes, but no variation of growth factors is 

allowed within these classes. For each of the models a non-technical summary will be 

provided. 

4.1.1 Conventional Growth model 
This section presents the analyses of the Cambridge data using conventional 

growth models. In the present analysis of the Cambridge data, the outcome variable 

(number of convictions) is treated as zero-inflated Poisson as mentioned above.9 A 

                                                 
8 http://www.statmodel.com/examples/penn.shtml 
9 The quadratic growth function is applied to the count part as well as the zero-inflation part of the growth 
model. We estimated all models with and without growth structure on the zero-inflation part. The results 
for the models with unstructured zero-inflation part do not differ from those presented here and are 
therefore not listed in addition. A cubic growth parameter was specified for the conventional growth 
model with random intercept, but had not significant contribution. The cubic function was then not 
pursued any further. 
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random intercept model results in a log-likelihood value of -1,481.3 with seven 

parameters10 and BIC of 3,004.7 (see Table IV). According to BIC, a model that 

allows for not only a random-effect intercept but also for a random-effect slope fits 

the data even better. With these two additional parameters11, the log-likelihood 

increases to -1,469.6 and the BIC decreases to 2,993.2. However, allowing for a 

random effect for the quadratic term did not lead to an improvement for BIC. 

--- TABLE IV --- 

--- FIGURE 2 --- 

 

Figure 2 shows a summary of the model results. Displayed is the mean 

trajectory curve for the number of biannual convictions as a function of age. Not 

visible in the graph is the random effect variation for intercept and slope. That is, 

individuals are ‘allowed’ to have a different level of onset and a different slope in 

their trajectories. Figure 2 shows a very low average number of convictions at each 

time point. This is not surprising, given the large number of zeros (no convictions) for 

individual subjects at each point in time. The peak of the overall age-crime curve is at 

age 18. 

 

4.1.2 Growth mixture model 
Taking the descriptive analysis of the Cambridge data in Section 2 as a 

starting point, it seems reasonable to postulate that there exists a subgroup with no 

criminal career whatsoever. We therefore specified a growth mixture model (GMM) 

with one class being assumed to have zero values throughout the observational 

period. According to all model-fit indicators (log-likelihood, BIC, and BLRT) this 

two-class GMM model outperforms the one-class conventional growth model. The 

GMM model with two classes, one class with one or more convictions and one zero 

class (see Table V, GMM(zip) 1+0), has eight parameters. Compared to the regular 

                                                 
10 Among the seven estimated parameters, three are for the means of the Poisson growth factors, one for 
the variance for the intercept of the Poisson growth model and three parameters for the quadratic growth 
model for the inflation part. 
11 The two additional parameters are the variance of the slope and the covariance between slope and 
intercept. 
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growth model with a random intercept, there is now one additional parameter 

estimated, which is the probability for the class membership. For the GMM with one 

zero class the BLRT (not shown in the Table) indicates that this two-class model 

significantly improves the fit compared to the one class model (BLRT p-value <0.01). 

The comparison of BIC (3,004.7 for the one class GMM and 2,994.5 for the two class 

GMM) and the log-likelihood values (-1,481.3 for the one class GMM and -1,473.3 

for the two class GMM) support this decision. 

 

--- TABLE V --- 

As was done in the case of the general growth model above, we tested the 

possibility of improving model fit by allowing both random intercept and random 

slope parameters. This new model, with a slope variance as well as a covariance for 

the intercept and slope, fits the data better than the GMM with one zero class and a 

random intercept only. With only two more parameters, the likelihood value increases 

from -1,473.3 to -1,461.8 and BIC drops from 2,994.5 to 2,983.7. The presence of 

significant variance in the growth factors is not surprising from a substantive point of 

view. It seems reasonable to assume that criminal careers of a certain trajectory type 

would show substantial variation across individuals within this type. 

Given the contribution of a random effect for the intercept and slope in the 

growth mixture model with one zero and one non-zero class, one might ask how this 

variation could best be described. Are the data best described with a model that has 

one non-zero class and random effects for both intercept and slope, or is it more 

reasonable to assume variation with more than one distinct pattern for different 

trajectory types, as implied by the different developmental pathways described by 

Moffitt (1993)? 

To answer these questions, we examined the improvement in model fit 

between the GMM with only one non-zero class and a GMM with additional non-

zero classes. The GMM with one zero and two non-zero classes (in Table V labeled 

as GMM (zip) 2+0) has 12 parameters: Two parameters for class membership, three 

growth factor means for both count trajectories, one parameter for the intercept 
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variance, and three parameters for the quadratic inflation growth part of the model.12 

The log-likelihood value increases to -1,454.7 (from -1,473.3) and BIC decreases to 

2,981.5 (from 2,994.5) for the model with one non-zero class and random intercept 

(see Table V). Adding another substantive class led to an increase in BIC and a BLRT 

p-value of p=0.1 did not indicate a significant improvement in model fit.  

The growth trajectories for growth mixture model with the best performance 

are displayed in Figure 3. For the growth mixture model one can see the estimated 

growth trajectories for criminal convictions for two non-zero classes, and one zero 

class. The dotted line at the bottom depicts the latter. The two substantive classes 

differ in the age at which the developmental trajectory peaks (age 16 versus age 18) 

and they differ in the rate of decline thereafter.  

--- FIGURE 3 -- 

 

The two non-zero growth factor mean curves that are displayed in Figure 3 

represent two substantial classes in terms of size. According to the model estimates, 

roughly 18% are in the early-peaking class and 33% are in the late-peaking class. For 

both classes, the model allowed the intercepts to be a random effect. The random 

variation of the intercept within each of the two classes is assumed to be normally 

distributed, an assumption that can be questioned. 

One possibility for examining the appropriateness of the normality assumption 

is a graph of the distribution of the estimated individual values from the random 

intercepts. These individual values of the random effect (here the intercept factor) are 

often called factor scores (Lawley and Maxwell, 1971). If the normality assumption 

holds the distribution of the individual factor scores should resemble a normal 

distribution. Figure 4 contains such graphs for both the early-peaking and the late-

peaking classes. Plotted in Figure 4 are histograms of the individual factor scores 

together with a more general kernel density estimator to smooth the function.13  

What is noticeable in Figure 4 is the strong skewness of the distribution in 

both classes. The early-peaking class also displays a slight bi-modality. Neither of 

                                                 
12 Note that the three inflation parameters are held equal across classes. 
13 We used an Epanechnikov kernel for the nonparametric smoothing function (Silverman, 1986). 
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these two graphs would support the assumption of symmetric normally distributed 

variation around the estimated mean intercept for each of these classes. 

 

--- FIGURE 4 -- 

To summarize, it seems to be the case that a model that distinguishes criminal 

career trajectory types is preferred over the conventional growth model in which one 

mean trajectory is estimated for the entire sample. However, looking at the 

distribution of the estimated individual intercept values (i.e., factor scores) the 

assumption of continuous-normal varied growth within those two non-zero classes 

can be challenged. A non-parametric version of growth mixture models was therefore 

applied. 

 

4.1.3 Non-parametric growth mixture model 
In the next step of the analysis, the assumption of normally distributed 

variation around the estimated intercept for both non-zero groups was relaxed. A non-

parametric version of the GMM was used instead. Here, the intercept variation is 

represented non-parametrically through estimated support points. These can be seen 

as sub-classes of the two larger, substantive classes. The sub-classes differ in terms of 

their intercepts, but have equal slope parameters and no random effects. If the 

normality assumption were reasonable, then the support points (sub-classes) that are 

found should be symmetric and approximately equidistant from the initially estimated 

intercept mean.  

Table VI lists the results for three different non-parametric GMM models. 

ALL THREE models have two substantive classes and one zero class, just like the 

best fitting growth mixture model. However, now each of the substantive classes can 

be thought of has having two or more sub-classes (the number of sub-classes within 

each substantive class is indicated inside the brackets in the labels of Table VI). Each 

of these sub-classes will have the same overall trajectory (slope) as the larger 

substantive class to which it belongs. The only difference between the sub-classes is 

in the intercept. 
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In the first model reported in Table VI, three support points were used to 

represent the distribution of the intercepts in each of the substantive classes. 

However, the results of this model showed an empty class for one of the three sub-

classes of the early peaking class. This indicates that only two support points are 

needed to represent the variation in the early-peaking class (which we found in the 

GMM model). This model—with two support points for intercept variation in one of 

the two non-zero class and three in the other—had a log-likelihood value of -1,444.4 

with 15 parameters and the lowest BIC value with 2,978.8. Reducing the number of 

support points for the late-peaking class to two as was done for the early-peaking 

class worsens the model fit, decreasing the log-likelihood by 13 points by adding two 

additional parameters. Likewise, the BIC increases from 2,978.8 to 2,993 (Table VI). 

 

--- TABLE VI --- 

 

As mentioned earlier in the model description, numerical integration is used in 

the EM-algorithm. Here the integral is replaced by nodes (mass points/support points) 

and node weights (masses). Both node locations and weights can be estimated. Figure 

5 shows the location of the support points for the distribution of the intercept factor 

scores for the early peakers and the late peakers. Two support points are needed for 

the early peakers. The height of the bars in Figure 5 is proportionate to the class size 

for each of the sub-classes. Looking at both Figures 5 and 6, one can see two early-

peaking classes, those indicated by the dashed line in Figure 6. About two-thirds of 

the observations in the early-peaking class are estimated to have a low intercept; the 

average number of convictions of class members at age 16 (the peak of this 

trajectory) is less than 0.4. 

--- FIGURE 5 --- 

The remaining third is in the tail of the intercept distribution; the number of 

convictions at the peak of their trajectory is estimated to be around three.14 However, 

since the additional classes in the NP-GMM model are used to capture variation only 
                                                 
14 Note that Figure 7 showed an average of around 0.8 convictions for the early peaking class at age 16. 
With the 2/3 and 1/3 split within the early peaking class the model does allow for a more extreme version 
of this early-peaking pattern. 
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in the intercept and not in the other parameters, both early-peaking classes are 

constrained to have the same slope and quadratic growth parameters. This constraint 

is visible in Figure 6 in terms of the steep decline in convictions through the late 

teenage years and the return to zero biannual convictions by their mid-twenties. Three 

support points for the intercept distribution of the late-peaking class are visible in 

Figure 5. All three are displayed with the solid lines in Figure 6.  

The NP-GMM preserved the basic structure of the substantive classes found in 

the growth mixture model. The trajectory for the late-peaking sub-class with the 

lowest intercept value captures about 60 percent of the entire late-peaking class. The 

highest of the three late-peaking trajectories is the estimated mean curve for about 

twelve percent of the “late-peakers”. While the different curves imply different levels 

of convictions, all three trajectories show again a pattern often called “long term 

persistence” in the criminological literature (e.g., Roeder et al., 1999) in that criminal 

activity persists throughout the subject’s twenties.  

 

--- FIGURE 6 --- 

Reducing the number of support points for the late-peaking class to two as 

was done for the early-peaking class worsens the model fit, decreasing the log-

likelihood by 13 points by adding two additional parameters. Likewise, the BIC 

increases from 2,978.8 to 2,993 (Table VI).  

In summary, according to this model the data support two substantive 

conviction trajectories and one zero-class. There is variation within the substantive 

trajectories, where the level of conviction varies but not the pattern over time. Rather 

than capturing the variation assuming a normal distributed random effect, two or 

three “support points” are needed for the substantive classes.  

 

4.1.4 Latent Class Growth Model 
Table VII shows a summary of the results of a Latent Class Growth Analysis 

of the Cambridge Study data. As stated above, a LCGA is characterized by zero 

variances and covariances for the growth factors. The model assumes that individuals 

within a class are homogeneous with respect to their development. However, unlike 
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the non-parametric version of the growth mixture model, each class is now allowed to 

differ not only in the intercept factor means but also in the slope factor means. None 

of the classes are allowed to have random effects for any of the growth factors. The 

LCGA model was first estimated again having one class as a zero class.15 According 

to BIC the model with two substantive classes and one zero class clearly 

outperformed the model with only one substantive class (BIC 3,005.4 vs. 3,184.8). 

The model with three substantive classes and one zero class had a similar BIC value 

(BIC 3,006.1).  The 2+0 model (see Table VII) shows a high peaking and a low 

peaking class and an estimated 60% in the zero-class. In the 3+0 model the low 

peaking class “splits” into two shapes that follow the pattern we already saw in the 

GMM model. 

Even without explicit specification of a “zero”-class a nearly zero-class is part 

of the resulting solution in the LCGA models for the Cambridge data. The likelihood 

is increased for those models. Among the LCGA models without explicit zero-class, 

two perform best. If model fit decision is solely based on BIC, the 4-class model 

performs best. The BLRT p-value (again not shown in the table) being <0.01 for the 

5-class model indicated further significant model fit improvement, whereas adding a 

6th class had no further significant improvement (BLRT p-value >0.05).  

 
--- TABLE VII --- 

 

We mentioned earlier that the NP-GMM can be thought of as an LCGA model 

with restrictions imposed on the parameters. What is interesting to note here is that 

the resulting 5-class LCGA solution is very similar to the NP-GMM model results. 

The 5-class LCGA is characterized by one class that accounts for 68% of the sample, 

which has a very low intercept value and non-significant slope factors compared to all 

the other classes. The trajectory of this class (indicated by the dotted line in Figure 7) 

is similar to the zero class in the GMM models.  
 

--- FIGURE 7 --- 
 

                                                 
15 The inflation part was modeled in the same way as it was for the GMM. That is, three parameters are 
estimated and set equal across the classes. 
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The other four classes also show a familiar pattern. Two classes can be 

characterized by an early peak at age 16 and a sharp decline in convictions thereafter 

(2.7% and 11.9%) and the remaining two classes by a later peak around age 18 with 

some persistence through the late twenties (3.9% and 13.3%). Both of the early- and 

late-peaking patterns have versions with a high peak (reflecting a high number of 

convictions) and low peak (reflecting a low number of convictions), with a much 

higher proportion in the low-peak version in each case. The results of the 4-class 

solution look very similar. What is missing compared to the 5-class solution is the 

high-peaking class around age 16. 

Comparing Figures 6 and 7, the similarity between the results of the non-

parametric version of GMM and the LCGA is striking. The patterns are nearly 

identical, which means that even if the slope and quadratic growth factors are allowed 

to vary among the classes (as they are in LCGA), the results are close to the result of 

what was called a non-parametric version of the growth mixture model.  

 

4.1.5 Fit to data 
The similarity in BIC and estimated mean trajectories across the different 

models is underscored by looking at the standardized residuals for the Cambridge 

data. Similar to the model fit statistics, the standardized residuals do not point to one 

model with particular worse model fit.   

Table VIII displays observed and estimated response patterns for the 

Cambridge data as well as the standardized residuals. Estimated response patterns and 

standardized residuals are provided for the conventional growth model, the 3-class 

GMM and its non-parametric version as well as two zero-class LCGA models and the 

4-class and 5-class LCGA models with all trajectories estimated. In all models does 

the response pattern “00011000000” with one conviction at the ages 16/17 and 18/19 

have a significant misfit. The pattern with one conviction at the end of the 

observational period was underestimated in all five models, and significantly in 

GMM, NP-GMM, the 2+0 and 3+0 LCGA models.16  

                                                 
16 What again becomes obvious here, is the small number of patterns represented by more than one 
person in the Cambridge data. It could be that in the case of outliers, the GMM model might have an 
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--- TABLE VIII --- 

 

4.1.6 Summary 
 In sum, there are several points to note. First, all the mixture modeling 

alternatives indicate that at least two classes are needed in which one of the classes 

captures a separate developmental trajectory for young males with a very low 

propensity to be convicted.  Second, all the mixture modeling alternatives show two 

trajectory ‘themes’ for the non-zero classes (see D’Unger et al., 1998 or Roeder et al., 

1999 for similar findings). One has an early peak with relatively quick desistance and 

one has a later peak with some continuation in criminal convictions throughout its 

members’ late thirties. Third, neither the shape of the curves nor the proportions of 

the classes vary substantially across the mixture modeling alternatives. The last point 

is especially reassuring for substantive researchers working with the Cambridge data. 

For one, it indicates that for the Cambridge data, the substantive conclusions on the 

nature of the developmental trajectories would be very similar across the different 

mixture modeling alternatives. Interestingly enough, this also means that although the 

normality assumption in GMM was violated, this violation did not influence the 

substantive results. One would reach essentially the same conclusions with the NP-

GMM as with the regular GMM. Also, the NP-GMM yields the same conclusion as 

the LCGA.  

 We will now turn to a second model comparison using the Philadelphia cohort 

study. Here the model comparison leads to a different conclusion of the relative 

model fit. That leads us into a discussion of likely reasons for the differences with the 

Cambridge data application.  

 

                                                                                                                                           
advantage in as much as allowing for random effects can lower the effects of single influential cases. In a 
model that allows for variance around the growth factors, a few outliers will increase variance substantially. 
If the growth factors are not allowed to vary, those cases would be more likely to form a new class. Thus, 
we were concerned about the effect of single influential cases to the model comparison performed here. 
We computed the influence statistic for each observation (Cook, 1986; Liski, 1991). The results of the 
model comparison did not change after excluding influential cases (patterns).  
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4.2 Modeling results for the Philadelphia data 
From a statistical point of view, the most noticeable difference between the 

Cambridge data and the Philadelphia cohort study is the number of observations 

available for the analysis. One can not hide the fact that the mixture models and, 

foremost, the random effects models are computationally demanding. It is therefore 

not surprising that in the past, subsets of these data had been analyzed (see D’Unger 

et al., 1998 and D’Unger et al., 2002). Recent software and hardware improvements 

allow more easily for an analysis of the full data set. In the following sections we will 

report on the model comparison for the Philadelphia data, examine the standardize 

residuals and draw a comparison with the Cambridge data results. 

 

4.2.1 Model comparison 
For the modeling comparison with the Philadelphia cohort data we use the full 

set of 13,160 observations (excluding 34 individuals with more than 10 criminal 

offenses in any given year, the analysis are based on 13126) 17. Like in the Cambridge 

data analyses a quadratic model was applied to the data. Table IX shows the modeling 

results for the conventional growth model, the growth mixture model with random 

effects and in its nonparametric version as well as results from the latent class growth 

analysis.  

 
--- TABLE IX --- 

 
Unlike for the Cambridge data, here the growth mixture models included 

random effects for all three terms; the intercept, linear slope, and quadratic slope. 

Allowing the effects to be random for the linear and the quadratic slope improved the 

model fit. In all of the models displayed here, no structure was applied to the inflation 

part of the growth model.18 Compared to the conventional growth model, BIC 

improved by adding classes to the random effect models. A 3-class mixture GMM 

model showed clear improvement in BIC compared to the conventional growth 

model. The 4th class added little improvement compared to the 3-class GMM. Figure 
                                                 
17 A similar strategy was employed by Loughran and Nagin (2006) in their analysis of the full data set. 
18 Unlike in the Cambridge analysis, the model here has one inflation parameter per time point, held equal 
across classes. 
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8 shows the results for the 3-class GMM model. The largest class (64.6%) has an 

estimated mean trajectory almost flat at zero. The second estimated mean trajectory 

shows a peak in teenage years with a clear decline after age 17, flattening out around 

zero, similar to the largest class at age 20. The third trajectory type found for the 

Philadelphia data peaks at age 16/17 and shows continuing police contacts until the 

end of the observational period at age 25.  

 

-- FIGURE 8 -- 

 

For the LCGA models, the BIC kept improving up to as many as eight classes. 

However, with three classes, the GMM gives a better BIC value than the 8-class 

LCGA model. Finding a dip in BIC values can be difficult for data with large number 

of observations. Substantive considerations were taken into account by D’Unger et al. 

(1998), D’Unger et al. (2002) as well as Loughran and Nagin (2006) to decide on the 

number of classes. Loughran and Nagin (2006, pp. 255) give good substantive 

reasons for their choice of a 4-class model. The resulting trajectories are comparable 

to our LCGA modeling results. With the same number of parameters the non-

parametric GMM has a better BIC value than the 4-class LCGA. Looking at the 

likelihood values, the 3-class GMM has a better log-likelihood by 200 points with 

two parameters less than the 5-class LCGA. 

 

4.2.2 Fit to data 
Table X and XI show the model fit to the ten most frequent patterns, 

comprising 78% of the Philadelphia data. Both tables show the estimated frequencies 

for each of the models. Table X for the conventional growth model, the three GMM 

models and the non-parametric GMM model. Table XI shows the estimated 

frequencies for five different LCGA models. The column next to each estimated 

frequency has the standardized residuals for this particular pattern.19 Residuals 

significant at the 5% level are highlighted. To give an example, in the first column of 

                                                 
19 For LCGA and the non-parametric GMM those can be computed by hand. For GMM with random 
effects, numerical integration was used.  
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Table X the response pattern “00001000”, with one police contact between age 18 

and 19 and no police contact before or thereafter, appears 292 times in the data. The 

conventional growth model would overestimate its appearance by 60 respondents. 

The conventional growth model has in total five significant residuals. With two 

additional classes and random effects for all growth factors the 3-class GMM has 

only one significant residual and the 4-class GMM has none.  

 

--- TABLE X --- 

In contrast, the 4-class LCGA model has four significant residuals and the 5-

class model has three. An 8-class LCGA is needed to reduce this to one significant 

residual. Not surprisingly did we see a better BIC value for the 3- and 4-class GMM 

compared to the LCGA models with 8 or fewer classes. The residual analysis 

supports the earlier notion of a better model fit to the data for the GMM compared to 

NPGMM and LCGA.  

 
--- TABLE XI --- 

 

4.2.3 Comparison to the Cambridge data  
Both the comparison of BIC across models as well as the standardized 

residuals supported the GMM choice for the Philadelphia data. The 3-class and 4-

class GMM were estimated with random effects for the intercept, the linear slope and 

the quadratic slope parameters. The large number of observations in the Philadelphia 

data compared to the Cambridge data increased the power to detect differences in 

model fit between the different models presented here. For the Cambridge data, the 

lack of power in detecting significant differences in model fit turned out to not be 

problematic. The resulting trajectory curves showed comparable location, form, and 

size across the different models.20 The question is would the same be true for the 

Philadelphia data? Would the model comparison have led to a different conclusion 

                                                 
20 Going through the different modeling steps, the non-parametric GMM nicely bridged the results from 
LCGA and GMM for the Cambridge data. Without having yet looked at covariates or predictive power, 
the case can be made that there are only three overall patterns in the Cambridge data with high and low 
variations on the themes. 
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with a smaller sample size? And would the inference drawn from the resulting model 

estimates have been comparable? Or would the significant random effects for the 

linear and especially the quadratic slope have led to different conclusions? 

To answer these questions, we selected a random sample of n=500 of the 

Philadelphia cohort study. This sample size is comparable to that of the Cambridge 

data. After reducing the sample size, the random effect for the quadratic growth factor 

is no longer significant and does not provide any improvement in model fit.21 This is 

true for the conventional growth model as well as for growth mixture models with 

random effects. Second, unlike in the full data, the growth mixture model with three 

classes has a better BIC value (BIC=2945) than the 4-class model (BIC=2966). 

Interestingly, the conventional growth model with random effects for the intercept 

and slope has a better BIC (=2937) than the growth mixture models for this restricted 

data set. The 4-class LCGA has a better BIC than both the 3- and the 5-class LCGA 

models (BIC=2978 compared to BIC=3000 and BIC=2982 respectively), but not as 

good as any of the growth models with random effects. Third, the log-likelihood 

values of all these models are very close and differences are comparable in size to 

what we have seen in the modeling results for the Cambridge data. Based solely on 

the subsample of n=500, it would be difficult to make a definite judgment on the 

superiority of one model over the other based on the statistical measures available. 

Had one only used LCGA, the decision would have been to settle on a 4-class model. 

Looking at Figure 9 however, one can see that the resulting mean trajectories differ in 

shape and size for two of the LCGA classes compared to the 3-class GMM model 

(which was found to fit best for the full data set). The two estimated trajectories for 

the largest class and the low peaking class (solid line in both graphs) are very similar 

in both models. The higher peaking GMM trajectory type seems to subsume the 

variation of the additional two estimated trajectory types from the 4-class LCGA. 

 
--- FIGURE 9 --- 

 

                                                 
21 BIC with random effect for the quadratic slope factor was 2951.3 compared to 2936.5 with just random 
effects on the intercept and linear slope. 
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It appears that the combination of random intercept and random slope for the 

GMM models makes the results across the modeling types less similar. A small 

sample size will also make it difficult to evaluate significant differences in model fit. 

For the n=500 Philadelphia data – just looking at BIC for model fit – a conventional 

growth model with random intercept and slope would have been the choice. The 

analysis for the full Philadelphia cohort study showed however, that the growth 

mixture model had an improved model fit. In situations with a sample of this size, one 

can only hope (or plan before the data collection) that covariates are available that 

allow for an examination of predictive validity and correlations to antecedents.  

 

5 Summary and discussion 

This paper illustrates how four different modeling approaches can be used to 

analyze growth trajectories. The approaches considered included both the two 

dominant models used in the criminological literature—growth curve models and 

latent class growth analysis—and parametric and non-parametric versions of growth 

mixture models. These models were applied to two data sets. The application of all of 

these models within a general latent variable framework allowed for a straightforward 

comparison of the models, while the use of the same data permits direct comparison 

of the modeling results in terms of the models’ ability to capture the heterogeneity in 

trajectories. We demonstrated that researchers do not have to make a priori decisions 

on whether to assume continuously varied growth or to rely entirely on substantive 

classes to capture the variation in growth. A growth mixture model where random 

effects are allowed within classes can be an alternative. Or, if the normality 

assumption is questioned, a non-parametric growth mixture model version can be 

considered before the variation is modeled entirely group-based. 

For the Cambridge data, substantive researchers can take heart in the 

essentially equivalent results of the models compared here. For the Philadelphia 

cohort study, the results differ across the models and substantively different 

conclusions are likely to be drawn if only one of the different modeling approaches 

would be used (especially with a reduced sample size). The model comparison in this 

paper was largely based on BIC as well as an examination of the standardized 
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residuals to address model fit to data. For substantive researchers this model 

comparison should only be the beginning. Ultimately, model choices should be 

supported if not guided by arguments related to substantive theory, auxiliary 

information, predictive validity, and practical usefulness. Especially in cases were 

power is limited due to sample size. To this point we want to emphasize three issues 

to be considered in applying any of the models discussed in this paper.  

First, an important part of mixture models is the prediction of class 

membership probabilities from covariates. This gives the profiles of the individuals in 

the classes. If theories differentially relate auxiliary information in the form of 

covariates of class membership and growth factors, those should be included in the 

set of covariates to correctly specify the model, find the proper number of classes, and 

correctly estimate class proportions and class membership (Muthén, 2002). The fact 

that the “unconditional model” without covariates is not always suitable for finding 

the number of classes has not been fully appreciated (Muthén, 2004). 

Second, similar to the examination of covariates, the predictive power of 

different trajectory types for later outcomes should be considered in the modeling. 

For example, if the fit criteria used here point to a mixture model, but all classes have 

the same predictive power for later outcomes and are predicted by the same 

covariates in the same way, there is strong support for interpreting the mixture 

components as non-parametric versions of a general growth model. For the 

Cambridge data, the question is: Do the sub-classes that are used for the non-

parametric representation of the variation in the growth factor intercept show 

different effects on the number of convictions in later time points? In the Cambridge 

example this question is especially interesting for the NP-GMM and the LCGA 

solution. It would be harder to argue that these sub-classes are solely used to 

represent a non-normal distribution of the growth factor(s) in the GMM model if they 

show different predictive power for convictions at for example age 38-40. A model 

including the distal outcome (convictions at age 38-40) showed indications of such a 

situation. In the non-parametric model, one of the three sub-classes (represented by 

the solid line with 9.6% class proportion in Fig. 6) had a higher probability of 
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conviction in their late 30s than those in the other two sub-classes.22 In the LCGA 

model, only one class has a probability that is significantly different from zero for 

convictions in the respondents’ late 30’s, and that is one of the two late-peaking 

classes (represented by the dot-dash pattern in Figure 7).  

However, one should note that being able to predict a distal outcome from 

trajectory class memberships does not necessarily constitute evidence for multiple 

classes (Muthén, 2003). For example, if data have been generated by a conventional 

single-class growth model where increasing growth factor intercept and slope values 

gives an increasing probability of the distal outcome, a mixture model (here GMM, 

NP-GMM or LCGA) might point to a 2-class solution with a high and a low class 

where the high class has a higher distal outcome probability. The same can be said for 

the high and low classes that split the classes found with the GMM model for the 

Cambridge data. When statistical evidence is lacking, here too, substantive 

considerations are key in the analysis.  

Finally, researchers should also keep in mind that a model comparison can 

lead to quite different results for different data, and differently scaled outcome 

variables. Modeling comparisons for ordered categorical and continuous outcomes 

can be found in Muthén (2001a), Muthén (2001b), and Muthén (2004). More research 

needs to be done on binary outcomes and counts. Hopefully this paper gives guidance 

and inspiration on how such modeling comparisons can be approached. 

                                                 
22 The non-parametric GMM in which the three sub-classes are constrained to have equal probability for 
later conviction shows a slight decrease in fit. The log-likelihood value for the restricted model is -1,467.8 
with 19 parameters compared to -1,462.0 with 21 parameters in the unrestricted model.  
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6 Appendix 

 
 
Zero-inflated Poisson Model:  

Note that the ZIP model is already a special case of a finite mixture model 
with two classes. Treating the count outcome variable as zero-inflated at each time 
point means that a probability is estimated for the observation to be either in the 
“zero-class” or not. For the zero class a zero count occurs with probability one. For 
the non-zero class, the probability of a conviction is expressed with a Poisson 
process.  

The interesting feature for the ZIP, or its expression as a two-class model, is 
that the probability of being in the zero class can be modeled by covariates that are 
different from those that predict the counts for the Poisson class. The same is true 
when allowing for a zero class in the growth trajectory modeling. 

More formally, for the present application this model can be represented as 
follows: At each individual time point a count outcome variable Uti (the number of 
conviction at each time point t for individual i) is distributed as ZIP (Roeder et al., 
1999). 

0   with probability   
~

Poisson( ) with probability   1-
ij

ti
ti ij

p
U

pλ
⎧⎪
⎨
⎪⎩

 

The parameters pit and λ it can be represented with ti ti tlogit( ) = log[ /1- ]=X  ti tiρ ρ ρ γ  
and ln( )ti ti iλ β= Χ . 
 Notice that the mixture model within the zero-inflated Poisson is a mixture at 
each time point. The mixture models we discuss in the different growth models are 
mixtures of different growth trajectories (across all time points).  
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Table Ia: Percentage conviction per age interval for the Cambridge data (deviations from 
hundred are due to rounding). 

 Age 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39 

0 97.1 92.7 85.6 84.2 83.2 88.8 91.4 93.3 94.6 93.3 94.1 95.0 95.0 96.5 97.9 
1 2.2 5.3 9.3 9.3 11.7 7.8 5.9 4.7 3.0 4.7 5.2 4.0 3.7 2.7 2.0 
2 0.5 0.7 3.9 2.7 2.2 1.7 1.2 1.2 2.0 1.7 0.3 0.7 0.7 0.5 0.3 
3 - 1.2 0.2 1.2 1.2 0.7 1.0 0.3 0.5 - 0.5 0.3 0.5 - - 

C
on

vi
ct

io
ns

 

4+ 0.2 0.0 1.0 2.7 1.7 1.0 0.5 0.5 - 0.3 - - - 0.3 - 
  411 411 411 411 410 409 405 405 404 404 404 403 403 403 401 

Table Ib: Percentage police contacts per age interval for the Philadelphia data (deviations 
from hundred are due to rounding). 

 Age 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25 
0 97.9 92.5 85.2 80.0 88.2 90.6 91.1 92.7 
1 1.6 5.3 8.7 10.7 7.6 6.4 5.8 5.3 
2 0.3 1.1 3.0 3.9 2.3 1.8 1.9 1.3 
3 0.1 0.6 1.3 2.2 0.9 0.7 0.6 0.5 Po

lic
e 

 
co

nt
ac

ts
 

4+ 0.1 0.5 1.7 3.2 1.0 0.5 0.6 0.3 
  13,160 13,160 13,160 13,160 13,160 13,160 13,160 13,160 

 
Table II:  Patterns of convictions in biannual intervals in the Cambridge data. Single 

patterns are omitted from the table. 
Pattern (Age 10-39) N %  Pattern (Age 10-39) N % 
000000000000000 245 59.61  000000100000000 3 0.73 
000010000000000 8 1.95  000000000001000 2 0.49 
000001000000000 6 1.46  000000001000000 2 0.49 
001000000000000 6 1.46  000010300000000 2 0.49 
000000000010000 5 1.22  000200000000000 2 0.49 
000100000000000 5 1.22  001010000000000 2 0.49 
000110000000000 5 1.22  002000000000000 2 0.49 
000000000000100 3 0.73  010000000000000 2 0.49 
000000010000000 3 0.73   Total displayed  73.72 

 
Table III: Patterns of police contacts in biannual intervals in the Philadelphia data.  
 

Response Pattern  
(Age 10-25) 

 
N % 

 Response Pattern 
(Age 10-25) 

 
N 

 
% 

00000000  8021   60.95  00000100 201 1.53 
00010000   572      4.35  01000000 181 1.38 
00000010 378 2.87  00000001 141 1.07 
00001000 292 2.22  00110000 117 0.89 
00000010 203 1.54  00020000 107 0.81 

     Total displayed  77.61 
    Patterns with frequency n=1 1082 8.22 
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Table IV:  Model comparison for the Cambridge data: conventional growth model  

Model Random effect Log-Likelihood No. of parameters BIC 
Growth (zip) I -1,481.3 7 3,004.7 
Growth (zip) I S -1,469.6 9 2,993.2 
Growth (zip) I S Q -1,465.7 12 3,003.5 

All models are specified with a quadratic growth function. The conventional growth model differ 
in whether or not they allow for a random effect on the I=intercept; S=slope; or Q=quadratic 
growth factor of those growth function(s). Zip refers to zero-inflated Poisson. 

 
Table V:  Model comparison for the Cambridge data: growth mixture model.  

Model Classes Random  
effect 

Log- 
Likelihood 

No. of  
parameters 

BIC 

GMM (zip) 1  + 0 I -1,473.3 8 2,994.5 
GMM (zip) 1  + 0 I S -1,461.8 10 2,983.7 
GMM (zip) 2  + 0 I -1,454.7 12 2,981.5 
GMM(zip) 3 + 0 I -1,450.7 16 2,997.3 

All models are specified with a quadratic growth function. The growth mixture model differs in 
whether or not they allow for an additional random effect for the I=intercept; S=slope; or 
Q=quadratic growth factor of those growth function(s). Zip refers to zero-inflated Poisson. 

 

Table VI:  Model comparison for the Cambridge data: non-parametric representation 
of growth mixture model. 

Model Classes Log-Likelihood No. of parameters BIC 
GMM np zip  2 (3+3) + 0 -1,444.5 16 2,985.0 
GMM np zip 2 (2 + 3) + 0 -1,444.4 15 2,978.8 
GMM np zip 2 (2 + 2) + 0 -1,457.7 13 2,993.0 

All models are specified with a quadratic growth function. Zip refers to zero-inflated Poisson. 
 

Table VII:  Model comparison for the Cambridge data: latent class growth analysis.  

Model Classes Log-Likelihood No. of parameters BIC 
LCGA (zip) 1+0 -1,571.4 7 3,184.8 
LCGA (zip) 2+0 -1,469.7 11 3,005.4 
LCGA (zip) 3+0 -1,458.0 15 3,006.1 
LCGA (zip) 3  -1,463.7 14 3,011.6 
LCGA (zip) 4  -1,450.0 18 3,008.0 
LCGA (zip) 5  -1,441.0 22 3,014.0 
LCGA (zip) 6  -1,435.2 26 3,026.4 

All models are specified with a quadratic growth function. Zip refers to zero-inflated Poisson. 
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Table VIII:  Observed and estimated response pattern for five best performing 
models for the Cambridge data 

 
  Growth GMM – 2+0 NP-GMM 

3(2) 
LCGA - 4 LCGA - 5 LCGA 2+0 LCGA 3+0 

Pattern Obs. 
Freq. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std.
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

00000000000 258 250.4 0.78 258.0 0.00 258 0.00 257.4 0.06 257.6 0.04 258  0.00 258 0.00 
00001000000 9 11.1 0.63 7.7 0.48 8.2 0.30 7.7 0.47 7.8 0.44 6.51 0.99 8.70 0.10 
00000100000 6 8.9 0.98 5.6 0.19 5.9 0.06 6.0 0.02 5.4 0.26 4.72 0.59 6.07 0.03 
00011000000 6 1.5 3.70 1.8 3.12 2.1 2.69 1.9 3.03 2.2 2.58 1.94 2.93 2.07 2.74 
00100000000 6 6.9 0.34 5.4 0.27 5.8 0.09 5.8 0.10 6.0 0.01 3.81 1.13 5.70 0.13 
00010000000 5 9.7 1.53 3.1 0.90 8.2 1.12 8.0 1.05 8.5 1.22 5.76 0.32 8.17 1.12 
00000000001 5 2.7 1.43 1.8 2.50 1.9 2.29 3.0 1.14 2.9 1.24 1.89 2.26 1.00 3.99 
00000001000 5 4.3 0.33 2.5 1.55 2.9 1.21 3.2 1.04 3.2 1.02 2.13 1.97 2.30 1.78 

 
 
Table IX:  Summary of the modeling results for the Philadelphia cohort study.  

Model Classes Random effect Log-
Likelihood 

No. of  
parameters 

BIC 

Conventional 
Growth (zip) 

 
1 

 
I S Q 

 
-40,606 

 
17 

 
81,373 

GMM (zip) 3 I S Q -40,283 25 80,803 
GMM (zip) 4 I S Q -40,237 29 80,748 

GMM np zip 3(2)  -40,458 23 81,133 
LCGA (zip) 4  -40,643 23 81,503 
LCGA (zip) 5  -40,483 27 81,222 

 
 
Table X:  Observed and estimated response pattern for the conventional growth 

model, 2-, 3-, 4-class GMM as well as the non-parametric GMM with 
three substantive classes and two non-parametric classes. Full data for 
the Philadelphia cohort study.   

Growth GMM 2 GMM 3 GMM 4 NPGMM  
Response 

Pattern 

 
Obs. 
Freq. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

00000000 8021 7851 3.03 7871 2.68 8015 0.11 8013 0.15 7978.4 0.76 
00010000  572 670 3.88 714 5.49 577 0.20 582 0.44 559.3 0.55 
00100000  378 431 2.61 472 4.41 371 0.37 380 0.13 377.8 0.01 
00001000  292 352 3.25 312 1.13 300 0.44 294 0.11 303.7 0.68 
00000010  203 232 1.92 192 0.79 197 0.42 198 0.33 189.9 0.95 
00000100  201 265 3.98 202 0.07 226 1.68 220 1.31 231.4 2.02 
01000000  181 172 0.71 160 1.67 156 2.01 159 1.72 179.0 0.15 
00000001  141 157 1.29 168 2.09 147 0.53 154 1.06 129.2 1.04 
00110000  117 110 0.69 126 0.82 116 0.09 118 0.06 88.6 3.03 
00020000  107 94 1.37 105 0.16 105 0.22 112 0.48 89.1 1.90 
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Table XI:  Observed and estimated response pattern for 4-, 5-, 6-, 7-, and 8-class 
LCGA. Full data for the Philadelphia cohort study. 

LCGA 4 LCGA 5 LCGA 6 LCGA 7 LCGA 8  
Response 

Pattern 

 
Obs. 
Freq. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

Est. 
Freq. 

Std. 
Res. 

00000000 8021 7965 1.00 8003 0.32 8009 0.21 8020 0.03 8021 0.00 
00010000  572  581 0.37 565 0.31 561 0.48 560 0.50 547 1.10 
00100000  378 382 0.22 377 0.05 374 0.22 376 0.11 384 0.32 
00001000  292 329 2.07 313 1.17 307 0.85 300 0.46 304 0.71 
00000010  203 212 0.62 198 0.38 198 0.32 190 0.92 190 0.97 
00000100  201 257 3.54 238 2.45 239 2.48 228 1.78 228 1.81 
01000000  181 177 0.30 176 0.39 174 0.56 173 0.62 173 0.62 
00000001  141 145 0.36 132 0.78 132 0.76 128 1.12 128 1.11 
00110000  117 81 4.08 82 3.88 88 3.15 92 2.61 92 2.60 
00020000  107 85 2.40 87 2.14 87 2.15 87 2.14 93 1.49 
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Fig. 1:  Panel 1 shows the total number of convictions for all observations. Panels 2 show the 
developmental pathway of five men in the Cambridge data. 
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Fig. 2: Estimated mean trajectory curve of a conventional growth model 

with random intercept and slope for the Cambridge data. 
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Fig. 3: Estimated mean trajectory curves from a growth mixture model 

with random intercept, one zero class and two non-zero classes 
for the Cambridge data. 

 
 

 
Fig. 4: Histogram and kernel density distribution of the intercept factor 

scores for the early- and late-peaking classes in the three-class 
growth mixture model for the Cambridge data. 

 
 
 
 
 
 

0
.5

1

-4 -3 -2 -1 0 -4 -3 -2 -1 0

early peakers late peakers

Density kdensity i

Intercept factor scores

Graphs by class



 43 

 
 
 
 

 
Fig. 5: Histogram intercept support points for the early and late-peaking 

classes in the three-class non-parametric growth mixture model 
for the Cambridge data. 
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Fig. 6: Estimated mean trajectory curves in a non-parametric growth 

mixture model for the Cambridge data. The intercept variation is 
captured by separate classes with the same slope and quadratic 
growth parameter. Line pattern is used as a sub-class indicator. 
Estimated class percentages are smaller for the higher peaking 
sub-classes. 
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Fig. 7: Estimated mean trajectory curves in a latent class growth 

analysis for the Cambridge data. Line pattern is used as a class 
indicator. 
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Fig. 8:  Estimated mean trajectories for the Philadelphia cohort study. 

Results from the 3-class GMM. 
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Fig. 9:  Estimated mean trajectories for the n=500 sub-sample of the 

Philadelphia cohort study. Upper panel 3-class GMM, lower panel 
4-class LCGA model. 

 
 
 


